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Abstract. In this paper, a new mixture modelling using the normal mean-
variance mixture of Lindley (NMVL) distribution has been considered. The
proposed model is heavy-tailed and multimodal and can be used in deal-
ing with asymmetric data in various theoretic and applied problems. We
present a feasible computationally analytical EM algorithm for computing
the maximum likelihood estimates. The behavior of the obtained maximum
likelihood estimators is studied with respect to bias and mean squared errors
through conducting a simulation study. Two examples with flow cytometry
data are used to illustrate the applicability of the proposed model.
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1 Introduction
Known as a finite mixture of distributions, a finite convex linear combinations
of distribution functions is used in various scientific areas. It is proposed
as a tool for modelling population heterogeneity as well as to approximate
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complicated probability densities in presenting multimodality, skewness and
heavy tails. In these models, each distribution function is known as a mixture
component and comprehensive surveys of them can be found in Böhning
(2000), McLachlan and Peel (2000) and from a Bayesian point of view in
Frühwirth-Schnatter (2006).

Not only in the applied statistics but also in methodological contexts the
mixture of normal distributions (N-MIX) has been well recognized as a useful
model. When data has some degrees of skewness, the N-MIX model may not
provide a suitable model. In attempting to appropriately model a set of
data arising from a class or several classes with asymmetric observations,
Lin et al. (2007a,b, 2014) introduced new mixture models with components
followed by the skew-normal (SN-MIX), skew-t (ST-MIX) and skew-t-normal
(STN-MIX) distributions, respectively, and found that ST-MIX and STN-
MIX fitted data better than SN-MIX. Although these models are attractive,
the maximum likelihood (ML) estimator of degree of freedoms have not an
explicit form and should be obtained numerically.

In this paper, we present a finite mixture version of the NMVL (NMVL-
MIX) model. Some properties of the new model have been studied and the
ML estimates of the parameters are computed by the Expectation condition-
ally maximization (ECM) algorithm. By fitting NMVL-MIX model on a real
data set, we compare this model with N-MIX and some members of the fi-
nite mixture of scale mixture of skew-normal distribution family. Finally, we
investigate the finite sample properties of the ML estimates via conducting
a simulation study.

The rest of the paper is organized as follows. In Section 2, we briefly
review the NMV and Lindley distributions. Subsection 2.3 describes the
NMVL distribution, and mentions some of its properties. Finite mixture
of NMVL distributions and ECM procedure for computing the parameter
estimates are studied in Section 3. In Section 4, we finally check out the
performance of the proposed model and the obtained ML estimates using a
real data example and simulation study, respectively.
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2 Preliminaries

2.1 Normal Mean-Variance Mixture Model

Let X be a random variable represented as

X
d
= µ+Wλ+

√
WY, (1)

where d
= denotes equality in distribution, µ, λ ∈ R, Y is distributed by the

normal distribution with mean zero and variance σ2 (Y ∼ N(0, σ2)), and W
is a non-negative independent random variable with cumulative distribution
function (cdf) H(·;θ) which parametrized by the vector parameter θ. Then,
X is said to have a univariate normal mean-variance mixture distribution.
The cdf of X can be easily obtained as

FX(x;µ, λ, σ
2,θ) =

∫ ∞

0
Φ((x− µ− wλ)w−1/2;σ2) dH(w;θ), x ∈ R,

where Φ(·;σ2) denotes the cdf of N(0, σ2). As a special case, if H(·;θ) is
absolutely continuous with probability density function (pdf) h(·;θ), we can
readily obtain the pdf of X as

fX(x;µ, λ, σ
2,θ) =

∫ ∞

0

1√
w
ϕ

(
(x− µ− wλ)√

w
;σ2
)
h(w;θ) dw, x ∈ R (2)

where ϕ(·;x) denotes the pdf of N(0, σ2). Provided the mixture variable, W ,
has finite variance, we have

E(X) = µ+ λE[W ], and V ar(X) = E[W ]σ2 + V ar(W )λ2.

