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Abstract. In this paper, we introduce a new skewed distribution of which
normal and power normal distributions are two special cases. This distri-
bution is obtained by taking geometric maximum of independent identically
distributed power normal random variables. We call this distribution as the
power normal–geometric distribution. Some mathematical properties of the
new distribution are presented. Maximum likelihood estimates of parameters
are obtained via an EM algorithm. Simulation experiments have been pre-
sented to evaluate the performance of the maximum likelihood. We analyze
two data sets for illustrative purposes. Finally, we derive a bivariate version
of the proposed distribution.
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rithm.

MSC 2010: 62F10, 62N05.

1 Introduction

The normal distribution is one of the most important statistical distribu-
tions used in many sciences. This distribution is a symmetric distribution.
There is data in many different fields of science that is asymmetric and nor-
mal distribution is not able to model it. Due to this reason, Azzalini (1985)
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introduced the univariate skew-normal (SN) distribution with following prob-
ability density function (pdf)

ϕ(z;λ) = 2ϕ(z)Φ(λz),

where ϕ(·) and Φ(·) denote the pdf and cumulative distribution function (cdf)
of a standard normal distribution and −∞ < λ < ∞ is the skewness param-
eter. It can be seen that the maximum likelihood estimators may not always
exist. To overcome this problem Gupta and Gupta (2008) introduced a new
distribution called the power normal (PN) distribution as an alternative to
the Azzalini’s skew normal distribution with cdf given by

FPN (x;µ, σ, α) =

[
Φ

(
x− µ

σ

)]α
; −∞ < x < ∞.

The corresponding pdf is

fPN (x;µ, σ, α) =
α

σ
ϕ

(
x− µ

σ

)[
Φ

(
x− µ

σ

)]α−1

, (1)

where µ ∈ R is the location parameter, σ > 0 is the shape parameter and α >
0 is the skewness parameter. When α = 1, it becomes a normal distribution
function with mean µ ∈ R and standard deviation σ.

In this paper, we introduce a new four parameter skewed normal distri-
bution which extends power normal distribution. The procedure used here is
based on compound the power normal and geometric distributions. It can be
positively and negatively skewed. Various properties of the proposed distri-
bution are presented. We propose an efficient EM type algorithm to compute
the MLEs of the parameters. Furthermore, we will define a bivariate distri-
bution which has power normal marginals. Compounding method used here,
is described in Marshall and Olkin (1997) and Adamidis and Loukas (1998)
redor, more generally, by Chahkandi and Ganjali (2009), Barreto-Souza et
al. (2011), Morais and Barreto-Souza (2011), Mahmoudi and Jafari (2012),
Tahmasebi and Jafari (2015), Roozegar and Nadarajah (2016), Mahmoudi
and Jafari (2017), Mahmoudi and mahmoodian (2017), Muhammad (2017),
Bahrami and Yarmoghaddam (2019) and Roozegar et al. (2020). The main
reasons for introducing the new compound distribution are: (i) This class of
distributions is an important model that can be used in a variety of prob-
lems in modeling lifetime data. (ii) This distribution is a suitable model in a
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H. Mahmoodian 97

complementary risk problem base in the presence of latent risks which arise
in several areas. (iii) It provides a reasonable parametric fit to skewed data
that cannot be properly fitted by other distributions. (iv) This class contains
some lifetime models as special cases.

The paper is organized as follows. In Section 2, the PNG distribution
is introduced and studied some properties. The moment generating func-
tion and moments are obtaind in section 3. Estimation of the parameters
by maximum likelihood method is presented in Section 4. In Section 5 a
simulation study is given. Two data sets have been analyzed using the PNG
model in Section 6. In section 7, a bivariate derivation of the proposed model
is obtaind. Finally, Section 8 concludes the paper.

2 The Power Normal–geometric Distribution and
Some Properties

Let X1, X2, · · · , XN be independent identically distributed PN with pdf in
Equation 1 random variables. N is a geometric distribution (truncated at
zero) with the following probability mass function

P (N = n) = (1− θ)θn−1, n = 1, ... , 0 < θ < 1.

Moreover, N is independent of Xi’s.

Definition 1. A random variable X is said to have a PNG distribution with
parameters (µ, σ, α, θ) and is denoted by X ∼ PNG(µ, σ, α, θ), if it has the
following definition

X = max(X1, X2, · · · , XN ).

Before going to derive the cdf and the pdf we will briefly mention how it
can happen in practice.

Consider a system having N number of independent and identical com-
ponents attached in parallel. Here N is a random variable. If Xi denote the
lifetime of the i-th component of the system, then the random variable X

denoting the lifetime of the system is defined by X = max(X1, X2, · · · , XN ).

J. Statist. Res. Iran 17 (2020): 95–111



98 The PNG Distribution

Figure 1. The pdf of PNG distribution for different values α, θ, µ = 0 and σ = 1.

