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Abstract. Rayleigh distribution is widely used for life-time modeling and is
important in electro vacuum devices and communication engineering. Rao et
al. (2004) suggested the Cumulative Residual Entropy (CRE), which is the
extension of the Shannon entropy to the the cumulative distribution function.
In this paper, a general class of maximum CRE distributions is introduced
and then we characterize the Rayleigh distribution and use it to construct
a goodness-of-fit test for ascertaining appropriateness of such model. For
constructing the test statistics, we use Cumulative residual Kullback-Leibler
information (CKL) that was introduced by Baratpour and Habibi (2012).
Critical values for various sample sizes determined by means of Monte Carlo
simulations are presented for the test statistics. A Monte Carlo power analy-
sis is performed for various alternatives and sample sizes in order to compare
the proposed test with several existing goodness-of-fit tests based on the
empirical distribution. We find that the proposed test has good power prop-
erties. The use of the proposed test is shown in an illustrative example.
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1 Introduction
The Rayleigh distribution is a special case of the Weibull distribution with
shape parameter equal to 2 and a suitable model for life-testing studies. Also,
the square root of an exponential random variable follows the Rayleigh distri-
bution. Hence, by applying this transformation to the data, all Rayleighity
tests can be utilized for the purpose of testing the goodness-of-fit to the
exponential distribution. Polovko (1969), and Dyer and Whisenand (1973),
demonstrated the importance of this distribution in electro vacum devices
and communication engineering. Also, the Rayleigh distribution was origi-
nally derived in connection with a problem in acoustics, and has been used
as the distance distribution between individuals in a spatial Poisson process.
For more details on Rayleigh distribution the reader is referred to Johnson
et al. (1994). The origin and other aspects of this distribution can be found
in Siddiqui (1962), and Miller and Sackrowttz (1967). This model has the
probability density function (pdf), cumulative distribution function (cdf),
given respectively by

f(x) =
x

σ2
exp

(
− x2

2σ2

)
, x > 0, σ > 0,

and
F (x) = 1− exp

(
− x2

2σ2

)
, x > 0.

The concept of entropy is important for studies in many areas such as
physics, probability and statistics, communication theory, and economics.
An early definition of a measure of the entropy is the Shannon entropy (Shan-
non, 1948). In Shannons approach, discrete values and absolutely continuous
distributions are treated in a somewhat different way through entropy and
differential entropy, respectively. Shannon entropy is defined as

H(X) = −
∫ ∞

−∞
f(x) ln f(x)dx,

where f is pdf if random variable X is continuous, probability mass function
if X is discrete. Recent years have witnessed a growing interest in utiliz-
ing information-theoretic measures for distributional disparities as a tool for
statistical inference in a variety of fields. For testing problems, the earliest
work dates back to Vasicek (1976) which used Shannons maximum entropy
to construct a goodness-of-fit test for normality. Vasicek’s approach has
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much affected the development of entropy-based tests of fit for several para-
metric models; for example, see Grzegorzewski and Wieczorkowski (1999),
Alizadeh Noughabi and Arghami (2011) and Taufer (2002). In probability
theory and information theory, the Kullback-Leibler divergence (Kullback
and Leibler, 1951; Kullback, 1959,1987) is a non-symmetric measure of the
difference between two probability distributions P and Q. Specifically, the
Kullback-Leibler divergence of Q from P is a measure of the information lost
when Q is used to approximate P . For discrete probability distributions P
and Q, the KL divergence of Q from P is defined to be

KL(P : Q) =
∑
i

ln
P (i)

Q(i)
P (i).

For distributions F and G of a continuous random variable, KL is defined to
be

KL(F : G) =

∫ ∞

−∞
ln

{
f(x)

g(x)

}
f(x)dx,

where f and g denote the pdfs of F and G, respectively. Tests of fit based
on Kullback-Leibler information have been developed; see Ebrahimi et al.
(1992), Choi et al. (2004) and Gurevich and Davidson (2008).
Considering the complementary cumulative distribution function instead of
the probability density function in the definition of Shannon entropy leads
to a new entropy measure named cumulative residual entropy (CRE) (Rao
et al., 2004).
CRE is defined as

CRE(X) = −
∫
RN

+

P (|X| > u) lnP (|X| > u)du

where N is the dimension of the random vector X. In reliability theory, CRE
is based on survival function, F̄ (x) = 1− F (x), and is defined as