2.1.1 Generalized Hyperbolic Distribution

In most literature the density of generalized hyperbolic (GH) distribution
is defined directly, such as Protassov (2004). The application and inference
based on this definition are inconvenient since some important characterizing
parameters are not invariant under linear transformations. On the other
hand, McNeil et al. (2005) considered the GH distribution via proposing
the generalized inverse Gaussian (GIG) distribution as a mixing random
variable in the normal mean-variance mixture model. Specifically, let W in
the stochastic representation (1) be a random variable followed by the GIG
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distribution (W ∼ GIG(κ, χ, ψ)) with the following pdf,

g(w;κ, χ, ψ) = (
ψ

χ
)κ/2

wκ−1

2Kκ(
√
ψχ)

exp

{
−1

2

(
w−1χ+ wψ

)}
, w > 0, (3)

where Kκ(·) denotes the modified Bessel function of the third kind, κ ∈ R
and two parameters χ, ψ are given, such that χ ⩾ 0, ψ > 0 if κ > 0; ψ ⩾ 0,
χ > 0 if κ < 0 and χ > 0, ψ > 0 if κ = 0. The density of GIG distribution
actually contains the density of gamma distribution as a special limiting
case. When χ = 0 and λ > 0, the GIG distribution becomes to the so-called
gamma distribution with parameter λ and ψ/2, Gamma(λ, ψ/2). In this
case (3) must be interpreted as a limit, which can be evaluated using the
asymptotic relation Kκ(x) ∼ Γ(κ)2κ−1x−κ as x ↓ 0 for κ > 0.

Remark 1. Let W ∼ GIG(κ, χ, ψ). Then W−1 ∼ GIG(−κ, ψ, χ) and

E[Wn] = (
χ

ψ
)n/2R(κ,n)(

√
χψ),

where R(κ,a)(c) = Kκ+a(c)/Kκ(c).

Proposing W ∼ GIG(κ, χ, ψ), the random variable X in (1) has a GH
distribution. Therefore, the pdf of X, obtained from (2), is given by

fGH(x;µ, λ, σ
2, κ, χ, ψ) = C

Kκ−0.5(
√

(ψ + λ2/σ2)(χ+ (x− µ)2/σ2)){√
(ψ + λ2/σ2)(χ+ (x− µ)2/σ2)

}0.5−κ

× exp
{
λ(x− µ)/σ2

}
, x ∈ R,

where

C =
(ψ/χ)

κ
2 (ψ + λ2/σ2)

1
2
−κ

√
2πσKκ(

√
ψχ)

.

Under this parameterization, Blæsild (1981) showed that the linear transfor-
mations of GH random variable remain in this family.

© 2016, SRTC Iran



M. Naderi, A. Arabpour and A. Jamalizadeh 201

2.2 Lindley Distribution

A non-negative random variable W follows the Lindley distribution if it has
the following pdf

f(w;α) =
α2

1 + α
(1 + w)e−αw, w > 0, α > 0.

We denote this distribution by Lindley(α). The Lindley distribution, intro-
duced by Lindley (1958, 1965), is positively skewed and it can be seen that
its pdf is a mixture of exponential and Gamma distributions. i.e,

f(w;α) =
α

1 + α
fGIG(w; 1, 0, 2α) +

1

1 + α
fGIG(w; 2, 0, 2α).

2.3 The Normal Mean-variance Mixture of Lindley Distri-
bution

Definition 1. A random variable X is said to have a NMVL distribution if
in representation (1) W ∼ Lindley(α).

The following theorem shows that the pdf of the NMVL is a mixture of
two pdfs of GH distribution.

Theorem 1. Let X ∼ NMV L(µ, λ, σ2, α). Then the pdf of X are given by

fX(x;µ, λ, σ
2, α) =

α

1 + α
fGH(x;µ, λ, σ

2, 1, 0, 2α)

+
1

1 + α
fGH(x;µ, λ, σ

2, 2, 0, 2α), x ∈ R.

