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Abstract. Bayesian methods for exact small-sample analysis with categor-
ical data in I × J contingency tables are considered. Different structures
of association are defined and tested concerning log odds ratios in these
tables with fixed row margins. The conditional distribution of sufficient
statistics for interesting parameters conditional on the sufficient statistics of
other nuisance parameters in the model is obtained and used to eliminate
the effect of nuisance parameters. The resulting distribution for the table is
Fisher’s multivariate noncentral hypergeometric distribution. For Bayesian
approach, although computation under this distribution is complicated, a
common Bayesian model is considered. Bayes factor is used as a measure of
evidence for Bayesian testing of different association structures. The perfor-
mance of our testing Bayesian approach is compared with that of the classical
corrected likelihood ratio test by some simulation studies. Also the Bayesian
test of “homogenous association” is applied on a real data set.
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2 Bayesian Test of Different Association Structures

1 Introduction

To test an association structure in two-way contingency tables by use of
classical methods, there exist several test statistics such as Pearson’s Chi-
square test, the likelihood ratio test or test based on divergence measure (see
for example Cressie and Read, 1984; Pardo, 2006). But when the sample sizes
are small or cell expected values are smaller than 5 or when data are sparse,
these approximation methods are not valid and other methods such as exact
inference should be used (Cochran, 1954; Agresti, 2002). There are two
classical approaches for exact inference of I × J contingency tables. These
are unconditional and conditional approaches. Unconditional method is not
what we concern in this paper.

Exact tests for I × J tables utilize the Fisher’s multivariate noncentral
hypergeometric distribution. Freeman and Halton (1951) defined the P-value
as the probability of the set of tables with the given margins that are no more
likely to occur than the table observed. Yates (1934) used X2, the corrected
chi-squared statistic. The P-value is then the null value of P (X2 > x2obs)
for observed value of x2obs. Also Sharp (2008) presented an approximation
for the G2 statistic in order to improve the performance of it for testing
independence in contingency tables with small samples.

Special algorithms and software for computing classical exact tests for
I × J tables are widely available (e.g., Mehta and Patel, 1983). We recom-
mend these tests when asymptotic approximations may be invalid. However,
computing time increases exponentially as n, I, or J increase. However, one
can use Monte Carlo to sample randomly from the set of tables with the given
margins. The estimated P-value is then the sample proportion of tables hav-
ing test statistic value at least as large as the value observed. As I and/or J
increase, the number of possible values for any test statistic tends to increase.
Thus, the conservativeness issue for conditional tests becomes problematic
(Agresti, 2002). Problems arising for calculating P-value and also its con-
servative nature of rejecting H0 lead us to think about Bayesian approaches
which may solve these problems. We like to implement the Bayesian ap-
proaches which utilize Bayesian criteria such as Bayes factor or Bayesian
P-value for testing hypothesis. These approaches should not be related to
sample size and dimension of table. Such Bayesian approaches, considered
in this paper, will be also compared with classical approaches, to see if they
have better performance.

In contingency tables, the sample proportions are ordinary Maximum
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Likelihood (ML) estimators of multinomial cell probabilities. When data are
sparse, these can have undesirable features. For instance, for a cell with a
sampling zero, 0.0 is usually an unappealing estimate. Early applications
of Bayesian methods to contingency tables involved smoothing cell counts
to improve estimation of cell probabilities with small samples. Previously
Altham (1969, 1971) presented Bayesian analogs of small-sample frequentist
test. An alternative approach using normal priors for logit received consid-
erable attention in the 1970s by Leonard (1972). For a review of Bayesian
inference for categorical data see Agresti and Hitchcock (2005) and Agresti
(2014).

Here, we shall use a conditional Bayesian approach. The approach will
be conditioning on all row totals of I×J tables, i.e. the experimental design
will be the same as that of Fisher in his famous example for 2 × 2 tables.
Under different structure of association, we condition as well as on column
totals to eliminate the nuisance parameters. So, this paper may be regarded
as an extension of Bayesian approach of test of different structure of associa-
tion for I×J contingency tables (Saberi and Ganjali, 2013, 2015). Although
Bayesian computation are very complex under the sample distribution which
is multivariate noncentral hypergeometric distribution, we consider Bayesian
approach about the parameters of interest [log odds ratios, a vector of di-
mension (I − 1) × (J − 1)], then we present a Bayesian test of the desired
hypothesis. For testing the hypothesis the Bayes factor and Bayesian P-value
will be used as Bayesian evidence.