CRE(X) = −
∫ ∞

0
F̄ (x) ln F̄ (x)dx.

Clearly, this definition is valid both for a discrete or an absolutely contin-
uous random variable. In addition, unlike Shannon entropy it is always
positive, while preserving many interesting properties of Shannon entropy.
The concept of CRE has found nice interpretations and applications in the
fields of reliability, see Asadi and Zohrevand (2007) where the concept of

J. Statist. Res. Iran 9 (2012): 115–131



118 A Cumulative Residual Entropy Characterization of . . .

dynamic CRE was introduced. Wang et al. (2003) defined a new matching
criterion based on CRE for application to the image alignment problem and
compared it to methods that use the Shannon entropy in defining a match
measure images alignment (see, Wang and Vermuri, 2007). Di Crescenzo and
Longobardi (2009) showed that the cumulative entropy of a random lifetime
X can be expressed as the expectation of its mean inactivity time evaluated
at t. Baratpour (2010) characterized the first order statistics based on the
CRE. Baratpour and Habibi (2012) developed a consistent test for testing
the hypothesis of exponentiality against some alternatives.

The following example will be used in Section 2.

Example 1. For r.v. X with Rayleigh(σ) distribution, we have

E(X) = σ

√
π

2
, E(X3) = 3σ3

√
π

2
,

and

CRE(X) = −
∫ ∞

0
exp

(
− x2

2σ2

)
ln

{
exp

(
− x2

2σ2

)}
dx

=
1

2σ2

∫ ∞

0
x2 exp

(
− x2

2σ2

)
dx

=
1

2

∫ ∞

0
exp

(
− x2

2σ2

)
dx

= σ

√
2π

4
.

�

This article is organized as follows. In Section 2, we introduce a general
distribution which maximizes the CRE within a special class of distributions
and then characterize the rayleigh distribution in a class of distributions
with some moment constraint. In Section 3, we construct a consistent test
for testing the hypothesis of Rayleighity against some alternatives. This
test is based on a new measure of distance between two distributions that
was defined by Baratpour and Habibi (2012). In Section 4, we consider
some power estimates obtained by the method of Monte Carlo simulation.
An illustrative example for implementing the proposed test is provided in
Section 5.

c⃝ 2012, SRTC Iran



S. Baratpour and F. Khodadadi 119

2 A CRE Characterization

In this section, a general class of maximum CRE distributions is introduced
and then we characterize the Rayleigh low as the distribution with the maxi-
mum CRE among all absolutely continuous distributions with support (0,∞)
and given first and third moment.

Theorem 1. The random variable X with distribution function

F (x;λ) = 1− exp

(
−

k∑
i=1

λix
i

)
, λi > 0

has maximum CRE within class A of absolutely continuous random variables
Y with support (0, ∞), which satisfy

k∑
i=0

λi
i+ 1

E(Xi+1) =

k∑
i=0

λi
i+ 1

E(Y i+1), (1)

where λ0 = −1.

Proof. Let random variable Y be a member of A. By log-sum inequality
and inequality y ln y

x > y − x, x > 0, y > 0, we conclude that

∫ ∞

0
P (Y > t) ln

P (Y > t)

P (X > t)
dt > E(Y ) ln

E(Y )

E(X)

> E(Y )− E(X).

Thus,

∫ ∞

0
P (Y > t) lnP (Y > t)dt >

∫ ∞

0
P (Y > t) lnP (X > t)dt+ E(Y )− E(X)

= −
k∑

i=0

λi

∫ ∞

0
P (Y > t)tidt+E(Y )− E(X).
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By noting that
∫∞
0 P (Y > t)tidt = E(Y i+1)

i+1 and (1), we have

CRE(Y ) 6
k∑

i=1

λi
i+ 1

E(Y i+1)− E(Y ) + E(X)

=
k∑

i=0

λi
i+ 1

E(Y i+1) + E(X)

=

k∑
i=0

λi
i+ 1

E(Xi+1) + E(X)

=
k∑

i=1

λi
i+ 1

E(Xi+1)

It can be shown that CRE(X) =
∑k

i=1
λi
i+1E(Xi+1). Thus, the proof is com-

pleted.

