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Abstract. We consider the problem of model selection in vector autoregres-
sive model with Normal innovation. Tests such as Vuong’s and Cox’s tests
are provided for order and model selection, i.e. for selecting the order and a
suitable subset of regressors, in vector autoregressive model. We propose a
test as a modified log-likelihood ratio test for selecting subsets of regressors.
The Europe oil prices, Brent, and the real gross domestic product, GDP,
data are considered as real data. Since the Brent data does Granger-cause
the GDP data, so we suggest the vector autoregressive model and select opti-
mal model based on the model selection test. The analysis provides analytic
results show that the Vuong’s, Cox’s and proposed test are the appropriate
test for order and model selection for vector autoregressive models with Nor-
mal innovation. In simulation study, the power of proposed test at least is
as good as the power of Vuong’s test.
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1 Introduction

The vector autoregression, VAR, model is one of the most successful and
flexible to use models for the analysis of multivariate time series. It is a
natural extension of the univariate autoregressive model to dynamic mul-
tivariate time series. Vector autoregressive was introduced in to empirical
economics by Sims (1980), who demonstrated that VAR’s provide a flexible
and tractable framework for analyzing economic time series. It is well known
that the dynamic properties of responses may depend critically on the lag
order of the VAR model fitted to the data. These differences can be large
enough to affect the substantive interpretation of VAR response estimation,
see Kilian (2001) and Hamilton and Herrera (2004). An important prelimi-
nary step in empirical studies is to select the order of the regression based on
the same data used subsequently to construct the response estimates. The
most common strategy in empirical studies is to select the lag-order by some
information criterion.
Let Y be a (k×1) random vector and Xt = (Yt,Zt), t = 1, · · · , T, has com-
mon unknown true joint distribution H(.) on a complete probability space
(X , σX), where X is the Euclidean spase ℜk+1 and σX is the Borel σ -field
on X . Let (Y, σY ) and (Z, σZ) be the measurable spaces associated with Yt

and Zt. We shall be interested in the true conditional distribution HY |Z(.|.)
of Yt given Zt. Let HZ be the true marginal distribution of Zt, and νY be
a σ -finite measure on (Y, σY ). For HZ-almost all z, HY |Z(.|z) has a Radon-
Nikodym density h(.|z) relative to νY , which is strictly positive for νY -almost
all y. We now consider two competing parametric families of distributions
defined on σY ×Z for Yt given Zt:

Fγ = {fγ(y|z), γ ∈ Γ ⊆ ℜm} and Gβ =
{
gβ(y|z), β ∈ B ⊆ ℜn

}
.

Let the competing models satisfies the assumptions A1-A6, Vuong’s (1989),
which are stated below:
A1: The independent (k×1) vector of random variables, ϵt t = 1, 2, ..., T have
common joint distribution function Hϵt with measurable Radon-Nikodim
density h(.).
A2: Γ is a compact subsets of Rm, and the joint density function fγ(Yt|Zt =
zt) is continuous in γ.
A3: | log fγ(Yt|Zt = zt) | is dominated by M where M is integrable with
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respect to H(.) and independent of γ. Also the function
∫
log fγ(Yt|Zt =

zt)H(dy) has a unique maximum on Γ in γ∗. Where H(.) is true conditional
joint distribution and the value γ∗ is called the pseudo-true value of γ for
the conditional model F .
A4: log fγ(Yt|Zt = zt) is twice continuously differentiable on Γ and
| ∂ log fγ(Yt|zt)

∂γ .∂ log fγ(Yt|zt)
∂γ′ | and |∂

2 log fγ(Yt|zt)
∂γ∂γ′ | are dominated by H-integrable

function and independent of γ.
A5: γ∗ is an interior point of Γ and γ∗ is a regular point of Af (γ) where

Af (γ) = Eh
{
∂2 log fγ(ϵt)

∂γ∂γ′

}
and Eh denotes the expectation with respect to the true joint distribution.
A6: For H-almost all (y,z) the functions | log fγ(Yt|zt) |2 and | log gβ(Yt|zt) |2
are dominated by H-integrable functions independent of γ and β.
The distance of fγ(y|z) from the true conditional density h(y|z) measured
by Kullback-Leibler divergence, KL{h(.|.), fγ∗(.|.)}, where γ∗ is the pseudo-
true value of γ, White (1982). The best model in Fγ being the one for which
Kullback-Leibler divergence, KL, is the smallest or equally Eh{log fγ∗(Y |z)}
is the largest. The important part of the Kullback-Leibler divergence is
Eh{log fγ∗(Y |z)} which has an estimates as

1

n

n∑
t=1

log f γ̂T (yt|zt).

where the Quasi Maximum Likelihood Estimator, QMLE, γ̂T , is a consistent
estimator of γ∗, White (1982).
Determination of the model order is an important step in vector autoregres-
sive, VAR(p), modelling, where p is order of vector autoregressive model.
The lag length for the VAR(p) model may be determined using model se-
lection criteria. The general approach is to fit VAR(p) models with orders
p = 0, ..., pmax and choose the model which have the lowest value of model
selection criterion. Recall that pmax is the maximal order of vector autore-
gressive model. Model selection criteria for VAR(p) models have the form

IC(p) = ln |Ω̂T |+ CT .φ(k, p)

where Ω̂T is the maximum likelihood estimate of the innovation covariance
matrix Ω, CT is a sequence indexed by the sample size T , and φ(k, p) is
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66 Vector Autoregressive Model Selection

a penalty function. The three most common information criteria are the
Akaike (1973), AIC, Schwarz (1978), SIC and Hannan and Quinn (1979),
HQ, that defined as

AIC(p) = ln |Ω̂T |+
2

T
pk2

SIC(p) = ln |Ω̂T |+
lnT

T
pk2

HQ(p) = ln |Ω̂T |+
ln(lnT )

T
pk2.