Section 2 gives exact conditional approaches in I × J tables. In Section
3 different models for association structure in two way contingency tables
are presented, the details of our conditional Bayesian approach for testing
different structures of association in I × J contingency tables are described
in Section 4 where we use the Bayes factor as a summary of evidence. In
Section 5, Bayesian test for different association structures are presented.
Some simulation studies are given in Section 6. In section 7, some real
applications are analyzed. In the end, some conclusions are given.

2 Exact Conditional Approach in I × J Tables
This section reviews the conditional approach to exact inference for categor-
ical data in I × J contingency tables with fixed row margins. This utilizes
the distribution of the vector of sufficient statistics for the parameters of
interest, conditional on sufficient statistics for the other parameters in the
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model, (nuisance parameters).
First, consider a two-way contingency table having I rows and J columns.

Suppose Nij , i = 1, 2, . . . , I; j = 1, 2, . . . , J , is the variable which shows the
number of events in the ith row and jth column, and Ni = (Ni1, Ni2, . . . , NiJ)

′,
for i = 1, 2, . . . , I, denote independent multinomial random variables with
respective indexes Ni+ =

∑
j Nij = ni+ and probability vector parameters

πi = (πi1, πi2, . . . , πiJ)
′ (
∑J

j=1 πij = 1 for all i). The conditional distribution
of N = {Nij} given N+j = n+j (where N+j =

∑I
i=1Nij) for j = 1, 2, . . . , J

is given by:

f(N11, . . . , N1J , . . . , NI1, . . . , NIJ |n1+, . . . , nI+, n+1, n+2, . . . , n+J ;Θ) =

∏I
i=1

(
ni+

ni1,ni2,...,niJ

)∏I−1
i=1

∏J−1
j=1 θ

nij

ij∑
{nij ;

∑
i nij=n+j ; j=1,2,...,J}[

∏I
i=1

(
ni+

ni1,ni2,...,niJ

)∏I−1
i=1

∏J−1
j=1 θ

nij

ij ]
; (1)

where for i = 1, 2, . . . , I, j = 1, 2, . . . , J ; θij ⩾ 0 and nonnegative integers
nij are the observed values of random variables Nij ’s consistent with the
marginal totals. Also in equation (1) ni+’s , i = 1, 2, . . . , I, are row margins,
n+j ’s, j = 1, 2, . . . , J , are the column margins, and θij ’s, i = 1, 2, . . . , I − 1;
j = 1, 2, . . . , J−1, are odds ratios of the ith row and jth column with respect
to the Ith row and Jth column, which are defined as θij =

πijπIJ

πiJπIj
and take

values 1 under the null hypothesis of independence. This is the multivari-
ate Fisher’s noncentral hypergeometric distribution (McCullagh and Nelder,
1989).

Now, in the next section different association structures in an I × J
contingency table with fixed row margins will be discussed.

3 Different Models for Association in Two Way
Contingency Tables

Structure I: Independence
First, consider a two-way contingency table having I rows and J columns.
Suppose Nij , i = 1, 2, . . . , I; j = 1, 2, . . . , J , is the variable which shows the
number of events in the ith row and jth column, and Ni = (Ni1, Ni2, . . . , NiJ)

′,
for i = 1, 2, . . . , I, denote independent multinomial random variables with
respective indexes Ni+ =

∑
j Nij = ni+ and probability vector parameters
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πi = (πi1, πi2, . . . , πiJ)
′ (
∑J

j=1 πij = 1 for all i).
Two categorical response variables are defined to be independent if all

joint probabilities be equal to the product of their marginal probabilities,
i.e.,

πij = πi+π+j , i = 1, . . . , I; j = 1, . . . , J,

or, each conditional distribution of Y is identical to the marginal distribution
of Y . Thus, two variables are independent when πj|1 = · · · = πj|I for j =
1, . . . , J , that is, the probability of any given column response is the same
in each row. The conditional distribution of N = {Nij} given N+j = n+j

(where N+j =
∑I

i=1Nij) for j = 1, 2, . . . , J under independence assumption
is multivariate hypergeometric distribution with probability mass function,

Pr(N = n|n1+, n2+, . . . , nI+, n+1, n+2, . . . , n+J) =

∏J
j=1 n+j !