By Theorem 1, we conclude the following Corollary.

Corollary 1. (i) The exponential distribution with parameter λ maximizes
the CRE among all distributions with support (0, ∞) subject to constraint
E(X2)
2E(X) , which is the result presented in Rao et al. (2004).
(ii) The Rayleigh distribution with parameter σ maximizes the CRE among all
absolutely continuous distributions with support (0, ∞) subject to restriction
E(X3)− 6σ2E(X) + 3σ3

√
π
2 = 0. �

By Corollary 1 (ii), we conclude the following Corollary.

Corollary 2. The r.v. X with Rayleigh(σ) distribution is characterized by
the property that X attains maximum CRE among all nonnegative, absolutely
continuous r.v.s Y subject to restrictions E(Y ) = ν and E(Y 3) = ω, where
σ2 = ω

3ν . �
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3 Cumulative Residual Entropy-Based Test
Let X1, . . . , Xn be nonnegative; independent and identically distributed (iid)
random variables from a continuous distribution function F with order statis-
tics, X(1) 6 . . . 6 X(n), and with finite E(X1) = σ

√
π
2 and E(X3

1 ) = 3σ3
√

π
2

(
E(X3

1 )
3E(X1)

= σ2). Let F0(x) = 1 − exp(− x2

2σ2 ) denote a Rayleigh distribution
function, where σ is the unknown parameter. The aim of this article is testing
the hypothesis

H0 : F (x) = F0(x, σ), versus Ha : F (x) ̸= F0(x, σ).

Baratpour and Habibi (2012) defined a new measure of distance between
two distribution based on CRE called cumulative Kullback-Leibler (CKL) di-
vergence and construct a goodness-of-fit test for exponentiality. They proved
that CKL is non-negative and equality holds if and only if F = G, a.e. This
measure is defined as follows

Defenition 1. If X and Y be two nonnegative random variables with respec-
tively distribution functions F and G, then CKL between these distributions
is defined as

CKL(F : G) =

∫ ∞

0
F̄ (x) ln

F̄ (x)

Ḡ(x)
dx− {E(X)−E(Y )},

where F̄ (x) = 1 − F (x) and Ḡ(x) = 1 − G(x) are respectively cumulative
residual distribution of X and Y. �

Thus, under the null hypothesis, CKL(F : F0) = 0 and large value of
CKL(F ;F0) leads us to reject the null hypothesis H0 in favor of the alterna-
tive hypothesis Ha. Since evaluation of the integral in CKL(F : F0) requires
complete knowledge of F and F0, then CKL(F : F0) is not operational. We
operationalize CKL(F : F0) by developing a discrimination information statis-
tics. With this in mind, CKL(F ;F0) is written as

CKL(F : F0) = −CRE(F )−
∫ ∞

0
F̄ (x) ln F̄0(x;σ)dx− E(X) + σ

√
π

2

= −CRE(F ) +
1

2σ2

∫ ∞

0
x2F̄ (x)dx− E(X) + σ

√
π

2
. (2)
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An estimator of CKL(F : F0) is obtained by replacing in (2), F by empirical
distribution function Fn(x) =

∑n−1
i=0

i
nI[x(i),x(i+1)](x) and replacing σ and

E(X) by
√ ∑n

i=1 X
3
i

3
∑n

i=1 Xi
and X̄ = 1

n

∑n
i=1Xi, respectively. Thus

ĈKL(F : F0) = −CRE(Fn)−
1

2
X̄ +

√
π

2
·

√ ∑n
i=1X

3
i

3
∑n

i=1Xi
, (3)

where CRE(Fn) = −
∑n−1

i=1
n−i
n (ln n−i

n ){X(i+1)−X(i)}. Because the test statis-
tics must dont depend on parameter, By dividing (3) to X̄, the test statistics
is defined as

CKn =

∑n−1
i=1

n−i
n (ln n−i

n ){X(i+1) −X(i)}+
√

π
2

√ ∑n
i=1 X

3
i

3
∑n

i=1 Xi

X̄
(4)

We reject H0 at the significance level α and favor Ha if CKn > CKn,1−α,
where CKn,1−α is 100(1− α)− precentile of CKn under H0.

