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Central Limit Theorem in Multitype Branching
Random Walk
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Abstract. A discrete time multitype (p-type) branching random walk
on the real line R is considered. The positions of the j-type individuals
in the n-th generation form a point process. The asymptotic behavior
of these point processes, when the generation size tends to infinity, is
studied. The central limit theorem is proved.

Keywords. Central limit theorem; counting measure; intensity mea-
sure; multitype branching random walk.

1 Introduction

A discrete time multitype (p-type) branching random walk on the real line
R is considered. The process starts with a single i-type ancestor located
at the origin. This particle splits into a random number of new particles of
different types and located at random places, with probability law depending
on %, to make the first generation individuals. Each of these particles splits
in the same way and the process goes on as there are individuals alive.
For each fixed i = 1,...,p, let Z]'(-) = (Z7("),...,Z},(-)) be the vector
of counting measures related to the point processes that give the positions
of different types of individuals in generation n descended from an i-type
one in generation zero. The purpose of this study is to establish a central
limit theorem for the counting measures {Z;;(-)}. There are a number of
works proving a central limit theorem for the counting measures in branching
random walk; see Biggins (1992), Biggins and Rahimzadeh (2005), Bramson
et al. (1992) and Rahimzadeh (2008).

The key point in this paper is showing that, the counting measure of the
n-th generation individuals ZZ() behave the same as its intensity measure,
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as n — oo. Then we use the central limit theorem for the intensity measure
of Z}%(+), from Rahimzadeh (2008), to get our results here. This is a well
known technique in literature, for example Bramson et al. (1992), and we
will use it here. The central and local limit theorems for intensity measures
(that we need here) are proved in Rahimzadeh (2008). We use the notations
and the results of that paper. In fact, the technique of the present work
made it necessary to create Rahimzadeh (2008). There is a similar result for
counting measures in Biggins and Rahimzadeh (2005), which is based on the
convolution of measures. But we give a new proof with a different technique
here. This paper consists of three sections. Section 1 is introduction. In
Section 2 we give the notations and the definition of tilted versions of Z3()
with the main results. Section 3 contains the proof of the main results.

2 Notations and Some Preliminary Results

Similar to Biggins and Rahimzadeh (2005) we consider a multitype branching
random walk on the real line R. The process starts with a single i-type
ancestor located at the origin. Let {Z'(")} = {(Z]1(-),..., Z},("))} be the
vector of counting measures related to the types in generation n. For each
fixed 1, j, ZZ() is the counting measure of j-type individuals in generation
n related to the point process {Zj;(s) : s = 1,2,...}, where Z]i(s) is the
position of s-th person of j-type individuals in generation n. So for any
Borel measurable set A C R,

ZZ(A):AZZ(dm): >,

Z%(s)eA

which is almost surely finite. Let ,ull]* () be the intensity measure related to
the counting measure Z}J(), so for any Borel measurable set A C R, ,u};‘ (A) =
E[Z}](A)] The point process Z;; has the intensity measure p;", defined in-

ductively, if u™ = {uf }pxp then Mgﬁl)* =Y _ pur® Py where ® is

the ordinary convolution of measures. By induction for any measurable set
A, i (A) = E[Z]5(A)]. Define the Laplace transforms m;;(A) with complex
arguments A by:

mij(A) = /Re’\x,uij(dx), recC.
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Let L = (), ;int{A = 0 +4n € C : m;;(§) < oo}. Then L is an open
convex subset of C and Ly = L NR is an open interval (see Biggins and
Rahimzadeh, 2005). For each A € L, define M(\) = {m;;(\)}pxp and let
M™(A) = {m;(A\) }pxp be its n-th power. Then we have

Ze ,\Z"(s]_

The entries of the matrix M (\) are complex-valued analytic functions in A;
and for those values of A\ = 6 € Ly, the matrix M (\) has all non-negative
entries. The matrix A is called positive regular if all the entries are non-
negative real numbers and for some n, all the entries of A™ are positive (see
Mode, 1971, Ch. 1.6). Assume:

m%(/\):/Re_’\xy,Z*

A(1) : The process {Z]'} is positive reqular in the sense that the matriz
M = {m;;(8)} for 0 € Ly is positive regular.