∏I
i=1 ni+!

M !
∏

i

∏
j nij !

,

where M =
∑

i ni+ =
∑

j n+j and nij ’s are the observed counts of the table
(see Agresti, 2002, page 97).

Structure II: Homogenous Association Model
Consider a two-way contingency table having I rows (for random variable
X) and J columns (for random variable Y ). An I × J contingency table has
homogeneous association over the whole table when,

θ11 = θ12 = · · · = θ(I−1)(J−1) = θ,

where θ > 0 is an unknown parameter. Then the effect of X is the same at
each category of Y . In this model, θ = 1 is equivalent to independence model.
Having this assertion, distribution of N = (N11, . . . , N1J , . . . , NI1, . . . , NIJ)
(under homogenous association model) would be changed to a distribution
with one parameter by the following form,

f(N11, . . . , N1J , . . . , NI1, . . . , NIJ |n1+, . . . , nI+, n+1, . . . , n+J , N ; θ) =

∏I
i=1

(
ni+

ni1,ni2,...,niJ

)
θ
∑I−1

i=1

∑J−1
j=1 nij∑

{nij ;
∑

i nij=n+j ; j=1,2,...,J}[
∏I

i=1

(
ni+

ni1,ni2,...,niJ

)
θ
∑I−1

i=1

∑J−1
j=1 nij ]

;
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6 Bayesian Test of Different Association Structures

where for θ ⩾ 0 and nonnegative integers nij ,
∑

i

∑
j nij = M (sample

size). In order to interpret the homogenous association model in two way
contingency tables, consider a 2 × 3 contingency table. If we consider X
as a response variable and Y as a 3-level factor, homogenous association
corresponds with,

π1|1π2|3

π1|3π2|1
=
π1|2π2|3

π1|3π2|2
,

where πi|j = p(X = i|Y = j). This means that,

π11π23
π13π21

=
π12π23
π13π22

,

or equivalently,
π11
π21
π13
π23

=
π12
π22
π13
π23

.

This expression means that odds of the first and second categories of variable
Y in respect to the third category of this variable are the same. Hence,
homogenous association may be interpreted as: X has the same effect on the
first and second category of Y in respect to the third category of Y .

 

 Structure III: Extended Homogenous Association
For the third model of association, we consider the following structure for a
given k,

θij = θ, for i = 1, . . . , i∗; j = 1, . . . , J − 1,

θij = kθ, for i = i∗ + 1, . . . , I − 1; j = 1, . . . , J − 1.

This assertion may be interpreted as saying that the first i∗ levels of
X (as row variable) has the same association (θ) on the variable (Y ) with
respect to the last category of Y whereas the association of the last I −
i∗ − 1 levels of X is θ multiplied by k. The conditional distribution of
N = (N11, . . . , N1J , . . . , NI1, . . . , NIJ) under this structure is given by,

f(N11, . . . , N1J , . . . , NI1, . . . , NIJ |n1+, . . . , nI+, n+1, . . . , n+J , N ; k, θ) =
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∏I
i=1

(
ni+

ni1,ni2,...,niJ

)
θ
∑I−1

i=1

∑J−1
j=1 nijk

∑I−1
i=i∗+1

∑J−1
j=1 nij∑

{nij ;
∑

i nij=n+j ; j=1,2,...,J}[
∏I

i=1

(
ni+

ni1,ni2,...,niJ

)
θ
∑I−1

i=1

∑J−1
j=1 nijk

∑I−1
i=i∗+1

∑J−1
j=1 nij ]

;

where k > 0, θ ⩾ 0 and nonnegative integers nij are consistent with
the marginal totals. Note that k is a known constant. In this model, θ = 1
implied that the first i∗ levels of row variable are independent from Y , but the
last I−i∗−1 levels ofX and Y are correlated. This model is more appropriate
to be used for analyzing contingency tables with ordinal variables.