Rao, et al. (2004) proved that CRE(Fn) → CRE(F ) a.s. Thus CRE(Fn) is a
consistent estimator for CRE(F ). By consistency of

∑n
i=1 X

3
i

3
∑n

i=1 Xi
for σ2 and apply-

ing Slutsky theorem, under the null hypothesis, CKn
p
→ 1

2 . On the other hand,
by Corollary 2 the Rayleigh distribution maximizes CRE among all distri-
butions that have the same E(X) and E(X3), so CRE(F ) < CRE(F0) =

√
2π
4 σ.

UnderHa, CRE(Fn) → CRE(F ) a.s; thus CKn
p
→

−CRE(F )+
√

π
2
σ√

π
2
σ

>
−CRE(F0)+

√
π
2
σ√

π
2
σ

= 1
2 . This means that the CKn test is a consistent test.

4 Monte Carlo Results
In this section, we obtain the percentage points of the proposed test and
study its power by Mont Carlo simulation.

4.1 Critical Values of the Test Statistics
The distribution of CKn under the null hypothesis has not been obtained
analytically. To determine the percentage points CKn,1−α, Mont Carlo sim-
ulations were employed.
In order to obtain the percentiles of the null distribution of CKn, 100,000
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samples of size n were generated from the Rayleigh distribution with σ = 2,
for selected values n = 1, . . . , 39 and 40 to 60 by 5, and 70 to 100 by 10.
For each sample, the CKn statistics as defined in (4) was calculated. The
values were then used to determine the critical values CKn,0.95 and CKn,0.99.
A selection of the 95 and 99 percent points is presented in Table 1.
The type I error control using the 0.95 percentiles of the CKn statistics was
evaluated by simulating random samples from a spectrum of Rayleigh popu-
lations. A selection of the result is presented in Table 2. It can be seen that
the empirical percentiles given in Table 2 provide an excellent type I error
control.

Table 1. Critical values of the test statistic CKn

n
CKn n

CKn

α = 0.01 α = 0.05 α = 0.01 α = 0.05

1 0.7236013 0.7236013 25 0.5647094 0.5421782
2 0.7214782 0.7093749 26 0.5636395 0.5407059
3 0.7175996 0.6734160 27 0.5614636 0.5397082
4 0.7017060 0.6465053 28 0.5593608 0.5384825
5 0.6850819 0.5606804 29 0.5575642 0.5373767
6 0.6681757 0.6151675 30 0.5570241 0.5366245
7 0.6534651 0.6043387 31 0.5557888 0.5356270
8 0.6425021 0.5954569 32 0.5536211 0.5345317
9 0.6323886 0.5885379 33 0.5527510 0.5338593
10 0.6269256 0.5826478 34 0.5508095 0.5329456
11 0.6166661 0.5769818 35 0.5505608 0.5325437
12 0.6094163 0.5718854 36 0.5489008 0.5316753
13 0.6047603 0.5678996 37 0.5481700 0.5309661
14 0.5986721 0.5641181 38 0.5474240 0.5303068
15 0.5962232 0.5616213 39 0.5462676 0.5295431
16 0.5902378 0.5585082 40 0.5455303 0.5291758
17 0.5879517 0.5563432 45 0.5412851 0.5265232
18 0.5838778 0.5539128 50 0.5376516 0.5243472
19 0.5811981 0.5517890 55 0.5354097 0.5226402
20 0.5774558 0.5500101 60 0.5325251 0.5210588
21 0.5739829 0.5477154 70 0.5281727 0.5184013
22 0.5716899 0.5464284 80 0.5256438 0.5166467
23 0.5698107 0.5447773 90 0.5231150 0.5150180
24 0.5669811 0.5432045 100 0.5211445 0.5136784
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Table 2. Type I error control of CKn test: α = 0.05

(Simulation estimates based on 100,000 replications)

Rayleigh(σ) n = 5 n = 15 n = 25

σ=3 0.05110 0.05018 0.04941
σ=4 0.04802 0.04987 0.04946
σ=5 0.04960 0.04942 0.04992
σ=6 0.05030 0.05078 0.05027

4.2 Power Study

In this subsection, the power of the CKn test is estimated against several
alternative. The method is that of Monte Carlo simulation of the distribution
of CKn under alternative distributions. For each alternative, 100000 samples
of sizes n = 5, 10, 15, 20, 25, 30, 35, 40, 50, 60 were generated, and the test
power is estimated by the frequency of the samples falling into the critical
region. The continuous alternative investigated were gamma distributions
with density function

f(x;λ, β) =
xβ−1 exp(−x

λ)