The performance of an order selection criterion is optimal if the selected
model is the most accurate model in the considered set of estimated com-
peting models, see Quinn (1980), Paulsen and Tjostheim (1985) and Quinn
(1988). The Akaike information criterion initially was proposed as an esti-
mate of minus twice the expected log-likelihood by Akaike (1973). It is an
asymptotically unbiased estimator of the Kullback-Leibler divergence and is
known to suffer from overfit, selected order of model can be greater than the
optimal model order, see Shibata(1984).
Cox (1961, 1962) and Vuong (1989) modified the classical hypothesis testing
to test the non-nested hypotheses based on the generalization of the like-
lihood ratio test (LRT). Vuong (1989) has proposed a statistic for testing
the null hypothesis that the competing models are equivalent related to true
distribution against the alternative hypothesis that one model is closer to
the true model. In this test one accept null hypothesis, it means that two
competing models are equivalent, but it is less clear that they are close to
the true model or far from it. To make inference after model selection, we
use Cox’s test and select two competing models as suitable or unsuitable
equivalent models, see Sayyareh et al. (2011).
The rest of the paper is structured as follows: in section 2, we presented an
example. It is the comparison of a autoregressive and vector autoregressive
model of the Europe oil prices, Brent, and the real gross domestic product,
GDP. In section 3, some of the model selection tests such as Vuong’s test,
Cox’s test and the proposed test are improved for the vector autoregressive
model with Normal innovation. In section 4, the obtained theoretical results
are studied by simulation. We continue the motivating example and select
optimal model between competing models based on the Vuong’s, Cox’s and
proposed test in section 5.
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2 Motivating Example

Our datasets consist of the Europe oil prices, Brent, and the real gross do-
mestic product, GDP. We select optimal model between competing models
based on the model selection test. These data can be found in
“https://fred.stlouisfed.org/series/DCOILBRENTEU”
and
“https://fred.stlouisfed.org/series/ GDPC96” respectively. The Brent dataset
consists daily returns of the Europe oil prices with the sample extending from
May 1987 to December 2020 for a total of n = 8537 observations. We denote
rt,i as the ith daily return for month t, then the monthly realized volatility
is defined as

σ2 =def

(
m∑
i=1

(rt,i − µt)
2

)1/2

,

where m is the number of days and µt is monthly mean. The associ-
ated volatility of the Brent dataset, VB, was constructed by summing daily
squared returns. The GDP dataset is quarterly returns of the real gross
domestic product index with the sample extending from May 1987 to De-
cember 2020 for a total of n = 136 observations. The series QG is obtained
by substituting the series GDP in function Q(X),

Q(X) = ∆(log(X)),

where ∆(X) denotes the first order differences operator applied to a time
series {Xt}, ∆(X) = Xt−Xt−1. The dataset VB describe the information of
oil volatility and the dataset QG contains information of economic growth.
Due to the presence of missing data and select data with the same date, so
the number of sample for both datasets is reduced to 108.

The curve of the VB and QG returns is given in Figure 1. The descriptive
statistics of our datasets are given in Table 1 which shows that series VB has
mean that is different from zero. The series QG has negative skewness and
the series VB has positive skewness. Also both are characterized by heavy
tails since they have positive the sample excess kurtosis. The hypothesis of
normality is accepted for all series since P − value > 0.05.
The sample autocorrelation function, ACF, suggests that an autoregressive
model might provide a reasonable model for given data. The ACF is shown
in Figure 2.
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Figure 1. The time series plot of the VB and QG returns.

Table 1. Descriptive Statistics for Empirical Series.

series n x̄ σ̂ S K P − value

QG 108 0.0005 0.0001 -2.9941 4.6446 0.2374

VB 108 11.9523 30.1373 1.1080 0.9974 0.1008

Notes:
1. S denotes the sample skewness, K denotes the sample excess kurtosis.
2. P is the p-value of the Kolmogorov-Smirnov test for normality of the underlying series.
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Figure 2. The sample autocorrelation function of the real gross domestic product data.

The rolling analysis of time series is widely used. See for example Aaltonen
and Ostermark (1997) and Zivot and Wang (2006). The rolling correlation
estimate at time t with window width R is the usual sample estimates using
the most recent R observations. The monthly rolling correlation analysis with
the width of a sub-sample or window, R=80, is performed for correlations
between QG and VB. The results of this rolling correlation analysis are given
in Figure 3. It shows that there is approximately a correlation -0.5 between
VB and QG.
To test the null hypothesis that Z does not Granger-cause Y , one first finds
the proper lagged values of Y to include in a univariate autoregression of Y

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + ϵt.

Next, the autoregression is augmented by including lagged values of Z

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + φ1Zt−1 + φ2Zt−2 + · · ·+ φqZt−q + ϵt

The variable Z is said to cause Y , provided some φj is non-zero. One retains
in this regression all lagged values of Z that are individually significant ac-
cording to their t-statistics, provided that collectively they add explanatory
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Figure 3. Thr rolling correlation between QG and VB.

power to the regression according to an F-test, whose null hypothesis is no
explanatory power jointly added by the Z’s. The F-test is

F =
(SSEr − SSEf )/q

SSEf/(T − p− q − 1)
,

where SSEr and SSEf are the sum of squared errors of reduced model and
full model respectively, T is total number of observation, p is the number of
lags for the Y-variable and q is the number of lags for the Z-variable. Note
that F has an asymptotic F distribution with q and T − p− q− 1 degrees of
freedom. See Granger (1969, 2004) and Eichler (2012).
The monthly rolling test of causality with the width of window, R=80, for
the first-order autoregressive model with Normal innovation of series is con-
sidered. The results are given in Table 2. In this Table, the significant
causality at the 5% level is observed. In otherworld VB does Granger-cause
QG but the variable QG does not Granger-cause VB.
The main question is whether vector autoregressive model is suitable model
or autoregressive model is good model. Consequently, we study the model
selection tests such as Vuong’s test, Cox’s test and a proposed test that they
are based on the likelihood ratio test.
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Table 2. The Rolling Causality Testing for QG and VB when AR(1) model is fitted.
QG does not GC VB No IC between QG VB does not GC QG

2011-12-31 0.5165 0.0500 0.0003
2012-03-31 0.3513 0.0559 0.0005
2012-06-30 0.2398 0.0767 0.0004
2012-09-30 0.2847 0.0699 0.0004
2012-12-31 0.3588 0.0717 0.0004
2013-09-30 0.3669 0.0590 0.0002
2013-12-31 0.3370 0.0527 0.0003
2014-06-30 0.3238 0.0429 0.0003
2014-09-30 0.0820 0.1234 0.0002
2014-12-31 0.0539 0.1143 0.0002
2015-03-31 0.1701 0.1052 0.0009
2015-06-30 0.2935 0.0864 0.0010
2015-09-30 0.3160 0.0877 0.0013
2015-12-31 0.2650 0.0853 0.0012
2016-03-31 0.2615 0.0833 0.0016
2016-06-30 0.2639 0.0632 0.0007
2016-09-30 0.2964 0.0591 0.0007
2016-12-31 0.3086 0.0502 0.0004
2017-03-31 0.3299 0.0514 0.0009
2017-06-30 0.3292 0.0451 0.0006
2017-09-30 0.3933 0.0341 0.0003
2017-12-31 0.4167 0.0301 0.0002
2018-09-30 0.4765 0.0279 0.0002
2019-06-30 0.4836 0.0246 0.0001
2019-09-30 0.4758 0.0242 0.0001
2020-03-31 0.4789 0.0014 0.0007
2020-06-30 0.5178 0.0273 0.0013
2020-09-30 0.0297 0.0513 0.0000
2020-12-31 0.0233 0.0423 0.0000
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3 Testing Order Selection

In this section the asymptotic distribution of statistics related to the Vuong’s
test and Cox’s test are derived. The main purpose of this section is to
compute the Cox’s test statistic in vector autoregressive models with Normal
innovation for stationary case.