4 The Bayesian Approach for Testing Different
Structures of Association in I × J Contingency
Tables Using Bayes Factor

In this section the Bayesian approaches for testing different structures of
association in an I×J contingency table are presented and Bayes factor as a
summary of evidence in I × J tables is described. Hypothesis testing, using
classical methods, have high power when the sample size is large. However,
in some applications, where the sample size is small, classical methods are so
conservative. There are examples in which researchers intuitively see some
evidence against the null hypothesis, but for any possible value of the test
statistic that a classical method suggests, they have to say “there is no or
weak evidence to reject H0” (An example, in which this may happen is,
Fisher’s exact test, Fisher, 1935, pp. 11-25).

Ganjali and Berridge (2008) present a Bayesian method for Fisher’s tea
taster example. Saberi et al. (2010) describe a comparison between Bayesian
and classical testing procedures for the association parameter in a 2 × 2
contingency table. Also Saberi and Ganjali (2013) present a conditional
Bayesian approach for testing independence in two-way contingency tables.
In this section we extend these works and present a Bayesian approach for
testing different models of association in an I × J contingency table, where
there are (I − 1)(J − 1) association parameters.

4.1 Bayes Factor as a Measure of Evidence
For testing H0 : Θ ∈ Θ0 versus H1 : Θ ∈ Θ1 using Bayesian approaches,
Bayes factor is used to compare the two hypotheses H0 and H1. The Bayes
factor is a summary of the evidence provided by the data in favor of one
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8 Bayesian Test of Different Association Structures

scientific theory as opposed to another as pointed out by Kass and Raftery
(1995). The Bayes factor is the ratio of the posterior probabilities of the null
and the alternative hypotheses over the ratio of the prior probabilities of the
null and the alternative hypotheses, i.e.,

Bπ
01 =

P (θ∈Θ0|x)
P (θ∈Θ1|x)
P (θ∈Θ0)
P (θ∈Θ1)

.

This ratio evaluates the modification of the odds of H0 against H1 due to
the observations and can naturally be compared to 1, although an exact
comparison scale can only be based upon a loss function. In general, the
Bayes factor depends on prior information, but is still proposed as an ob-
jective Bayesian answer, since it partly eliminates the influence of the prior
modelling and emphasizes the role of the observations. Actually, it can be
perceived as a Bayesian likelihood ratio since, if π0 is the prior distribution
under H0 and π1 the prior distribution under H1, B01 can be written as,

Bπ
01 =

∫
Θ0
f(x|θ)π0(θ)dθ∫

Θ1
f(x|θ)π1(θ)dθ

=
m0(x)

m1(x)
, (2)

where m0(x) and m1(x) are marginal distribution of vector of observations,
x, under H0 and H1, respectively.

When Θ0 = {Θ0}, the point null case, the value of π0 would be 0 with
the above definition. To overcome this difficulty, π0 and π1 are chosen such
that π0 + π1 = 1 and a prior, denoted by g(Θ), is defined on Θ ∈ Θ1 which
is proper. It follows that the Bayes factor reduces to

B01 =
f(x|Θ0)

m(x)
, (3)

where m(x) =
∫
Θ∈Θ1

f(x|Θ)g(Θ)dΘ.
Since the Bayes factor as defined in (2) or (3) can be interpreted as

the comparative support of the data for H0 versus H1, small values of B01

indicate evidence against H0. Guidelines for the use of Bayes factors as a
measure of evidence in testing hypotheses are given in Jeffreys (1961) and
in Kass and Raftery (1995). The former states that B01 between 0.1 and
0.3162 indicates moderate or substantial evidence against H0, B01 between
0.01 and 0.1 indicates strong evidence against H0, and B01 less than 0.01
indicates decisive evidence against H0.
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5 Bayesian Test for Different Models of Associa-
tion

In this section, the Bayesian approaches for testing of different association
structures are discussed.