So, the conditions of Theorem 1 in Biggins and Rahimzadeh (2005) hold
and this Theorem implies that, there is an open set Q C L N'R such that, for
any 6 € Q, M(0) is positive regular and has a simple maximum eigenvalue
p(0), with related left and right eigenvectors u(#) and v(6) which are analytic
in 6 € Q (infinitely differentiable). They are strictly positive and normalized
so that u(0)Tv(0) = 3P u;(0)vi(0) = 1, and Y8 u;(0) = 1. Also for any

0 € Q, lim, 00 p(0) "mj;(0) = v,-(9)uj(9)

The multitype branching random walk is strongly non-lattice when it is
positive regular and, for some (k,!) and some 6 € €,

mkl(e + in)
mkl(G)

When the process is strongly nonlattice p(6) is strictly log-convex in 6 € Q
(see Biggins and Rahimzadeh, 2005). We set the next assumption:

‘ =1 only when n=0.

A(2) : The process {Z!'} is strictly non-lattice.

For any 6 € ©, define A(§) = log p(f) then by A(2), 0 = A”(§) > 0.
For o € (1,2] define k = k(0) = p(af)/|p(0)|*. Then & is a strictly positive
continuous function in 6 € Qy, = {0 € 2 : af € Q}. Assume

A(3): Forae (1,2] and 0 € Q, k= k() = \ZE(;)GIL <1.

When A(3) holds, the process is supercritical in the sense that, p(6) > 1,
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(see Biggins and Rahimzadeh, 2005). For each 6 € Q, i, and n, define

wi N~ [ i@, .
W= E/R w (@ 0

Then {W]*(6)} is a non-negative martingale with respect to {F,}, where each
JFn is the o-algebra containing all information of all generations up to gener-
ation n. So it converges almost surely to W;(#) and for all n, E[W(0)] =1
(see Theorem 2 in Biggins and Rahimzadeh, 2005). We assume:

A(4) : For some 6 € Q and a € (1,2],

B(0) = max{E[W}(6)*] : i=1,...,p} < ooc.

A(5): 0 € Q.
When A(4) holds for some 6y € €2, 8 is a finite real valued continuous
function in a neighborhood of y in . Same as in Rahimzadeh (2008), for

any fixed 0 € 2, we define the tilted measures Zgij(-) and ,ug;j(-) by

V4 e 0=
Z&ij(daf;) = UZEZ)) . WZZ(dx) (1)

and . s
) = 2 £ (o) (2

The mean drift of the measure py = {u},?‘ij} is a = —p'(0)/p(0), (see
Bramson et al., 1992). Define the centered shifted measures Zgij(dx) =

Zg;;(na+dx) and pigyi(de) = ppyi(na + dz) with fig;;(dz) = pe.ij(a + dz).
The measures yp%,;(dz) and [y}, (dz) can be interpreted as the intensity
measures of Zj,.(dz) and Z(?ﬂ»j
measurable set A C R,

(dx), respectively in the sense that, for any

pyii(A) = E[Zg;(A)] and g (A) = E[Zg,ij(A)]'
For § € €, the matrix P = {p;;},., = {h0,;(R)} = {o,;(R)} is a pos-

itive regular stochastic matrix with stationary measure (see Biggins and
Rahimzadeh, 2005):

w(0) = (m(0),...,mp(0)), 7mk(0) =ur(@)vp(0), (k=1,...,p).

Since P is positive regular, so for large values of n, P" = {p?]} has all
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positive entries. We assume:

A(6) : For eachi,j and 0 € Q, the characteristic function of the measure,
Iyi;(-)/ iy is absolutely integrable.

When A(6) hold the density function of [y j() /pi;, denoted by g7, exists.
Now we set our main results, Theorems 1 and 2:
Theorem 11 Let for a fivzed 0 € Q and o € (1,2], A(1) — A(6) hold, and
o2 = (log p(6))" > 0. Then for any bounded measurable set A C R, and fived
iy Js

lim v2mnoZg,;(na+ A) = u;(0)v;(0)W;(0)| Al

n—oo
almost surely where |A| is the Lebesgue measure of A and a = —p'(0)/p(0).
In the next theorem we apply the Riemman integral estimate in the
Theorem 1 to get a central limit theorem for the measures {Z]%(-)}. The
proof of this theorem is similar to Theorem 2.4 in Rahimzadeh (2008) where

the same techniqge is used to prove the central limit theorem for intensity
measures /i7" (+).