3.1 Vuong’s Test for VAR Model

Consider p− lag vector autoregressive, V AR(p),

Yt = C +Φ1Yt−1 + ...+ΦpYt−p + ϵt, t = 1, ..., T, T > 1 (1)

as true model, where Φi’s are (k × k) coefficient matrices and ϵt is an (k ×
1) unobservable zero mean white noise vector process with time invariant
covariance matrix Ω. The covariance matrix Ω is positive definite matrix
and

E(ϵitϵ
′
js) =


σij t = s

0 t ̸= s

In lag operator notation, the VAR(p) can be written as

Φ(B)Yt = C + ϵt

where Φ(B) = Ik − Φ1B − ... − ΦpB
p and BjYt = Yt−j . For stationary,

we require that no zeros of the determinant of the autoregressive matrix
polynomial, |Φ(B)|, line on or inside the unit circle, i.e., |Φ(B)| ̸= 0 for
|B| ⩽ 1.
Consider model (1), where innovation terms are distributed as multivariate
Normal distribution, N(0,Ω), with conditional joint density function,

fγ
Yt|Zt

(yt|zt) = (2π)−
k
2 |Ω−1|

1
2 exp

(
−1

2

(
yt −Π

′
xt

)′

Ω−1
(
yt −Π

′
xt

))
where

γ =
(
C

′
, vec(Φ1)

′
, ..., vec(Φp)

′
, vec(Ω)

′
)′

,
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zt =


1

yt−1

...
yt−p


(kp+1)×1

and
Π

′
=
(

C Φ1 Φ2 ... Φp

)
k×(kp+1)

.

We define µ3f = E
{
Y 3
t |Zt

}
, µ4f = E

{
Y 4
t |Zt

}
as third and fourth moments

with respect to f and υf as a column vector of the diagonal elements of
Ω−2
f . Also µ3g, µ4g and υg are defined with respect to g. The log-likelihood

function is

L(γ) = −kT

2
log(2π) +

T

2
log |Ω−1| − 1

2

T∑
t=1

(
yt −Π

′
zt

)′

Ω−1
(
yt −Π

′
zt

)
.

The maximum likelihood estimators of Π and Ω are obtained by solving
the estimating equations. Using some algebraic calculations, the maximum
likelihood estimator of Π is

Π̂
′
T =

(
T∑
t=1

ytz
′
t

)(
T∑
t=1

ztz
′
t

)−1

The jth row of Π̂′
T is

uj
′Π̂

′
T = uj

′

(
T∑
t=1

ytz
′
t

)(
T∑
t=1

ztz
′
t

)−1

.

where uj is a vector of 0 and 1 that jth element of this vector is 1. Also the
maximum likelihood estimator of Ω is given by

Ω̂T =
1

T

T∑
t=1

ϵ̂tϵ̂t
′
.

The maximum likelihood estimators Π̂
′
T and Ω̂T will give consistent es-

timates of the population parameters. Properties of the obtained maximum

J. Statist. Res. Iran 17 (2020): 63–94
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likelihood estimators have been discussed by Nicholls (1976, 1977). They
have shown that γ̂T is asymptotically unbiased and consistent and that√
T (γ̂T − γ) has an asymptotic multivariate Normal distribution,

√
T (γ̂T − γ)

d−→ N(0,Σγ)

where Σγ is the inverse of the information matrix,

Σγ =

[
−E

(
∂L(γ)

∂γ∂γ′

)]−1

.

For more illustration see Wei (2006).

Definition 1. The conditional model Gβ is nested in Fγ if and only if

Gβ ⊂ Fγ .

It means that any conditional distribution in Gβ is equal to a conditional dis-
tribution in Fγ . Vuong (1989) has proposed a LR-based test for selecting be-
tween two nested models. This test reduces to the classical Neyman-Pearson
LR test when the largest model is correctly specified. Given Assumptions
A1-A6, Vuong (1989), under null hypothesis, we have

2LRn
d−→ Mm(x, λ̂T )

where λ̂T is the vector of eigenvalues of the sample analog WT of W ,

W = Bf (γ∗)

[
∂φ(β∗)

∂β′ A−1
g (β∗)

∂φ
′
(β∗)

∂β
−A−1

f (γ∗)

]
,

Af (γ) =

[
Eh

{
∂2 log fγ(Yt|Zt)

∂γ∂γ′

}]

Bf (γ) =

[
Eh

{
∂ log fγ(Yt|Zt)

∂γ
.
∂ log fγ(Yt|Zt)

∂γ′

}]
,

LRn =
n∑

t=1

log
f γ̂T (Yt|Zt)

gγ̃T (Yt|Zt)
,

γ̃T ≡ ϕ(β̂) is the constrained maximum likelihood estimator of γ∗ subject
to the constraints that γ belongs to ϕ(B) and Mp(., λ) denotes the weighted
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sum of Chi-square distributions. If Af (γ∗)+Bf (γ∗) = 0, then under the null
hypothesis we have

2LRn
d−→ χ2

m−n.