Let reparametrize the conditional distribution of vector N using δij =
ln(θij), i = 1, 2, . . . , I − 1; j = 1, 2, . . . , J − 1, in order to provide a natural
prior distribution for ∆ = (δ11, . . . , δ1(J−1), . . . , δ(I−1)(J−1)). When two vari-
ables are independent the vector of log odds ratios ∆ is 0. In general ∆ is
symmetric about 0.

It is also known that the empirical estimates of the log odds ratios based
on the observed data is approximately normally distributed in studies of even
moderate sample sizes. This reparametrization helps us because we can use
the multivariate normal distribution as a natural prior distribution for the
vector of log odds ratios (McCullagh and Nelder, 1989).

In this paper, we consider the test of different association structures. In
the following the Bayes approaches for doing these tests in these tables are
presented.

5.1 Bayesian Approaches for Test of Independence
In this subsection, we consider the test of independence against any kind of
association which is the test of H0 : ∆ = 0 against H1 : δij ̸= 0; at least for
one (i, j), i = 1, 2, . . . , I − 1; j = 1, 2, . . . , J − 1.

For test of independence in I × J contingency tables let us assume a
multivariate normal distribution with mean µ

0
and covariance matrix Σ0,

i.e.,

π(∆) ∼ N(I−1)(J−1)(µ0,Σ0),

as our prior distribution, where µ
0

and Σ0 are known.
For this prior, the Bayes factor for testing independence is given by

B01 =
f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆ = 0)∫

∆∗ f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆)π(∆)d∆

=
f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆ = 0)∫

∆∗ |Σ
−1
2

0 |f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆)φ(Σ
−1
2

0 (∆− µ
0
))d∆

,
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10 Bayesian Test of Different Association Structures

where φ(·) is the density function of the standard multivariate normal dis-
tribution. This form helps us to approximate the mean of f(N = n|N1+, . . .
, NI+, N+1, . . . , N+J ,M,∆) by Mont Carlo method, using sample means of
the simulated values of the multivariate normal distribution with mean µ

0
and covariance matrix Σ0. So the denominator of B01 can be calculated and
as the numerator is given by (1), the value of B01 can be obtained.

5.2 Bayesian Approaches for Test of Homogenous Associa-
tion Model in Two Way Contingency Tables

In this subsection, we consider the test of homogenous association, i.e., (H0 :
δ11 = δ12 = · · · = δ(I−1)(J−1) = δ) against H1 : δij ̸= δ; at least for one (i, j),
i = 1, 2, . . . , I − 1; j = 1, 2, . . . , J − 1.

For Bayesian test of homogenous association model in I × J contingency
tables, we would determine two priors distribution, one for δ under null
hypothesis and the other for vector of log odds ratios, ∆. Let us assume a
normal distribution with mean µ0 and variance σ20 as a prior distribution of
δ under the null hypothesis, π0(·), i.e.,

π0(δ|µ0, σ20) ∼ N(µ0, σ
2
0),

where µ0 and σ20 are considered as known values. Also we consider a mul-
tivariate normal distribution with mean µ′

0
and covariance matrix Σ′

0 as a
prior distribution of ∆ in alternative hypothesis, π1(·), i.e.,

π1(∆) ∼ N(I−1)(J−1)(µ0,Σ0),

where µ′
0

and Σ′
0 are known mean vector and covariance matrix, respectively.