Also, the mean, variance and characteristic function of X are

E(X) =µ+
α+ 2

α(α+ 1)
λ,

V ar(X) =
α+ 2

α(α+ 1)
σ2 +

α2 + 4α+ 2

α2(α+ 1)2
λ2,

φX(s) = exp(isµ)MW

(
isλ− 1

2
s2σ2

)
,

where MW (·) is the moment generating function of the Lindley distribution.

J. Statist. Res. Iran 13 (2016): 197–214



202 Mixture of the NMVL Distributions

skewness

α

τ

 −1.8 

 −1.6 
 −1.4 

 −1.2 
 −1 

 −0.8  −0.6 
 −0.4  −0.2  0  0.2  0.4  0.6 

 0.8  1  1.2 
 1.4 

 1.6 

 1.8 

0 2 4 6 8 10

−4
−2

0
2

4

kurtosis

α

τ  2.4 
 2.6  2.8 

 3 
 3 

 3.2 

 3.2 

 3.4 

 3.4 

 3.6 

 3.6 

 3.8 

 3.8 

 4 

 4 

 4.2 

 4.2 

 4.4 

 4.4 

 4.6 

 4.6 

 4.8 

 4.8 

 5 

 5 

 5.2 

 5.2 

 5.4 

 5.4 

0 2 4 6 8 10

−4
−2

0
2

4

Figure 1. contour plot of skewness and kurtosis of NMVL.

By representation (1), the skewness and kurtosis ofX ∼ NMV L(µ, λ, σ2, α)
can also be obtained as

γx =
µ3 − 3µ1µ2 + 2µ31

(µ2 − µ21)
1.5

and κx =
µ4 − 4µ1µ3 + 6µ21µ2 − 3µ41

(µ2 − µ21)
2

− 3,

where

µ1 = E(X) =
λ(α+ 2)

α(α+ 1)
, µ2 = E(X2) =

α2 + 2α(λ2 + 1) + 6λ2

α2(α+ 1)
,

µ3 = E(X3) =
6λ
(
α2 + α(λ2 + 3) + 4λ2

)
α3(α+ 1)

,

µ4 = E(X4) =
6
{
α3 + α2 + 4λ2

(
α(α+ λ2 + 6) + 5λ2

)}
α4(α+ 1)

.

Figure 1 shows the contour plots of the skewness and kurtosis ofNMV L(µ, λ,
σ2, α) as a function of α and λ. It can be observed that the range of asym-
metry properties of the NMVL distribution is wider than SN distribution.

We establish the following proposition, which is useful for the calculation
of some conditional expectations involved in the proposed EM algorithm
discussed in the next section.

Proposition 1. Let X and W be the random variables with NMV L(µ, λ,
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σ2, α) and Lindley(α), respectively. Then, for any x ∈ R, the pdf of W given
X = x is a mixture of two GIG distribution, given as

f
W
∣∣X=x

(w;µ, λ, σ2, α) =p(x)fGIG(w; 0.5, χ(x, µ, σ
2), ψ(λ, σ2, α))

+ {1− p(x)}fGIG(w; 1.5, χ(x, µ, σ2), ψ(λ, σ2, α)), w > 0,

where

p(x) =
αfGH(x;µ, λ, σ

2, 1, 0, 2α)

αfGH(x;µ, λ, σ2, 1, 0, 2α) + fGH(x;µ, λ, σ2, 2, 0, 2α)
,

χ(x, µ, σ2) = (x − µ)2/σ2, ψ(λ, σ2, α) = λ2/σ2 + 2α and fGIG(., κ, χ, ψ) is
the pdf of GIG(κ, χ, ψ). Furthermore, for r = ±1,±2, . . . ,

E
[
W r
∣∣X = x

]
=

{
χ(x, µ, σ2)

ψ(λ, σ2, α)

}r/2 [
p(x)R(0.5,r){

√
ψ(λ, σ2, α)χ(x, µ, σ2)},

+ {1− p(x)}R(1.5,r){
√
ψ(λ, σ2, α)χ(x, µ, σ2)}

]
.