3.2 Cox’s Test for VAR Model

Sometimes Vuong’s test selects two competing models as equivalent models.
It is less clear that they are close to the unknown true model or far from it.
Cox (1962) proposed a test of separated families. Cox’s test as a modified log-
likelihood ratio statistic involves centering the log-likelihood ratio statistic
under the null hypothesis Hf

0 : h = fγ against Hg
1 : h = gβ. This test is

based on the Tfg statistic

Tfg =

{
Lf (γ̂T )− Lg(β̂T )

}
− Ef

{
Lf (γ̂T )− Lg(β̂T )

}
σ̂fg

comparing the observed difference of log-likelihoods with an estimate of that
to be expected under Hf , where Lf is log-likelihood function and σfg is
the standard deviation of the numerator of Tfg. It is known that Tfg has
asymptotically standard Normal distribution, see Cox (1962). This test has
four rejection and acceptance regions as
(i) Reject both Hf

0 and Hg
1 if |Tfg| > Cα and |Tgf | > Cα,

(ii) Reject neither Hf
0 and Hg

1 if |Tfg| < Cα and |Tgf | < Cα,
(iii) Reject Hf

0 but not Hg
1 if |Tfg| > Cα and |Tgf | < Cα,

(iv) Reject Hg
0 but not Hf

1 if |Tgf | > Cα and |Tfg| < Cα,
where Cα is the critical value from the standard Normal distribution for some
significance level α. We compute Cox’s test statistics for null hypothesis
contain p-order vector autoregressive model, VAR(p), against q-order vector
autoregressive model, VAR(q), with Normal innovation, where q ≤ p. The
log-likelihood functions for these models are

Lf (γ) = −KT

2
log 2π − T

2
log |Ωf | −

1

2

T∑
t=1

ϵtΩ
−1
f ϵ

′
t

and
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Lg(β) = −KT

2
log 2π − T

2
log |Ωg| −

1

2

T∑
t=1

ϵtΩ
−1
g ϵ

′
t.

The log likelihood ratio is

Lf (γ̂)− Lg(β̂) = −T

2
log |Ω̂f |+

T

2
log |Ω̂g| −

1

2

T∑
t=1

ϵtΩ̂
−1
f ϵ

′
t +

1

2

T∑
t=1

ϵtΩ̂
−1
g ϵ

′
t,

where γ̂ and β̂ are the maximum likelihood estimators of γ and β. We have
calculated expectation and variance of log fγ − log gβ under the fγ as,

Ef

(
log fγ(Yt|Zt)− log gβ(Yt|Zt)

)
=

1

2
log |Ωg| −

1

2
log |Ωf |

−1

2
Ef

(
tr
[
ϵtΩ

−1
f ϵ

′
t

])
+

1

2
Ef

(
tr
[
ϵtΩ

−1
g ϵ

′
t

])

=
1

2
log |Ωg||Ω−1

f |

−1

2
tr
[
Ω−1
f Ef

(
ϵtϵ

′
t

)]
+

1

2
tr
[
Ω−1
g Ef

(
ϵtϵ

′
t

)]

=
1

2
log |Ωg||Ω−1

f | − K

2
+

1

2
tr
[
Ω−1
g Ωf

]
and

Vf

(
log fγ(Yt|Zt)− log gβ(Yt|Zt)

)
=

1

4
Vf

(
ϵtΩ

−1
g ϵ

′
t − ϵtΩ

−1
f ϵ

′
t

)
=

1

4
Vf

(
ϵtΩ

−1
f ϵ

′
t

)
+

1

4
Vf

(
ϵtΩ

−1
g ϵ

′
t

)
− 1

2
Covf

(
ϵtΩ

−1
f ϵ

′
t, ϵtΩ

−1
g ϵ

′
t

)
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Since ABA
′
= tr

(
ABA

′
)
when ABA

′ is (1× 1), so we have

Vf

(
log fγ(Yt|Zt)− log gβ(Yt|Zt)

)
=

1

4
Vf

(
tr
(
ϵtΩ

−1
f ϵ

′
t

))
+

1

4
Vf

(
tr
(
ϵtΩ

−1
g ϵ

′
t

))
− 1

2
Covf

(
tr
(
ϵtΩ

−1
f ϵ

′
t

)
, tr
(
ϵtΩ

−1
g ϵ

′
t

))
=

1

4
Vf

(
tr
(
Ω−1
f ϵ

′
tϵt

))
+

1

4
Vf

(
tr
(
Ω−1
g ϵ

′
tϵt

))
− 1

2
Covf

(
tr
(
Ω−1
f ϵ

′
tϵt

)
, tr
(
ϵ
′
tϵtΩ

−1
g

))
.

Note that tr
(
BA

′
A
)
= vec(B)vec

(
A

′
A
)
, then we can write

Vf

(
log fγ(Yt|Zt)− log gβ(Yt|Zt)

)
=

1

4
Vf

(
vec

(
Ω−1

f

)
vec

(
ϵ
′
tϵt
))

+
1

4
Vf

(
vec

(
Ω−1

g

)
vec

(
ϵ
′
tϵt
))

− 1

2
Covf

(
vec

(
Ω−1

f

)
vec

(
ϵ
′
tϵt
)
, vec

(
ϵ
′
tϵt
)
vec

(
Ω−1

g

))
=

1

4
vec

(
Ω−1

f

)
Vf

(
vec

(
ϵ
′
tϵt
))

vec
(
Ω−1

f

)
+

1

4
vec

(
Ω−1

g

)
Vf

(
vec

(
ϵ
′
tϵt
))

vec
(
Ω−1

g

)
− 1

2
vec

(
Ω−1

f

)
Covf

(
vec

(
ϵ
′
tϵt
)
, vec

(
ϵ
′
tϵt
))

vec
(
Ω−1

g

)
,

where ϵ
′
tϵt has the Wishart distribution, Wk(Ωf , T ). Thus

Tfg =
T
(
tr
[
Ω−1
g Ωf

]
−K

)
+
∑T

t=1 ϵtΩ
−1
g ϵ

′
t −
∑T

t=1 ϵtΩ
−1
f ϵ

′
t

2
√

Vf (log fγ − log gβ)
.

similarly

Tgf =
T
(
tr
[
Ω−1
f Ωg

]
−K

)
+
∑T

t=1 ϵtΩ
−1
f ϵ

′
t −
∑T

t=1 ϵtΩ
−1
g ϵ

′
t

2
√

Vg (log gβ − log fγ)
.

3.3 Proposed Test for VAR Model

Consider a vector autoregressive model as

Y ∗
t = ΦY ∗

t−1 + ϵt (2)
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where Y ∗
t = Yt − µy and µy = E {Yt}. We can write model (2) as

Y ∗
t = ΘY ∗

t−1 +ΨY ∗
t−1 + ϵt (3)

where

Θ =


ϕ1
11 0 ... 0

0 ϕ1
22 ... 0

...
0 0 ... ϕ1

kk

 and Ψ =


0 ϕ1

12 ... ϕ1
1k

ϕ1
21 0 ... ϕ1

2k
...

ϕ1
k1 ϕ1

k2 ... 0

 .