Theorem 12 Suppose A(1) — A(6) hold, § € Q and o> = (log p(#))" > 0.
Then for any bounded measurable set A C [—b,b] and all fized i, j,

tim [Vamne™ oz (na + A)] = uy(0)v,O)Wi(0) / 7 dz,

n—0o0 A

almost surely where a = —p'(0)/p(6) and A*(a) = —p'(0)/p(0) + log p(0).

We conclude this section by two more lemmas that will be needed later.
The next Lemma is a local limit theorem result for the tilted intensity mea-
sures fiy’;, which is Theorem 2.2 in Rahimzadeh (2008):

Lemma 1 Suppose 0 € Q, o € (1,2] be fived, a = —p'(0)/p(0), o> =
(log p(0))" and A(1) — A(6) hold. Let also gf; and f, be the density function

*

of fiy l]()/p?j and normal distribution N(0, 0?), respectively. Then for alli, j,
lim |v/ngf(zv/n) — fo(x)] =0
n—oo

uniformly in x € R.

The next lemma is Lemma 3 (iv) in Biggins and Rahimzadeh (2005).
Lemma 2 Suppose for a € (1,2] and 0y € Q, A(1) — A(4) hold. Then there
is a neighborhood of 6y, say B = B(6y,0) C Q, such that

sup{E |W*(@)|*:0e€ B, i=1,...,p, n=0,1,2,...} < oc.
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3 Proofs of the Main Results

In this section we use v;, u; and p for v;(0), u;(0) and p(@) for shortening
the text. Also for some 8 > 3 we assume | = [n'/?] then for large values of
n, 1 <I<nandasn— oo, wegetl, n—1I— oo.In this section we assume
n to be large enough to have 1 <[ < n and for all ¢, j, pi; > 0. By looking at
the individuals of the n-th generation as the (n —)-th generation children of
the people in generation I, we use Z,?j('|l, s) as the counting measure related
to the point process giving the positions of j-type individuals in generation n
descended from the s-th person with type k in generation [. By the branching
property of the process, given Fi, for all i, j, k, [, and s the counting measure
{25t - Z4(s)|l,s) : t =1, 2,...} is an independent and identical copy of

{2 {(t):t=1,2,...}. So for any measurable set A, we can write
—0x
v;€
_ i/ vpe” /
R Uz‘Pl A

- Z/R e ol ngjl (A —y)Zji(dy). (3)

,—0(x—y
vje= =)

vkpn—l

Zk]( —yll,y) ka(dy)

By taking conditional expectation conditioning on F; we get

By the central limit theorem for intensity measures in Rahimzadeh (2008)

asn—1 — oo, u((,nk;l)*(A — 7L (y)) converges almost surely to a limit de-

pending on 6 and k. Replacing ué?k;l)*(A — Zh (y)) with its limit in (4) im-
plies that E[Zy ,.(A)|F] behaves asymptotically the same as the almost
sure convergent martingale {w!(f)}. This is the structure of the proof of
Theorem 1. Before giving the proof of this theorem we give two definitions
which are followed by a lemma. For any real number a € (1,2], define
c%(X) = E|X — EX|* and 0*(X|F) = E[|X — E(X|F)|¥| F]. The next
lemma gives a bound for o%(.|F}).

Lemma 3 Let for some 0 € , and o € (1,2], A(1) — A(5) hold. Then
there is a constant C' > 0, depending only on « and 0, such that for all
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i,7,l,n (1 <1< n), and any measurable set A C R,
Ua(Zg,ij(A)’ F) < CElWi(ab).

Proof. Let 1 <! < n and define

—9Z£k (y)
l

vge
Xy = ng:gl(A Zh(y)) and Chy = :

vip
Then using (3) and (4) we can write

«

025, (A)| F) = E | > cry [Xny — E[XnylAN| | Fi

Given Fi, the terms ¢y, are measurable and the terms inside the sum ) ooy
are independent with zero mean. Thus, by Lemma 2 in Biggins and Rahimza-
deh (2005), for a constant C; depending only on « we have

o™(Z i (A)|F) < LY lenyl® 0 (Xiyl F)
kyy

<8C1Y  |eny|™ B[ Xky[* F) ()
k,y

where in the second inequality we used the inequality |a + b|* < 4(|a|* +
b%). Since Zg,;(-) is a nonnegatve measure and by Lemma 2 for a €
(1,2], E{W()|* is bounded uniformly in ¢ and n, by M; say, then by con-
ditioning on F;, we get

E[|Xk,y|a|ﬂ1=EHsz5<A Ziw)| | 7
<8z m)]"| A
s v
< M.