More details about NMVL distribution can be found in Naderi et al. (2017).

3 Finite Mixture of the NMVL Distributions

Consider n independent, random variable X1, . . . , Xn, which are taken from
NMVL-MIX distributions. The density of a g-component MVNL-MIX model
is

f(xj ;Θ) =

g∑
i=1

pi fNMV L(xj ;θi), j = 1, 2, . . . , n, (4)

where pi’s are mixing proportions subject to Σgi=1pi = 1, fNMV L(.;θi) is
a density of the NMVL distribution obtained in Theorem 1 with θi =
(µi, λi, σ

2
i , αi) and Θ = (p1, . . . , pg−1,θ1, . . . ,θg).

By observing data x = (x1, . . . , xn)
⊤, the observed data Log-likelihood

function for x is

ℓ(Θ|x) =
n∑
j=1

log

(
g∑
i=1

pi fNMV L(xj ;θi)

)
.
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The ML estimator of the parameters can be obtained by maximizing ℓ(Θ|x)
with respect to Θ. A direct maximization of this function is complicated,
since its derivatives with respect to parameters are difficult to compute.
Another approach for computing the ML estimator is the Expectation Max-
imization (EM) algorithm. In this approach, introduced by Dempster et al.
(1977), the key idea is to solve a difficult incomplete Log-likelihood problem
by repeatedly solving tractable complete Log-likelihood problems. The E-
step of each iteration involves taking an expectation over complete-data log-
likelihood given observed data, and then in the M-step of each iteration, the
estimation of the parameter is obtained by maximization of this Expectation
over the parameter space. For applying this approach to NMVL-MIX model,
it is convenient to construct a complete Log-likelihood by introducing a set
of allocation variables Zj = (Z1j , . . . , Zgj) for j = 1, . . . , n, taking Zij = 1 if
yj belongs to the ith component and Zij = 0 otherwise. This implies that the
independent random variables Zj follow a multinomial distribution with one
trial and parameters (p1, . . . , pg), denoted as Zj ∼ M(1; p1, . . . , pg). It also
follows from (1) that the hierarchical representation of (4) can be represented
by

X
∣∣(Wj = wj , Zij = 1) ∼ N(µi, wjλi, wjσ

2
i ),

Wj

∣∣Zij = 1 ∼ Lindley(αi),

Zj ∼M(1, p1, p2, . . . , pg).

So, the complete-data Log-likelihood associated with the observed data x
and hidden variables w = (w1, . . . , wn)

⊤ and Z = (Z1, . . . ,Zn)
⊤, omitting

additive constants, is obtained as

ℓc(Θ|x,w,Z) =
n∑
j=1

g∑
i=1

zij

[
log(pi) + log

( α2
i

1 + αi

)
− 1

2
log(σ2i )− wjαi

− (xj − µi)
2

2wjσ2i
− wjλ

2
i

2σ2i
+
λi(xj − µi)

σ2i

]
, (5)

3.1 Parameter Estimation via ECM Algorithm
In this subsection, we apply ECM algorithm (Meng and Rubin, 1993) to
estimate parameters of the NMVL-MIX model. The algorithm is iterated
between the following steps.
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E-step: Compute the conditional expectation of (5), known as a Q-function,  
 at the kth iteration as

Q(Θ|Θ̂(k)
) = E

[
ℓc(Θ|x,w,Z)|x, Θ̂(k)

]
.