In this subsection the asymptotic distribution of LR statistic for hypothesis
test, H0 : Ψ = 0, is derived. Let γ̂T be the unrestricted MLE that obtained
in the previous section under the hypothesis H1 : Ψ ̸= 0 and γ̂0 be the
MLE when the parameter space is restricted by null hypothesis. Also, let
LT = −2L(γ̂T ) and L0 = −2L(γ̂0) be minus twice the log-likelihood evalu-
ated at the unrestricted and restricted maximum likelihood estimate scheme,
respectively and let L = LT − L0 be a statistic for testing H0 against H1.

Theorem 1. (Asymptotic Distribution) Suppose H0 : Ψ = 0 holds, then as
T → ∞

L = LT − L0 = tr

[(
Ψ− Ψ̂T

) T∑
t=1

y∗t−1y
∗′
t−1

(
Ψ− Ψ̂T

)′

Ω̂−1
0

]
D−→ χ2

K(K−1)

One chooses a critical value cα from the chi-square distribution for some
significance level α. If the value of statistic |L| = |LT − L0| is smaller than
cα then one does not rejects the null hypothesis.

4 Simulation Analysis
In this section the obtained theoretical results are studied by simulation
study. In this study, all calculations are performed using R software. It
is of interest to estimation, select an optimal model based on the maximum
likelihood, ML, approach. We have used ML approach to obtain estimates for
the structural parameters of proposed models and use the model selection
test which define in section 3 to select the optimal model. A set of data
x1, ..., xn is generated under first-order vector autoregressive model, xt =
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Figure 4. The time series plot of x1 and x2.

ϕxt−1 + ϵt, where ϕ =

(
0.8 −0.3

−0.7 −0.7

)
, ϵt’s are i.i.d, N2(µ,Σ), µ =

(
0

0

)

and Σ =

(
0.4 0.3

0.3 0.5

)
. The curve of the x1 and x2 is given in Figure 4. It

shows that the dataset follows the stationary assumption. We consider the
first-order vector autoregressive, VAR(1), second-order vector autoregressive,
VAR(2) and third-order vector autoregressive, VAR(3) models with Normal
innovation as competing models. We will ignore the true model and estimate
competing models using MLE and available data and do 104 replications.
The results for all estimation procedures are given for different sample sizes,
n=50, 150, 250, 500, which have summarized in Table 3. In this Table the
average, across replications, estimates of the parameters are presented. It
shows that, as the sample size increase the value of estimators are closed to
the true parameters.
Using generated data and estimated parameters, the value of Vuong’s test
statistic for each pair of competing models is computed. The results are given
in Table 4. The corresponding generated data and competing model curves
are given in Figure 5. It shows that the estimated VAR(1) is appropriate
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Table 3. The value of estimated parameters in mis-specification case
model n µ Σ ϕ

VAR(1) 50
(

−5.0671e − 05

8.7081e − 04

) (
0.3703 0.2783

0.2783 0.4674

) (
0.7024 −0.2595

−0.7564 −0.6658

)

150
(

−4.2445e − 05

5.9353e − 04

) (
0.3916 0.2938

0.2938 0.4900

) (
0.7090 −0.2871

−0.7170 −0.6885

)

250
(

−1.4359e − 05

3.8985e − 04

) (
0.3952 0.2963

0.2963 0.4942

) (
0.7834 −0.2924

−0.7091 −0.6927

)

500
(

2.4512e − 05

1.0329e − 04

) (
0.3975 0.2980

0.2980 0.4969

) (
0.7920 −0.2963

−0.7043 −0.6963

)

VAR(2) 50
(

0.0004

0.0012

) (
0.3533 0.2656

0.2656 0.4461

) (
0.7534 −0.2948 −0.0753 −0.0046

−0.7160 −0.7190 −0.0746 −0.0318

)

150
(

6.4697e − 05

7.1787e − 04

) (
0.3861 0.2897

0.2897 0.4832

) (
0.7883 −0.2988 −0.0241 −0.0020

−0.7028 −0.7074 −0.0259 −0.0113

)

250
(

3.3283e − 05

4.3998e − 04

) (
0.3920 0.2939

0.2939 0.4902

) (
0.7927 −0.2988 −0.0127 −0.0009

−0.7016 −0.7035 −0.0142 −0.0068

)

500
(

2.8029e − 05

3.1587e − 04

) (
0.3959 0.2968

0.2968 0.4949

) (
0.7959 −0.2989 −0.0054 −0.0005

−0.7007 −0.7015 −0.0068 −0.0032

)

VAR(3) 50
(

0.0003

0.0012

) (
0.3361 0.2527

0.2527 0.4240

) (
0.7497 −0.2930 −0.0511 −0.0044 −0.0216 0.0142

−0.7186 −0.7202 −0.0113 −0.0892 −0.0995 −0.0207

)

150
(

−9.1812e − 05

−9.8953e − 04

) (
0.3807 0.2856

0.2856 0.4763

) (
0.7878 −0.2986 −0.0163 −0.0014 −0.0064 0.0048

−0.7032 −0.7074 −0.0051 −0.0286 −0.0307 −0.0057

)

250
(

3.8602e − 05

4.7270e − 04

) (
0.3887 0.2914

0.2914 0.4861

) (
0.7926 −0.2983 −0.0085 −0.0001 −0.0032 0.0030

−0.7019 −0.7036 −0.0018 −0.0170 −0.0180 −0.0035

)

500
(

3.3795e − 05

3.7285e − 04

) (
0.3942 0.2955

0.2955 0.4929

) (
0.7959 −0.2988 −0.0032 −0.0001 −0.0018 0.0012

−0.7007 −0.7015 −0.0005 −0.0084 −0.0092 −0.0017

)
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Table 4. The value of Vuong’s statistic
n Value of statistic Result

VAR(1)-VAR(2) 50 - 117.7982 VAR(1) is better than VAR(2)
VAR(1)-VAR(3) -554.1708 VAR(1) is better than VAR(3)
VAR(2)-VAR(3) -436.3726 VAR(2) is better than VAR(3)

VAR(1)-VAR(2) 150 -628.5196 VAR(1) is better than VAR(2)
VAR(1)-VAR(3) -2528.114 VAR(1) is better than VAR(3)
VAR(2)-VAR(3) -3156.633 VAR(2) is better than VAR(3)

VAR(1)-VAR(2) 250 -506.4068 VAR(1) is better than VAR(2)
VAR(1)-VAR(3) -3540.47 VAR(1) is better than VAR(3)
VAR(2)-VAR(3) -3034.063 VAR(2) is better than VAR(3)

VAR(1)-VAR(2) 500 -360.1438 VAR(1) is better than VAR(2)
VAR(1)-VAR(3) -828.507 VAR(1) is better than VAR(3)
VAR(2)-VAR(3) -468.3631 VAR(2) is better than VAR(3)

model to fit the generated data. Also the relative frequency of proposed
model selection test for each of rejection-acceptance regions are computed
and the results are summarized in Table 5. For example, if n=500, when we
test Hf

0 : V AR(1) against Hg
1 : V AR(2), the value of the relative frequency

of Vuong’s test for rejection-acceptance region is 0.9036, see column 3. It
shows that Vuong’s test select estimated VAR(1) as optimal model. Also
we see that the power of proposed test at least is as good as the power of
Vuong’s test.
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Figure 5. The true model and competing model curves.