λβΓ(β)
, β > 0, λ > 0, x > 0;

log-normal distribution with density function

f(x;µ, ν) =
1

xν
√
(2π)

exp

{
− 1

2ν2
(lnx− µ)2

}
,

−∞ < µ <∞, ν > 0, x > 0;

inverse Gaussian distribution with density function

f(x;µ, λ) =

√
λ

2πx3
exp

{
−λ(x− µ)2

2xµ2

}
, µ > 0, λ > 0, x > 0.

The power of the CKn test is compared to that of some other tests for
Rayleighity against the same alternative. These selected tests are Van-
Soest test (Van-Soest, 1969), Finkelstein and Schafers test (Finkelstein and
Schafer, 1971) and Anderson-Darling (Anderson and Darling, 1954). These
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test statistics are respectively as follows

W 2 =

n∑
i=1

{
F0(X(i); σ̂)−

2i− 1

2n

}2

+
1

12n

=

n∑
i=1

[
1− exp

{
− πn2x2i
4(
∑n

1 xi)
2

}
− 2i− 1

2n

]2
+

1

12n
,

S∗ =

n∑
i=1

max

{∣∣∣∣F0(X(i); σ̂)−
i

n

∣∣∣∣ , ∣∣∣∣F0(X(i); σ̂)−
i− 1

n

∣∣∣∣}

=

n∑
i=1

max

[ ∣∣∣∣1− exp

{
− πn2x2i
4(
∑n

1 xi)
2

}
− i

n

∣∣∣∣ ,∣∣∣∣1− exp

{
− πn2x2i
4(
∑n

1 xi)
2

}
− i− 1

n

∣∣∣∣ ],

A2 = −n−
n∑

i=1

2i− 1

n

{
ln(F0(X(i); σ̂)

}
+ ln

{
1− F0(X(n+1−i); σ̂)

}
= −n−

n∑
i=1

2i− 1

n

(
ln

[
1− exp

{
− πn2x2i
4(
∑n

1 xi)
2

}]
−
πn2x2n+1−i

4(
∑n

1 xi)
2

)
,

where σ has been substituted by σ̂ =
∑n

i=1 Xi

n
√

π
2

. H0 is rejected of large values

of W2, S
∗ and A2.

Tables 3-5 list power estimates of 0.1 and 0.5 size test with various sample
size n. It is apparent from these table that the CKn test appears to be more
powerful than W 2, S∗ and A2 testes. On the other-hand, compared with all
the test proposed, CKn test is moderately easy to compute. These results,
together with the asymptotic properties of CKn, suggest that the CKn test
may be preferred in many situations. It is also remarkable that the power
of the all tests against any alternative shows an increasing pattern for the
sample size.
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Table 3. Power comparison for the tests CKn, W 2 and S∗ when the alternative distribution
is gamma(λ, β), where λ = 1, 2 and E(X3

1 )

3E(X1)
= 4 at the significance levels α = 0.01 and

α = 0.05, and sample sizes n = 5, 10, 15, 20, 25, 30, 35, 40, 50, 60.