The necessary conditional expectations to compute the Q-function in-
clude ẑ

(k)
ij = E

[
Zij |xj , Θ̂

(k)
i

]
, ŵ(k)

ij = E
[
Wj |xj , Zij = 1, Θ̂

(k)
i

]
and

t̂
(k)
ij = E

[
W−1
j |xj , Zij = 1, Θ̂

(k)
i

]
. By Proposition 1, we can obtain

these expectations as

ẑ
(k)
ij =

p̂ifMNSB(xj ; θ̂
(k)

i )

f(xj ; Θ̂
(k)
i )

,

ŵ
(k)
ij =

(
χij
ψi

)0.5 [
pijR(0.5,1)(

√
ψiχij)

+ (1− pij)R(1.5,1)(
√
ψiχij)

]
,

t̂
(k)
ij =

(
ψi
χij

)0.5 [
pijR(−0.5,1)(

√
ψiχij)

+ (1− pij)R(−1.5,1)(
√
ψiχij)

]
, (6)

where pij = pi(xj), χij = χ(xj , µi, σ
2
i ) and ψi = ψ(λi, σ

2
i , αi), defined

in proposition (1). So, the Q-function can be written as

Q(Θ|Θ̂(k)
) =

n∑
j=1

g∑
i=1

ẑ
(k)
ij

[
log pi − logαi −

1

2
(log(σi)− αiŵ

(k)
ij

− (xj − µi)
2

2σ2i
t̂
(k)
ij −

ŵ
(k)
ij λ

2
i

2σ2i
+

(xj − µi)λi
σ2i

]
. (7)

M-step: Let ni =
∑n

j=1 ẑ
(k)
ij , Ai =

∑n
j=1 ẑ

(k)
ij t̂

(k)
ij , Bi =

∑n
j=1 xj ẑ

(k)
ij t̂

(k)
ij and

Ci =
∑n

j=1 ŵ
(k)
ij ẑ

(k)
ij . Maximizing the Q-function and update parameter

at the (k + 1)th iteration by the following CM-steps:
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CM-step 1: Calculate

p̂
(k+1)
i =

ni
n
,

λ̂
(k+1)
i =

Ai
∑n

j=1 xj ẑ
(k)
ij − niBi

AiCi − n2i
,

α̂
(k+1)
i =

−(Ci − ni) +
√

(Ci − ni)2 + 8niCi
2Ci

.

CM-step 2: By maximizing (7) over µi, update µ(k)i as

µ̂
(k+1)
i =

Bi − niλ̂
(k+1)
i

Ai
.

CM-step 3: Put µi = µ̂
(k+1)
i , and update σ2(k)i by maximizing (7)

over σ2i . This leads to

σ̂
2(k+1)
i =

1

ni

 n∑
j=1

ẑ
(k)
ij t̂

(k)
ij (xj − µ

(k+1)
i )2 − λ̂

2(k+1)
i Ci

 .
4 Real Data Analysis
This section studies the performance of the proposed model and procedure of
parameters’ estimating which is discussed in the earlier section. To verify the
beneficence of the NMVL-MIX, we use flow cytometry data set. The flow
cytometry is a technique for scanning, outlining and sorting microscopic
particles in a stream of water based on the laser. Because of using this
technique in clinical research, it is used in a large number of biomedical
applications such as molecular and cellular biology to measure the content
DNA. It was recently shown that flow cytometric data is ideally suited for
multimodal non-Gaussian mixture modelling (Pyne et al., 2004; Frühwirth-
Schnatter and Pyne, 2010; Ho et al., 2012).

Glynn (2006) provided a working data set of flow cytometry in ‘CC4-067-
BM.fcs. The set consists of 5,634 cells which is related to the ten attributes
measured. In this part, we analyze channels APC and FSC. Suggested by
Hahne et al. (2009) in the BioConductor package flowCore, we prepare data
by considering transformation y/1000, to compare the NMVL-MIX model

© 2016, SRTC Iran



M. Naderi, A. Arabpour and A. Jamalizadeh 207

with the N-MIX, SN-MIX and ST-MIX models.