Table 5. The relative frequency of Vuong’s and proposed model selection tests
Hf

0 : V AR(1) Hf
0 : V AR(1) Hf

0 : V AR(2) H0 : Ψ = 0
n Conclusion Hg

1 : V AR(2) Hg
1 : V AR(3) Hg

1 : V AR(3) H1 : Ψ ̸= 0
50 f is better 0.7086 0.8116 0.7227 0.0120

g is better 0.1650 0.0743 0.1640 0.9797
f & g equi 0.1264 0.1141 0.1133 0.0252

150 f is better 0.8235 0.8860 0. 7942 0.0091
g is better 0.0033 0.0200 0.1129 0.9877
f & g equi 0.1732 0.0940 0.0929 0.0083

250 f is better 0.8892 0.9056 0.8870 0.0066
g is better 0.0259 0.0108 0.0321 0.9908
f & g equi 0.0849 0.0836 0.0809 0.0059

500 f is better 0.9036 0.9476 0.8912 0.0071
g is better 0.0237 0.0056 0. 0380 0.9911
f & g equi 0.0727 0.0468 0.0708 0.0035
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In the following, we will show that, when Vuong’s test select the two
competing models as equivalent models, Cox’s test select two models as suit-
able or unsuitable equivalent models. Consider yt = ϕyt−1 + ϵt where ϕ =(

0.6 −0.01

−0.02 0.1

)
, ϵt’s are i.i.d random variables with N(µ,Σ), µ =

(
0

0

)

and Σ =

(
0.8 0.01

0.01 0.6

)
as true model and VAR(1), VAR(2), VAR(3) as

competing models. The relative frequency of Vuong’s and Cox’s results are
given in Table 6. It shows that for different n, Vuong’s test consider the
competing models as equivalent models and Cox’s test emphasize that the
models are suitable equivalent models. Since competing models, VAR(1),
VAR(2) and VAR(3), are suitable equivalent models, so we select estimated
VAR(1) model as optimal model.

Also, in a similar simulation, the first-order autoregressive model xt =

ϕxt−1+ ϵt is considered, where ϕ =

(
0.8 −0.3

−0.7 −0.7

)
, ϵt’s are i.i.d, N2(µ,Σ),

µ =

(
0

0

)
and Σ =

(
5 3

3 7

)
. Due to the similarity, the obtained results

are not presented here.

5 Continue Motivating Example

Based on the sample autocorrelation function and causality test, we consider
VAR(1)-VAR(3) models with Normal innovation as competing models. The
parameters of competing models are estimated by using MLE and available
data. The value of maximum likelihood estimators are given in Table 7. Us-
ing data and estimated parameters, the value of the proposed, Vuong’s and
Cox’s tests for paired of competing models are computed. The results are
given in Table 8. It shows if α = 0.05, the Vuong’s test decides VAR(1) is
better than VAR(2) and VAR(3) and selects second-order and third-order
estimated vector autoregressive models with Normal innovations as equiva-
lent models. Also the Vuong’s test find that VAR(1) model as optimal model
when α = 0.1. When α = 0.05 (and 0.1), the Cox’s test decides VAR(1) is
better than VAR(2) and VAR(3) and selects VAR(2) and VAR(3) models
with Normal innovation as equivalent models. For both α, the proposed test
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Table 6. The relative frequency of Vuong’s and Cox’s tests
Hf

0 : V AR(1) Hf
0 : V AR(1) Hf

0 : V AR(2)

n Conclusion Hg
1 : V AR(2) Hg

1 : V AR(3) Hg
1 : V AR(3)

Vuong’s test 50 f is better 0.142 0.236 0.162
g is better 0.037 0.038 0.043

f & g are equ 0.821 0.726 0.795

150 f is better 0.048 0.006 0.040
g is better 0.057 0.095 0.080

f & g are equ 0.895 0.899 0.880

250 f is better 0.002 0.020 0.054
g is better 0.029 0.031 0.048

f & g are equ 0.969 0.949 0.898

500 f is better 0.011 0.049 0.001
g is better 0.007 0.002 0.020

f & g are equ 0.982 0.949 0.979
Cox’s test 50 f is better 0.001 0.298 0.294

g is better 0.000 0.000 0.006
reject both 0.000 0.000 0.000
accept both 0.999 0.702 0.700

150 f is better 0.000 0.008 0.005
g is better 0.000 0.000 0.000
reject both 0.000 0.000 0.000
accept both 1.000 0.922 0.995

250 f is better 0.000 0.000 0.000
g is better 0.000 0.000 0.000
reject both 0.000 0.000 0.000
accept both 1.000 1.000 1.000

500 f is better 0.000 0.000 0.000
g is better 0.000 0.000 0.000
reject both 0.000 0.000 0.000
accept both 1.000 1.000 1.000
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Table 7. The value of estimated parameters of competing models

model µ Σ ϕ

VAR(1)
(

3.308e−18

−6.799e−15

) (
0.0001 −0.0077

−0.0077 15.5977

) 
0.0210 2.5370

−0.3510 −0.1105

−0.0011 0.7492



VAR(2)
(

3.363e−18

−2.173e−14

) (
0.0001 −0.0091

−0.0091 15.3042

)


0.0206 1.3535

−0.3690 0.1138

−0.0015 0.6433

−0.1292 0.2830

0.0004 0.1880



VAR(3)
(

−2.157e−17

5.432e−14

) (
0.0001 −0.0079

−0.0079 14.6203

)


0.0205 0.6645

−0.3522 0.1004

−0.0014 0.59691

−0.1986 0.6175

0.0006 0.0775

0.1573 −0.3408

−0.0002 0.2259



does reject null hypothesis, Ψ = 0 and select first-order estimated vector
autoregressive model with Normal innovation as optimal model. Also this
test decides VAR(1) is better than VAR(2) and VAR(3).
Now we consider two important performance measures, Mean Absolute