Let M = max; p{viv;(ad)/vivi(af)} then by (5) and the previous inequal-
ity:

o —abZl, ()
(25 (A)F) < 8C1 My S (”’“) £ -

al
k.y P

J. Statist. Res. Iran 5 (2008): 207-219



214 Central Limit Theorem in Multitype Branching Random Walk

s 5] 2 (2 o] | e
< 8C M Mk Wl(ae)

where, C' = 8C1 M1 M is a constant depending only on « and 6.
Now we give the proof of the main results.

Proof of Theorem 1 Let A be a bounded measurable set in R and let i, j
be fixed. Let 8 > 3 and for any n define [ = [n'/?]. We write

V2mnoZyi(na+ A) — ujo;W, |A|‘
< ‘\/ ™mo ngij(na +A)—FE [Zgij(na + A)’ Fi) ] ‘
+ ‘\/27maE [ Zg5(na + A)| R - ujvjVVil(H)\Aw

eI AGEAGIE (6)
Since W;(6) is the almost sure limit of {W}(#)}, so the last term has zero
limit, as I — oo. To prove the almost sure convergence of the first term to

zero, let
Dy = Zg;i(na+ A) — E [Zaij(na + A)| F].

Since a > 1, from Jensen’s inequality, conditioning on F;, we get E [| D, ||F;] <
1
[E[|Dn|*|F]]= = [0*(Z7,.(na + A)|F)]a. By Lemma 3 we get

0,ij
EID, | < COIto) p [Wia0)?] .
Again by Jensen’s inequality, E[W} (af) /)] < [EWZ,I(QQ)]u/a) ~ 1. s0 we
have
> VnE|Dy| < CY N /ndist®) -
" l

where, d; is the number of n’s which are related to the fixed [ and is bounded
by d; < (I +1)% —18. So we can continue
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S Vadin® < S0+ )2 (14 1) 1) (,i(l/m)l
! l
= ZP(l)mll < 0
l

where, k1 = k(1/®) € (0,1) and P(1) is a function of [ with P(I) = O(138/2)),
as [ — oo. Thus the series on the left hand side of (7) converges, and then by
the well known results we get the convergence of \/nE|D,| — 0, as [,n — oo.
This implies the almost sure convergence of |\/nD,| or the convergence of
the first part on the right hand of (6) to 0, as I,n — oo.

Now we turn to prove the zero limit of the second part in 6. Let f, be
the density function of N(0,0?), then we can write

V2rnoE [Z&j(na + A)|F] - UjUjWil(9)|A"
V2mn
< o
Vn —1
vge~ k() / x
— UV fo dx
7 zy: A+la—Z! (y) (vn - l)

\/7 Uke_asz(y)
R z

[Z&ij(A + na)|F]

() e
+f—ﬁ

Vn—1
=FE,+ F,+ Gy, (say) (8)

ujuiWi(9) | Al

Since | = o(n), by Proposition 1 below the second part on the right hand
side of (8) tends to zero, almost surely as [,n — oo. In the last part, G, the
fraction (y/n —v/n —1)/v/n — 1, has also zero limit by | = o(n) and {W}(6)}
is an almost sure convergent martingale, hence the last part converges to zero
almost surely. To prove the zero limit of first part in (8), E,, from Lemma

1 we have
() — g<fﬁ>‘:0 as m— 0o

lim
n—odo
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uniformly in z € R, where g’ is the probability density function of /iy’ i / Pij-
Then by integrating over bounded set B with |B| < 2b we get, as n — oo,

;/;uz’;j( - fa( ﬁ) s

Since p?j — ujv; as n — 00, we get

Vnjigii(B) — UJUj/fa <\/ﬁ> dx

Since | = o(n), by using the decomposition of E[Z]}(A)|F;] from the
equation (4) and applying the previous inequality we can write

sup — 0.

| B|<2b

0p =: Max sup — 0.

b7 |B|<2b

vn [ vie” Z3.(y)
E, <V2ro _
vn —1 kzy Uzp

vn—1 ugk] "(A+1a - Z}(y))

|

_ujvj/AHa ZL (y )fg <\/%) e
< Varot, 1wl o)]

]

Since {W/'(0)} is an almost sure convergent martingale and (v/n/vn —1) —
1 by I = o(n), these imply that the right hand side tends to zero, as n — oo,
and this completes the proof.