4.1 Model Selection Criteria
The Akaike Information Criterion (AIC) (Akaike, 1974), the Bayesian Infor-
mation Criterion (BIC) (Schwarz, 1978) are computed to identify the best
selected model. These measures are given by

−2ℓ(Θ̂) +m cn,

where ℓ(Θ̂) and m represent the maximized log-likelihood and the number of
estimated free parameters related to the model, respectively, and the penalty
term cn is a convenient sequence of positive numbers. The term cn is chosen
2 for AIC and log(n) for BIC. As an alternative criterion, Biernacki et.al.
(2000) proposed a measure based on the integrated completed likelihood
(ICL) for estimating the proper number of mixing component. The ICL
criteria is obtained by a BIC-like approximation as

ICL = BIC +

n∑
j=1

g∑
i=1

ẑij log(ẑij),

where ẑij is computed by equation (6) evaluated at Θ = Θ̂.

4.2 Kolmogorov-Smirnov Test
Denote the order statistics of the random samples by X(1) ⩽ X(2) ⩽ . . . ⩽
X(n). The Classical test statistics is defined as a some measure of cdf distance
Fn(x)−F (x, θ̂) where Fn(x) = n−1

∑n
i=1 I {Xi ≤ t} represents the empirical

cdf, F (·, θ̂) is the cdf fitted by the data in which θ̂ denotes the estimation of
θ.

In particular, the popular Kolmogorov-Smirnov (KS) statistic is defined
by

KS =max
{
K+,K−} ,

where K+ = max
[
i
n − F (X(i), θ̂)

]
and K− = max

[
F (X(i), θ̂)− i−1

n

]
over

1 ⩽ i ⩽ n.
To compute the estimated p-value of the KS test, n random numbers are

generated from standard uniform distribution and we order them as u(i)(1) ⩽

J. Statist. Res. Iran 13 (2016): 197–214
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u
(i)
(2) ⩽ . . . ⩽ u

(i)
(n). Compute,

d(i) = max
j=1,...,n

{
j

n
− u

(i)
(j), u

(i)
(j) −

j − 1

n

}
.

Now, Let Ii = 1 if d(i) ⩾ KS and 0 otherwise and repeat this producer N
times to get I1, . . . , IN . As a result, the estimated p-value is obtained by∑N

i=1 = Ii/N .

4.3 Data Fitting
As a first example, we use FSC data to compare N-MIX, SN-MIX, ST-MIX
and NMVL-MIX models. The result of fitting these models with series of
mixture components (g = 2–4) are summarized in Table 1. It is worthwhile
to note that the smaller value of AIC, BIC or ICL model has, the better fit
on the data is provided.

It can be seen that the best number of component based on the three
criteria is vary. But, the values clearly show that not only for the AIC crite-
rion but also for the BIC and the ICL criteria the NMVL-MIX distributions
fits data better than other competitors.

For the channel APC, we also compare N-MIX, SN-MIX, ST-MIX and
NMVL-MIX models with different mixture components (g=2-4), as a second
example. We found that the best number of the component is g=2 in all
models. Table 2 shows the ML estimates with the associated standard errors
for the best fitted NMVL-MIX model and the corresponding values for the
other three competing 2-component mixture models. Also, the values of AIC,
BIC and ICL are reported in this table, which show that the NMVL-MIX
model is the best fit. This result can also be seen from the histogram of the
data and estimated pdf of models, plotted in Figure 1. Furthermore, The
results of the KS test are listed in Table 2. Of the four mixture models, the
best fit is the NMVL-MIX model with a p-value of 0.402 which suggests that
the APC data follow a mixture of the NMVL distributions.

4.4 Simulation Study
In order to analyze the performance of the estimates obtained using our
proposed ECM algorithm, we investigate bias and mean square error as two
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Table 1. model selection criteria for FSC data.

model group AIC BIC ICL group AIC BIC ICL
N-MIX 1 14974.72 14987.99 14987.99 2 12234.03 12267.21 12285.01

3 12398.79 12451.88 12772.51 4 12434.61 12507.47 14997.52

SN-MIX 1 14922.17 14942.08 14942.08 2 12385.13 12431.58 12479.32
3 11765.81 11838.01 12158.27 4 11747.50 11852.89 13827.60

ST-MIX 1 14583.07 14602.98 14602.98 2 11994.19 12051.42 12216.12
3 11654.62 11745.70 12173.16 4 11534.57 11634.63 13573.19

NMVL-MIX 1 14501.38 14527.93 14527.93 2 11779.81 11839.54 11986.45
3 11397.82 11490.62 11784.73 4 11168.25 11294.34 12764.76

Table 2. Parameter estimates of APC data.