Error, MAE, and Mean Squared Error, MSE, which are frequently used by
researchers. The mean absolute error is defined

MAE =
1

T

T∑
t=1

|et|,

where et = yt − ŷt, yt is the actual value and ŷt is the forecasted value. It
measures the average absolute deviation of forecasted values from original
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Table 8. The results of the proposed, Vuong’s and Cox’s tests.
Vuong’s test The results when α = 0.05 χ2

0.975 χ2
0.95

Hf
0 : V AR(1) 9.2507 VAR(1) is better than VAR(2) 7.3777 5.9914

Hg
1 : V AR(2)

Hf
0 : V AR(3) -4.2992 VAR(2) and VAR(3) are equivalent 7.3777 5.9914

Hg
1 : V AR(2)

Hf
0 : V AR(1) 12.5500 VAR(1) is better than VAR(3) 11.1432 9.4877

Hg
1 : V AR(3)

Cox’s test Tfg Tgf The results when α = 0.05 C0.05 C0.1

Hf
0 : V AR(1) 0.5160 -1.9666 VAR(1) is better than VAR(2) 1.9599 1.6448

Hg
1 : V AR(2)

Hf
0 : V AR(3) 0.6337 -1.1807 VAR(2) and VAR(3) are equivalent 1.9599 1.6448

Hg
1 : V AR(2)

Hf
0 : V AR(1) 0.3616 -1.9606 VAR(1) is better than VAR(2) 1.9599 1.6448

Hg
1 : V AR(3)

Proposed test The results when α = 0.05 χ2
0.05 χ2

0.025

Hf
0 : V AR(1) 5.6547 VAR(1) is better than VAR(2) 9.4877 11.1432

Hg
1 : V AR(2)

Hf
0 : V AR(1) 14.6824 VAR(1) is better than VAR(3) 15.5073 17.5345

Hg
1 : V AR(3)

Hf
0 : V AR(2) 9.1343 VAR(2) is better than VAR(3) 9.4877 11.1432

Hg
1 : V AR(3)
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Table 9. The values of MSE, MAE.
model VAR(1) VAR(2) VAR(3)

MSE 1.7099 1.7493 1.7482

MAE 1.3218 1.3342 1.3334

ones. On the other hand the mean squared error is

MSE =
1

T

T∑
t=1

e2t .

This criteria emphasizes on the fact that the total forecast error is in fact
much affected by large individual errors, i.e. large errors are much expensive
than small errors. The main purposes is fitting an vector autoregressive
model that has the smallest MSE and MAE.
For variable QG, consider p-order vector autoregressive as

yt = Φ1yt−1 + ...+Φpyt−p + ϵt,

where yt is the observed process and ϵt is its innovation which is distributed
as Normal, N

(
µ, σ2

)
. In bivariate autoregressive, yt = (yt,QG, yt,V B) , Φi’s

are (2×p) coefficient matrices, ϵt is an (2×1) vector of Normal variables. The
80 rolling forecasts of proposed models are computed and the MSE and MAE
are given in Table 9. The presented results of 80 rolling prediction show that
for QG, the first-order vector autoregressive model has the smallest MSE
and MAE.
Figure 6 shows the histogram of observations and estimated competing
models, VAR(1), VAR(2) and VAR(3). It shows that the VAR(1) is optimal
model for observations.
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Figure 6. Histogram of observation and VAR(1), VAR(2) and VAR(3) model curve.

6 Conclusion

In this paper, we consider the Europe oil prices, Brent, and the real gross
domestic product, GDP. These data describe the information of growth in oil
price and economic growth. The results of the rolling test of correlation and
Granger causality show that the Europe oil prices is related to the real gross
domestic product and the Europe oil prices data does Granger-cause the real
gross domestic product data. So, we have suggested the vector autoregressive
model as competing models and have selected the order and a suitable subset
of regressors in vector autoregressive model using model selection test such
as Vuong’s test, Cox’s test and the proposed test. The results show that,
the model selection tests confirm the causality test and results of predictive
method and select first-order vector autoregressive model as optimal model
for GDP data.
It is important to note that in this paper, linear models are considered as
competing models. If other time series models such as GARCH or State
Space models are considered as competing models, the data may be better
fitted in other models.
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Appendix

Proof of Theorem 1: Assume H0 : Ψ = 0. Then Y ∗
t = Θ1Y

∗
t−1 + ϵt. In fact

the vector autoregressive model reduce to autoregressive model. So,

Y ∗
1t = ϕ1

11Y
∗
1t−1 + ϵ1t,

where ϵ1t’s are independent and identically distributed as Normal distribu-
tion with zero mean and finite variance, σ2

11. From the fact that

L = 2L(γ̂0)− 2L(γ̂T )

We have

L = −KT log 2π − T log |Ω̂0| −
T∑
t=1

ϵ̂
′
tΩ̂

−1
0 ϵ̂t

+KT log 2π + T log |Ω̂T |+
T∑
t=1

ϵ̂
′
tΩ̂

−1
T ϵ̂t

= T
(
log |Ω̂T | − log |Ω̂0|

)
= T

(
tr
(
log Ω̂T

)
− tr

(
log Ω̂0

))
= T

(
tr
(
log Ω̂T − log Ω̂0

))
= T

(
tr
(
log Ω̂T Ω̂

−1
0

))
= T

(
tr
(
Ω̂T Ω̂

−1
0 − I

))
+ op(1). (4)

Based on the first-order Taylor series expansion, the last equation is true
where I is a K ×K identity matrix,
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Ω̂T =
1

T

T∑
t=1

ϵ̂tϵ̂
′
t7 =

1

T

T∑
t=1

(
y∗t − Θ̂T y∗t−1 − Ψ̂T y∗t−1

)(
y∗t − Θ̂T y∗t−1 − Ψ̂T y∗t−1

)′

=
1

T

T∑
t=1

(
Θy∗t−1 +Ψy∗t−1 + ϵt − Θ̂T y∗t−1 − Ψ̂T y∗t−1

)(
Θy∗t−1 +Ψy∗t−1 + ϵt − Θ̂T y∗t−1 − Ψ̂T y∗t−1

)′

=
1

T

T∑
t=1

((
Θ− Θ̂T

)
y∗t−1 +

(
Ψ− Ψ̂T

)
y∗t−1 + ϵt

)((
Θ− Θ̂T

)
y∗t−1 +

(
Ψ− Ψ̂T

)
y∗t−1 + ϵt

)′

=
1

T

T∑
t=1

(
Θ− Θ̂T

)
y∗t−1y

∗′
t−1

(
Θ− Θ̂T

)′

+
1

T

T∑
t=1

(
Ψ− Ψ̂T

)
y∗t−1y

∗′
t−1

(
Ψ− Ψ̂T

)′

+
1

T

T∑
t=1

ϵtϵ
′
t

+
2

T

T∑
t=1

(
Θ− Θ̂T

)
y∗t−1y

∗′
t−1

(
Ψ− Ψ̂T

)′

+
2

T

T∑
t=1

(
Θ− Θ̂T

)
y∗t−1ϵ

′
t +

2

T

T∑
t=1

(
Ψ− Ψ̂T

)
y∗t−1ϵ

′
t.