Proposition 1 Suppose the hypotheses of Theorem 1 hold. Let g > 3, [ =
(n'/8) and i, j be fized. Then for any bounded measurable set A C [—b, b] = I,

as n — oo,

=3
" P! A+la7Z£k(y)

(¥
kg iP

dx

w(5m1) v

converges to zero almost surely, where f, is the density of the normal distri-
bution N(0,0?) and o = (log p(0))" > 0.

Proof. Let f, be the density function of normal distribution N(0, &2).
Then there is a constant C' > 0, such that |f,(z) — 1/(cV27)| < Ca?, for
all x € R. Let also A be a bounded measurable set with A C [—b,b] then
A+la— ZL(y) C I+la— Z. (y) and this implies that
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—-0Z4.(v) 2
vpe ik x
A)<CE E _ d
) ky vipl /;4+laka(y) < vV — l> !

Cy Uk —0y [o73 2] ol
< Yy _ ’
< 3(n—l)zv- ZE/ e~ [26° 4 6b(la — y)?] ZLk(dy)

C/Z Vg

v ph

e 2 = )] i)

C/
s vip

l Z Uk / e~ [(20° + 6b1%a®) — 12ably + 6by?] ulr(dy) (9)

where C" = C3/3(n—1). The functions v;, uj, p, and m;;(#) are analytic and

{p(0)7"mj%(0)} is a convergent sequence, hence is bounded by some M; > 0

say. The first two derivatives of the equation M™(0)v(0) = p™(6)v(#) imply
!/

that, for some constants ci, ..., cs, we have . <m 3(9)> vj < (cin+ cp)p™

and >0, (m(0))"v; < (c;;n + can + ¢5)p". So for some constants My and

M, p (mfy(0))v; < Monp™ and Y0_, (m}(0))"v; < Man®p". Now we

J=1
can continue (9) to write

< Wl ka [ (2b% + 6b1%a?)mly,(0) + 12]albl(ml,(0)) + 6b(M,(0))"

C/
CQMZ2
= 3(n — Dy

< [(21)3 + 6b12a2) My gt + 12]albi2Map' + 6bl2M3p]

for some constant M. Since I = [n'/#] with 8 > 3 then the right hand side of
(9) converges to zero and hence EH,, — 0. This implies that H,, — 0 almost
surely as [, n — oo and completes the proof.

We apply the Riemman integral estimate to Theorem 1 to prove our
second main result.

Proof of Theorem 2 Let A C [—b,b] = I be a measurable set. For any
fixed i, j, and n, from the definition of Zj3(-, ¢) we can write
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—0z

v; vje
Z%(na+ A :/ [leezpn} [ J A dx]
i ) na+A LVj v pn ()

V;
Uj na+A

By changing the variable z to 2 + na and recalling that a = —p/(6)/p(0), we
get

Zl(na+ A) = i gn* (@) / " 7y i dx. (10)
Yj A ’

Define g(x) = 14(z)e?® for all x € I. Let {A, : r} be a finite partition of I,

then for each r, define M, = sup{g(x) : x € A,} and m, = inf{g(z) : = €

A, }. For each x € I, define g(z) =), M,14,(x) and g(z) = >, my14, ().

Then for any z € A, g(z) < g(z) < g(x). From (10) we have

n Vi nA*(a Zn
Zji(na+ A) < —e™ WY "M Z7(A). (11)

Uj

Let M =3, M, and € > 0 be fixed. From Theorem 1, for any r, there is an
N; such that, for all n > N7, we have

(%aZgij(A) wjv;Wi(0)| A, || < e/M. (12)

We choose N big enough such that (12) holds for all . Then for any n > Ny,
by applying (12) in (11), we can continue

V2mnoZj(na+ A) < [UZ ni*(a ]ZM ujvjWi(0)|Ar| + €/M]

_ [Zem*@] [L /A g(x)dx+e]

where, L = u;v;W;(0). Thus, for any € > 0, we have

Jp = V2m a A @z (na + A) < L/ glz)dz + e. (13)
A
By taking limsup of (13), as n — oo, since € is arbitrary, we get

limsup J,, < L/ g(x)dz. (14)
A

n—oo
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The equation (14) holds for all partitions of I, thus by taking infimum on
all partitions of I and taking into account that, J, is independent of these
partitions, we get

limsup J,, < L/ g(x)dzx. (15)
A

n—o0

With a similar argument we can prove that

lim inf J, > L/ g(x)dz. (16)
A

n—oo

Then (15) and (16) completes the proof.
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