For this prior, the Bayes factor (5) for testing homogenous association
model is given by,

B01 =

∫∞
−∞ f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M, δ)π0(δ)dδ∫

Θ1
f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆)π1(∆)d∆

,

=

∫
R σ0

−1f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M, δ)ϕ( 1
σ0
(δ − µ0))dδ∫

Θ1
|Σ

−1
2

0 |f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆)φ(Σ
−1
2

0 (∆− µ
0
)′)d∆

,

where Θ1 = R(I−1)(J−1). Also ϕ(·) and φ(·) are the density function of

© 2017, SRTC Iran



Z. Saberi 11

the standard univariate and multivariate normal distribution, respectively.
These forms help us to approximate the means of f(N = n|N1+, . . . , NI+,
N+1, . . . , N+J ,M, δ) and f(N = n|N1+, . . . , NI+, N+1, . . . , N+J ,M,∆) by
Mont Carlo method, using sample means of the simulated values of the uni-
variate and multivariate normal distribution with (µ0, σ

2
0) and (µ

0
,Σ0) sets

of parameters. So the numerator and denominator of B01 can be calculated
and the value of B01 can be obtained.

Since the Bayesian test for the extended homogenous association model
can be presented in the same manner as the homogenous model, we do not
bring it here.

6 Simulation Studies
In this section, we present some simulation studies to consider the perfor-
mance of the Bayesian approaches for testing of different association struc-
tures in a 2× 3 contingency table with given margins. Four different values
of Θ = (θ11, θ12) and different values of m with assumption n1+ = 2m and
n2+ = n+2 = n+1 = m, are chosen. The results of these simulation stud-
ies are given in Tables 1 and 2. Also, in this section in order to compare
the performance of Bayesian and classical approaches, we have done a sim-
ulation study that uses the classical testing methods of corrected Pearson
chi-squared, corrected likelihood ratio chi-squared and Fisher’s exact test
for doing test of independence in two-way contingency tables. In order to
correct Pearson chi-squared and likelihood ratio chi-squared test for testing
independence in two-way contingency tables with small samples, we used
Williams’ correction (Williams, 1976) (we have used R software for simula-
tion studies. Also data from different association structures are simulated
by use of BiasedUrn package in R).

In Table 1, for our simulation study of testing independence, the per-
centage of times that the various two-sided tests reject H0 (or power) was
recorded for all observed simulations from the noncentral (Θ ̸= 1) or central
[Θ = (θ11, θ12) = (1, 1)] multivariate Fisher’s hypergeometric distribution,
assuming various values of the true value Θ.

Recalling the guidelines discussed in Section 4.1 concerning the use of
Bayes factors in testing hypotheses, it was desired to use an upper bound
cutoff for the Bayes factor of at most 0.1 for rejecting H0.

The results of Table 1 show that, for small samples of m = 2 (M = 6,
M is sample size), the Bayesian approach, Fisher’s exact test and corrected
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12 Bayesian Test of Different Association Structures

Pearson’s chi-squared test are very conservative. When the sample sizes
are increased, m = 4, 8, 16 and 32, the performance of likelihood ratio test is
better than the other classical approaches. But in comparison with results of
Bayesian approach, the Bayesian approach has the highest power in rejecting
H0 in favor of H1. Also Bayesian approach is less conservative than the other
approaches. So comparison between the results of all simulated tables implies
that Bayesian approach has better performance of doing test of independence
in I × J contingency tables. The more value of θ the more is the probability
of rejecting H0 and this is the highest when using the Bayesian approach
(except when m = 2).

For test of homogenous association, classical test has not yet been intro-
duced (since, there is not an estimate for θ under the null hypothesis). So,
a simulation study have been done in order to study the performance of the
Bayesian approach presented in Subsection 5.2. The results of Table 2 show
that, for small samples m = 2 (M = 6, M is sample size), Bayesian approach
is conservative. When the sample sizes are increased, for m = 4, 8, 16 and 32
and k is far from 1, the powers of rejecting H0 in favor of H1 are increased.

7 Real Applications
Application 1. Table 3 is a 2×3 contingency table which is extracted from
a report on the relationship between aspirin use and heart attacks by the
Physicians Health Study Research Group at Harvard Medical School. The
Physicians Health Study was a 5-year randomized study of whether regular
aspirin intake reduces mortality from cardiovascular disease. Every other
day, physicians participating in the study took either one aspirin tablet or a
placebo. The study was blind, i.e. those in the study did not know whether
they were taking aspirin or a placebo. Of the 11,034 physicians taking a
placebo, 18 suffered fatal heart attacks over the course of the study, whereas
of the 11,037 taking aspirin, 5 had fatal heart attacks.