n λ α CKn W 2 S∗ A2

5 1 0.01 0.26789 0.17514 0.17438 0.36098
0.05 0.75408 0.30573 0.31268 0.52386

2 0.01 0.07112 0.03386 0.03111 0.06722
0.05 0.14274 0.09630 0.09432 0.16101

10 1 0.01 0.48909 0.39369 0.38890 0.63051
0.05 0.65003 0.57509 0.57495 0.77149

2 0.01 0.13519 0.06557 0.06002 0.11813
0.05 0.24550 0.16285 0.15571 0.2480

15 1 0.01 0.65614 0.59188 0.58405 0.79506
0.05 0.80082 0.75806 0.75365 0.89353

2 0.01 0.19843 0.10273 0.09810 0.16802
0.05 0.33860 0.22763 0.22268 0.32547

20 1 0.01 0.77806 0.70486 0.72788 0.89446
0.05 0.88965 0.86581 0.863620 .95183

2 0.01 0.25834 0.14380 0.13396 0.21965
0.05 0.40989 0.29184 0.28643 0.3924

25 1 0.01 0.8636 0.83821 0.83518 0.94742
0.05 0.94085 0.93013 0.93056 0.97955

2 0.01 0.31522 0.18231 0.17711 0.27515
0.05 0.47575 0.35594 0.34942 0.46357

30 1 0.01 0.91204 0.90769 0.9025 0.97516
0.05 0.96727 0.96474 0.96351 0.99141

2 0.01 0.36137 0.22570 0.21978 0.32765
0.05 0.53555 0.40974 0.40636 0.5222

35 1 0.01 0.94621 0.94721 0.94446 0.98844
0.05 0.98264 0.98275 0.98196 0.99635

2 0.01 0.41080 0.31898 0.26733 0.38190
0.05 0.5880 0.52387 0.46557 0.57558

40 1 0.01 0.96779 0.9722 0.96801 0.99484
0.05 0.99112 0.99152 0.99094 0.99851

2 0.01 0.45633 0.31898 0.30613 0.43173
0.05 0.63658 0.52387 0.51386 0.62795

50 1 0.01 0.98958 0.99192 0.99104 0.99901
0.05 0.99767 0.99802 0.99798 0.99976

2 0.01 0.54433 0.40077 0.39732 0.52408
0.05 0.71801 0.61159 0.61013 0.71613

60 1 0.01 0.99646 0.99803 0.99754 0.99983
0.05 0.9994 0.99962 0.99951 0.99999

2 0.01 0.62024 0.49343 0.48891 0.61178
0.05 0.78371 0.69650 0.69528 0.78784
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Table 4. Power comparison for the tests CKn, W 2 and S∗ when the alternative distribution
is log-normal(µ, σ), where µ = −0.5, 0.5 and E(X3

1 )

3E(X1)
= 4 at the significance levels α = 0.01 and

α = 0.05, and sample sizes n = 5, 10, 15, 20, 25, 30, 35, 40, 50, 60.

n µ α CKn W 2 S∗ A2

5 -0.5 0.01 0.24482 0.1609 0.15231 0.23526
0.05 0.75666 0.26966 0.26561 0.37093

0.5 0.01 0.05227 0.02655 0.02300 0.02989
0.05 0.11311 0.08119 0.07607 0.08411

10 -0.5 0.01 0.4934 0.36829 0.35331 0.47653
0.05 0.62451 0.52011 0.51156 0.62469

0.5 0.01 0.12665 0.05354 0.04532 0.06145
0.05 0.21189 0.13325 0.12280 0.14577

15 -0.5 0.01 0.66687 0.5464 0.53238 0.64885
0.05 0.78189 0.69559 0.69094 0.77836

0.5 0.01 0.19441 0.07906 0.06690 0.08476
0.05 0.30048 0.177921 0.16629 0.19078

20 -0.5 0.01 0.78654 0.69211 0.67612 0.77269
0.05 0.87409 0.81428 0.80961 0.87157

0.5 0.01 0.25970 0.10919 0.08937 0.10978
0.01 0.37613 0.23036 0.21073 0.23764

25 -0.5 0.01 0.86653 0.79096 0.78446 0.86043
0.05 0.92845 0.88957 0.88885 0.93059

0.5 0.01 0.31769 0.13333 0.11645 0.13856
0.05 0.44050 0.27382 0.26032 0.28537

30 -0.5 0.01 0.91639 0.86450 0.85925 0.91386
0.05 96037 0.93594 0.93274 0.96136

0.5 0.01 0.36862 0.16275 0.14344 0.16947
0.05 0.50122 0.32030 0.30463 0.33036

35 -0.5 0.01 0.94832 0.91396 0.91064 0.94836
0.05 0.67824 0.96380 0.96223 0.97858

0.5 0.01 0.41575 0.19375 0.17400 0.19901
0.05 0.5120 0.36636 0.35070 0.37294

40 -0.5 0.01 0.96847 0.94655 0.94263 0.96889
0.05 0.98799 0.97862 0.97822 0.98791

0.5 0.01 0.46181 0.22860 0.19995 0.22652
0.05 0.59770 0.41025 0.38660 0.41334

50 -0.5 0.01 0.98915 0.98040 0.97877 0.98985
0.05 0.99636 0.99345 0.99344 0.99697