(5)

The straight calculations give

2

T

T∑
t=1

(
Θ− Θ̂T

)
y∗t−1y

∗′
t−1

(
Ψ− Ψ̂T

)′

= 0

and the fifth and sixth term in (5) are op(1), since

1

T

T∑
t=1

y∗t−1ϵ
′
t

P−→ E
{
Y ∗
t−1ϵ

′
t

}
= 0.

Similarly

Ω̂0 =
1

T

T∑
t=1

ϵ̂tϵ̂
′
t =

1

T

T∑
t=1

(
y∗
t − Θ̂T y

∗
t−1

)(
y∗
t − Θ̂T y

∗
t−1

)′

=
1

T

T∑
t=1

(
Θy∗

t−1 + ϵt − Θ̂T y
∗
t−1

)(
Θy∗

t−1 + ϵt − Θ̂T y
∗
t−1

)′

=
1

T

T∑
t=1

((
Θ− Θ̂T

)
y∗
t−1 + ϵt

)((
Θ− Θ̂T

)
y∗
t−1 + ϵt

)′

=
1

T

T∑
t=1

(
Θ− Θ̂T

)
y∗
t−1y

∗′
t−1

(
Θ− Θ̂T

)′

+
1

T

T∑
t=1

ϵtϵ
′
t

+
2

T

T∑
t=1

(
Θ− Θ̂T

)
y∗
t−1ϵ

′
t. (6)
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The third term in (6) are op(1), since

1

T

T∑
t=1

y∗t−1ϵ
′
t

P−→ E
{
Y ∗
t−1ϵ

′
t

}
= 0.

Substituted (5) and (6) in (3), so

L = T
(
tr
(
Ω̂T Ω̂

−1
0 − I

))
+ op(1) = T

(
tr
[(

Ω̂T − Ω̂0

)
Ω̂−1
0

])
+ op(1)

= T

(
tr

[(
1

T

T∑
t=1

(
Ψ− Ψ̂T

)
y∗t−1y

∗′
t−1

(
Ψ− Ψ̂T

)′
)
Ω̂−1
0

])
+ op(1)

= tr

[(
Ψ− Ψ̂T

) T∑
t=1

y∗t−1y
∗′
t−1

(
Ψ− Ψ̂T

)′

Ω̂−1
0

]
+ op(1) (7)

where Φ̂T = Φ̂0, Ω̂0
P−→ Ω0 and

Ω0 =


σ2
11 0 ... 0

0 σ2
22 ... 0

...
0 0 ... σ2

kk

 .

Note that the first component of main diagonal, C1 of L, is

C1 = σ̂−2
11 (ϕ1

12 − ϕ̂1
12)

T∑
t=1

y∗2t−1y
∗
2t−1(ϕ

1
12 − ϕ̂1

12) + σ̂−2
11 (ϕ1

13 − ϕ̂1
13)

T∑
t=1

y∗3t−1y
∗
2t−1(ϕ

1
12 − ϕ̂1

12) + . . .

+ σ̂−2
11 (ϕ1

1k − ϕ̂1
1k)

T∑
t=1

y∗kt−1y
∗
2t−1(ϕ

1
12 − ϕ̂1

12) + . . .+ σ̂−2
11 (ϕ1

12 − ϕ̂1
12)

T∑
t=1

y∗2t−1y
∗
kt−1(ϕ

1
1k − ϕ̂1

1k)

+ σ̂−2
11 (ϕ1

13 − ϕ̂1
13)

T∑
t=1

y∗3t−1y
∗
kt−1(ϕ

1
1k − ϕ̂1

1k) + ...+ σ̂−2
11 (ϕ1

1k − ϕ̂1
1k)

T∑
t=1

y∗kt−1y
∗
kt−1(ϕ

1
1k − ϕ̂1

1k)

= σ̂−2
11 (ϕ1

12 − ϕ̂1
12)

T∑
t=1

y∗2t−1y
∗
2t−1(ϕ

1
12 − ϕ̂1

12) + σ̂−2
11 (ϕ1

13 − ϕ̂1
13)

T∑
t=1

y∗3t−1y
∗
3t−1(ϕ

1
13 − ϕ̂1

13)

+ ...+ σ̂−2
11 (ϕ1

1k − ϕ̂1
1k)

T∑
t=1

y∗kt−1y
∗
kt−1(ϕ

1
1k − ϕ̂1

1k) + oP (1). (8)
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Since under null hypothesis, when i ̸= j, we have

1

T

T∑
t=1

y∗it−1y
∗
jt−1

P−→ 0.

then the last term in (8) is op(1). The first term in (8) is asymptotically
distributed as χ2

1, since

σ̂−2
11 (ϕ

1
12 − ϕ̂1

12)

T∑
t=1

y∗2t−1y
∗
2t−1(ϕ

1
12 − ϕ̂1

12)

= σ̂−2
11

∑T
t=1 y

∗
2t−1e1t∑T

t=1 y
∗
2t−1y

∗
2t−1

T∑
t=1

y∗2t−1y
∗
2t−1

∑T
t=1 y

∗
2t−1e1t∑T

t=1 y
∗
2t−1y

∗
2t−1

= σ̂−2
11

(∑T
t=1 y

∗
2t−1e1t

)2
∑T

t=1 y
∗
2t−1y

∗
2t−1

D−→ χ2
1

Similarity the other terms in 8 have asymptotically chi-square, χ2
1, distribu-

tion, so
C1

D−→ χ2
k−1.

The asymptotic distributions of other components of main diagonal are com-
puted similarity, thus

L = tr

[(
Ψ− Ψ̂T

) T∑
t=1

y∗t−1y
∗′
t−1

(
Ψ− Ψ̂T

)′

Ω̂−1
0

]
D−→ χ2

k(k−1).
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