For this table corrected chi-squared test gives χ2 = 26.9 with P− value =
0.00000144. Also likelihood ratio test and corrected likelihood ratio test
give respectively, G2 = 27.583 (P− value = 1.01 × 10−6) and G2

c = 27.267
(P− value = 1.19×10−6). So classical approaches, show that there is strong
evidence against the null hypothesis. Using Bayesian method testing inde-
pendence, H0 : δ11 = δ12 = 0 (where δ11 = ln(θ11), δ12 = ln(θ12)), we found
B01 = 0.0036. All tests show that there is strong evidence against the null
hypothesis. So, treatment with aspirin has a strong effect on myocardial
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infraction rate.
  

Application 2. Table 4 , taken from Helmes and Fekken (1986) that classi-
fies a sample of psychiatric patients by their diagnosis and by whether their
treatment prescribed drugs .

For doing Bayesian test of homogenous association through the table
(H0 : δ11 = δ12 = δ13 = δ14 = δ), we consider normal distribution with µ = 0
and σ2 = 102 as prior distribution of δ under H0 and multivariate normal
distribution with µ = (δ̂11, . . . , δ̂14) (where δ̂i = n1in52

n2in51
) and covariance matrix

Σ = 102I as prior distribution of vector ∆ = (δ11, δ12, δ13, δ14) under the
alternative hypothesis. Using Bayesian approach for testing homogenous
association over the whole table, we found B01 = 1.95×10−9, which indicates
strong evidence against the null hypothesis.

8 Conclusion
In this paper, Bayesian methods for exact small-sample analysis with cate-
gorical data in I × J contingency tables considered. Different structures of
association defined and tested concerning log odds ratios in these tables with
fixed row margins. The performance of our testing Bayesian approach for
independent and homogenous structures were compared with that of classi-
cal corrected likelihood ratio test by some simulation studies. The results
of simulations for independent and homogenous structures showed that, for
small samples, the Bayesian approach, Fisher’s exact test and corrected Pear-
son’s chi-squared test were very conservative. When the sample sizes were
increased, the performance of likelihood ratio test was better than the other
classical approaches. But in comparison with results of Bayesian approach,
the Bayesian approach had the highest power in rejecting H0 in favor of H1.
Also Bayesian approaches was less conservative than the other approaches.
For test of homogenous association, classical test has not yet been intro-
duced. So, a simulation study was done in order to study the performance of
the Bayesian approach for this test. The results showed that, for small sam-
ples, Bayesian approaches were conservative. When the sample sizes were
increased, the powers of rejecting H0 in favor of H1 were increased. So,
comparison between the results of all simulated tables implied that Bayesian
approach had good performance of doing test of independence and homoge-
nous association, in I × J contingency tables.
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Table 1. Percentage of simulations out of 3000 in which H0 : Θ = (1, 1) is rejected in favor
of H1 : θij ̸= 1, at least for one (i, j), for different values of m and Θ = (θ11, θ12) = (θ, θ)
by use of classical approaches [*: Value of Θ for which H0 is true].

θ11 = θ12 = θ

(1*) (5) (10) (20) (50)
δ = ln(θ)

(0*) (1.6) (2.3) (2.99) (3.91)
Common Bayes 0 0 0 0 0

Fisher’s exact test (p− value < 0.1) 0 0 0 0 0
m = 2 Corrected Pearson’s chi-squared 0 0 0 0 0

Corrected likelihood ratio test 20.16 38.30 55.08 70.12 85.01

Common Bayes 0.81 5.12 17.00 33.62 61.75
Fisher’s exact test (p− value < 0.008) 0.44 4.94 13.30 30.63 48.48

m = 4 Corrected Pearson’s chi-squared 0.36 5.12 13.4 30.72 48.48
Corrected likelihood ratio 0.50 6.00 15.76 32.22 57.96