0.5 0.01 0.54406 0.28585 0.25826 0.28815
0.05 0.67776 0.48859 0.46798 0.50022

60 -0.5 0.01 0.99622 0.99361 0.99314 0.99674
0.05 0.99899 0.99843 0.99815 0.99924

0.5 0.01 0.61351 0.35453 0.33283 0.35373
0.05 0.74134 0.56606 0.55584 0.57902
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Table 5. Power comparison for the tests CKn, W 2 and S∗ when the alternative distribution
is inverse Gaussian (µ, λ), where µ = 1, 2 and E(X3

1 )

3E(X1)
= 4 at the significance levels α = 0.01 and

α = 0.05, and sample sizes n = 5, 10, 15, 20, 25, 30, 35, 40, 50, 60.

n µ α CKn W 2 S∗ A2

5 1 0.01 0.30300 0.21251 0.20350 0.30032
0.05 0.41806 0.32302 0.33007 0.44435

2 0.01 0.05933 0.02765 0.02152 0.03139
0.05 0.605321 0.08506 0.07781 0.09184

10 1 0.01 0.59292 0.48651 0.47064 0.59402
0.05 0.71461 0.63676 0.62848 0.72866

2 0.01 0.13676 0.05886 0.04869 0.06677
0.05 0.23281 0.14449 0.13117 0.15984

15 1 0.01 0.77075 0.69261 0.67928 0.77455
0.05 0.86510 0.81408 0.80707 0.86971

2 0.01 0.20769 0.09024 0.07745 0.09663
0.05 0.32635 0.20271 0.18862 0.21609

20 1 0.01 0.87638 0.82720 0.81089 0.88259
0.05 0.93635 0.90957 0.90308 0.94093

2 0.01 0.27532 0.12749 0.10967 0.13040
0.05 0.40413 0.26343 0.24861 0.27252

25 1 0.01 0.93462 0.90622 0.89887 0.93946
0.05 0.96975 0.95773 0.95509 0.97396

2 0.01 0.33726 0.16077 0.13812 0.16702
0.05 0.47464 0.32183 0.29386 0.33291

30 1 0.01 0.96527 0.95098 0.94767 0.97084
0.05 0.98641 0.98042 0.97945 0.98855

2 0.01 0.38750 0.19857 0.17977 0.20348
0.05 0.53332 0.37252 0.36140 0.38521

35 1 0.01 0.98308 0.97402 0.97349 0.98555
0.05 0.99422 0.99091 0.99068 0.99442

2 0.01 0.44343 0.23731 0.40915 0.24297
0.05 0.58847 0.42793 0.21739 0.43611

40 1 0.01 0.99108 0.98823 0.98616 0.99380
0.05 0.9974 0.9386 0.99593 0.99791

2 0.01 0.4908 0.28127 0.24918 0.28369
0.05 0.6386 0.47844 0.46283 0.48694

50 1 0.01 0.99817 0.99738 0.99694 0.99866
0.05 0.99945 0.99943 0.99330 0.99972

2 0.01 0.57869 0.35686 0.33345 0.35936
0.05 0.721150 0.57137 0.55839 0.57868

60 1 0.01 0.99957 0.99951 0.99935 0.99977
0.05 0.99993 0.99990 0.99990 0.99992

2 0.01 0.65200 0.44124 0.42045 0.43945
0.05 0.78369 0.65516 0.64036 0.66469
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5 An Illustrative Example
In this section, we propose the new hypothesis procedure to a practical data
set.

Example 2. The data below were given by Caroni (2002), the data on the
failure times of 25 ball bearings in endurance test. The 25 (=n) failure times
are {Xi, i = 1, . . . , 25}=17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84,
51.96, 54.12, 55.56, 67.80, 67.80, 67.80, 68.64, 86.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, 173.40. �

Table 6 shows critical values, test statistics and the p-values. Since the
values of CKn are less than the critical values, test accepts the null hypothesis
that failure times follow a Rayleigh distribution at significance levels α = 0.01
and α = 0.05.

Table 6. Critical values, test statistics, and the p-values

Rayleigh Dis. Critical value CKn p-value

α = 0.01 0.5647094 0.5120220187 0.87849
α = 0.05 0.5421782 0.5120220187 0.87849
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