NMVL-MIX ST-MIX SN-MIX N-MIX
parameter MLE SE MLE SE MLE SE MLE SE

p 0.6854 0.0082 0.6826 0.0077 0.6497 0.0071 0.6285 0.0068
µ1 3.1196 0.0089 3.2320 0.0085 3.2667 0.0097 2.8899 0.0174
µ2 0.2660 0.0095 0.1626 0.0091 0.1179 0.0089 0.7880 0.0060
σ1 0.7889 0.0158 0.4457 0.0131 0.5499 0.0133 0.3207 0.0194
σ2 0.5835 0.0264 0.4740 0.0222 0.8036 0.0275 0.5678 0.0028
λ1 -1.5927 0.1657 -3.1874 0.2104 -3.1353 0.1523 –
λ2 1.4250 0.0458 5.9648 0.7979 10.7986 1.3187 –
α1 5.4259 0.8451 – – –
α2 4.4339 0.7564 – – –
ν – 3.0475 0.3006 – –

ℓ(Θ̂) -5571.916 -5592.241 -5732.665 -6286.44
AIC 11161.83 11200.48 11479.33 12582.88
BIC 11221.56 11246.94 11525.79 12616.06
ICL 11784.19 11798.84 11831.65 12813.01
KS 0.0122 0.0159 0.0396 0.0613

P.Value 0.402 0.1045 < 0.0001 < 0.0001
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Figure 2. The histogram of data with four fitted models.

asymptotic properties of the estimates. We consider a set of the parameter
values Θ = (p, µ1, λ1, σ1, α1, µ2, λ2, σ2, α2) = (0.4,−2,−2, 3, 1, 2, 1, 4, 0.5) for
this study.

For the proposed combination of parameter and sample size n =100, 200,
400, 800 and 1600, we generate 1000 samples from the NMVL-MIX model.
Then, the absolute relative bias (R.Bias) and mean squared error (MSE) are
computed over all samples. For each parameter θ, they are defined as

R.Bias = 1

500

500∑
i=1

∣∣∣ θ̂i − θ

θ

∣∣∣ and MSE =
1

500

500∑
i=1

(θ̂i − θ)2,

where θ̂i is the estimation of θi when the data is sample i.
Figure 3 presents the results of this simulation. Form this figure, a pattern

of convergence to zero of the bias and MSE can be seen when n increases.
As a general rule, we can say that R.Bias and MSE tend to approach to zero
when the sample size increases indicating that the estimates based on the
proposed ECM algorithm do provide good asymptotic properties.
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Figure 3. Relative Bias and MSE of the simulated data.

5 Conclusion

In this paper, we have introduced a new mixture model via NMVL distri-
bution. The new model which is called the NMVL-MIX, is heavy tail and
has a wide range of skewness. As a result, the NMVL model is useful for
modeling multimodal and heavy tails data and can be applicable for clus-
tering and pattern recognition. To find the ML estimation of NMVL model,
we have presented a convenient hierarchical representation and developed
an ECM algorithm according to them. Real data results show that the pro-
posed method performs reasonably well for the experimental data. We also
conduct a simulation study to investigate the properties of the models pa-
rameter. The R code of the real data analysis can be found from the authors
upon request.

An interesting extension of the current work that deserves attention in
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future research concerns the multivariate case of NMVL-MIX (Naderi et al.,
2017). Also, The use of mixtures of factor analyzers can be considered as a
parsimonious modeling approach.
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