Common Bayes 0.70 27.12 57.20 77.62 95.00
Fisher’s exact test (p− value < 0.007) 0.28 8.06 22.14 44.36 73.58

m = 8 Corrected Pearson’s chi-squared 0.34 9.64 22.14 45.26 73.78
Corrected likelihood ratio 0.64 12.88 30.60 54.70 80.10

Common Bayes 0.40 46.9 82.87 98.12 99.70
Fisher’s exact test (p− value < 0.004) 0.34 23.62 60.38 90.10 98.32

m = 16 Corrected Pearson’s chi-squared 0.30 24.02 60.94 90.14 98.32
Corrected likelihood ratio 0.32 25.80 62.66 90.54 98.40

Common Bayes 0.20 85.12 99.01 99.99 99.99
Fisher’s exact test (p− value < 0.002) 0.18 52.76 92.78 99.86 99.99

m = 32 Corrected Pearson’s chi-squared 0.18 54.14 93.48 99.84 99.99
Corrected likelihood ratio 0.18 57.14 94.26 99.84 99.99
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Table 2. Percentage of simulations out of 3000 in which H0 : θ1 = θ2 = θ is rejected in favor
of H1 : θ2 ̸= θ1(θ2 = k × θ1) for different values of m and k and θ = 0.5 by use of Bayesian
methods [*: Value of k for which H0 is true].

k

(1*) (2) (4) (6) (8) (10)
Common Bayes 14.67 19.76 23.32 29.48 35.18 40.16

Fisher’s exact test (p− value < 0.007) 0 0 0 0 0 0
m = 2 Corrected Pearson’s chi-squared 3.18 24.32 29.18 34.25 39.12 47.56

Corrected likelihood ratio 8.20 35.08 49.58 58.64 69.21 81.05

Common Bayes 10.66 26.41 30.83 37.46 43.16 51.73
Fisher’s exact test (p− value < 0.007) 1.05 24.35 28.93 34.18 39.15 47.41

m = 4 Corrected Pearson’s chi-squared 3.18 24.32 29.18 34.25 39.12 47.56
Corrected likelihood ratio 4.21 26.18 30.41 36.81 40.65 49.08

Common Bayes 8.33 30.31 38.04 42.67 49.69 57.34
Fisher’s exact test (p− value < 0.007) 3.28 9.62 11.01 25.84 34.56 52.01

m = 8 Corrected Pearson’s chi-squared 4.30 11.49 14.32 26.75 35.61 52.64
Corrected likelihood ratio 6.18 14.28 21.10 34.27 40.94 55.74

Common Bayes 3.10 37.28 47.69 53.86 60.99 68.32
Fisher’s exact test (p− value < 0.1) 1.58 27.56 46.64 52.34 59.83 66.31

m = 16 Corrected Pearson’s chi-squared 2.14 28.91 46.81 52.85 59.74 66.52
Corrected likelihood ratio test 2.51 30.42 47.01 53.74 60.25 67.94

Common Bayes 1.20 43.36 52.64 63.29 86.04 91.66
Fisher’s exact test (p− value < 0.002) 0.82 26.42 44.23 55.78 85.66 91.53

m = 32 Corrected Pearson’s chi-squared 0.98 26.68 44.98 55.89 85.48 91.56
Corrected likelihood ratio 1.02 27.45 45.68 56.65 85.98 91.61

Table 3. Cross-Classification of Aspirin Use and Myocardial Infarction [Source: The Steering
Committee of the Physicians’ Health Study Research Group. Findings from the Aspirin
Component of the Ongoing Physicians Health Study. New Engl. J. Med. 318, 262-264,
1988].

Myocardial Infarction
Fatal Attack Nonfatal Attack No Attack Total

Placebo 18 171 10845 11034
Aspirin 5 99 10933 11037

Total 23 270 21778 22071
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Table 4. A sample of psychiatric patients by their diagnosis and by whether their treatment
prescribed drugs [Source: Helmes, E. and Fekken, G.C. (1986). Reprinted with Permission,
J. Clin. Psychol., 42, 569-576].

Diagnosis Drug NoDrug
Schizophrenia 105 8
Affective disorder 12 2
Neurosis 18 19
Personality disorder 47 52
Special symptoms 0 13
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