The cdf of X ∼ PNG(µ, σ, α, θ) for x ∈ R, is given by

F (x;µ, σ, α, θ) = P (X ≤ x) =
∞∑
k=1

P (X ≤ x | N = k)P (N = k)

=

∞∑
k=1

[
Φ

(
x− µ

σ

)]αk
θk(1− θ)

=
(1− θ)

[
Φ(x−µ

σ )
]α

1− θ
[
Φ(x−µ

σ )
]α . (2)

Upon differentiating the expression of the cdf of X in 2, we obtain the pdf
of X as

f(x;µ, σ, α, θ) =
(1− θ)αϕ(x−µ

σ )
[
Φ(x−µ

σ )
]α−1

σ(1− θ
[
Φ(x−µ

σ )
]α
)2

. (3)

From 2, we obtain

lim
θ→0

F (x;µ, σ, α, θ) =

[
Φ

(
x− µ

σ

)]α
.

The Pdf of the PNG distribution is drawn in Figure 1 for some values
of the parameters. It is observed that the PNG pdf is an unimodal and in-
crease of α and θ shift the pdfs to the right with increases in the heights of
the pdfs.
The normal–geometric distribution introduced by Mahmoudi and mah-
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moodian (2017) is a special case of the PNG distribution with α = 1.

Proposition 1. The densities of PNG class of distributions can be written
as infinite number of linear combination of the density of the PN distribution
with parameters µ, σ and nα.

Proof. We have

f(x;µ, σ, α, θ) =

∞∑
n=1

P (N = n)gX(n)
(x;n),

where gX(n)
(x;n) denotes the density function of X(n) = max (X1, .., Xn).

Note that, applying the fact that X(n) ∼ PN(µ, σ, nα), the PNG pdf can be
written as follows:

f(x;µ, σ, α, θ) =
∞∑
n=1

P (N = n)fPN (x;µ, σ, nα).

The failure rate function of the PNG distribution is given by

h(x;µ, σ, α, θ) =
(1− θ)αϕ(y−µ

σ )
[
Φ(x−µ

σ )
]α−1

σ(1−
[
Φ(x−µ

σ )
]α
)(1− θ

[
Φ(x−µ

σ )
]α
)
.

Plots of the PNG failure rate function for selected parameter values are given
in Figure 2.

Theorem 1. Suppose that X1 ∼ PNG(0, 1, α1, θ1) and X2 ∼ PNG(0, 1, α2, θ2).
If θ1 > θ2 and α1 = α2, then X2 <LR X1.

Proof. we have

d

dx
log

(
f(x; 0, 1, α1, θ1)

f(x; 0, 1, α2, θ2)

)
=

(α1 − α2)ϕ(x)

Φ(x)

+
2ϕ(x)

{
θ1α1 [Φ(x)]

α1−1 − θ2α2 [Φ(x)]
α2−1 + θ1θ2 (α2 − α1) [Φ(x)]

α1+α2−1
}

(1− θ2 [Φ(x)]
α2) (1− θ1 [Φ(x)]

α1)
.

(4)
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100 The PNG Distribution

Figure 2. The hazard rate function of PNG distribution for different values α, θ, µ = 0 and
σ = 1.

Clearly if θ1 > θ2 and α1 = α2, then 4 is positive. Therefore, the PNG has
the likelihood ratio ordering, which implies it has the failure rate ordering as
well as the stochastic ordering and the mean residual life ordering.

The qth quantile of the PNG distributions is given by

xq = µ+ σΦ−1

([
q

1− θ (1− q)

] 1
α

)
.

Using the above expression, generating random data from the PNG distri-
bution is simple.

3 Moment Generating and Moments

In the following, using Proposition ,؟؟ without loss of generality, we pro-
vide the moment generating function, kth moment and the first moment of
a random variable X ∼ PNG(0, 1, α, θ). Here we use, Φn(· ;Σ) for the cdf
of Nn(0,Σ). Furthermore, for r, k ∈ N, let 1r, 0r and Ir denote the vector of
ones, the vector of zeros and the identity matrix of dimension r, respectively.
If X ∼ PNG(0, 1, α, θ) and α is integer, then the moment generating func-
tion, kth moment and mean of X are given by

MX(t) =

∞∑
n=1

(1− θ)θn−1MX(n)
(t)
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Note that when α is integer, applying the fact that distribution of maximum
of a size n from the PN distribution is the same as distribution of maximum
of a size nα from the normal distribution and based on Jamalizadeh and
Balakrishnan (2010)

MX(t) = exp

(
1

2
t2
) ∞∑

n=1

(1−θ)θn−1×nαΦnα−1(1nα−1t; Inα−1+1Tnα−11nα−1),

E(Xk+1) =

∞∑
n=1

(1− θ)θn−1kE(Xk−1) +

∞∑
n=1

(1− θ)θn−1

×
(nα− 1)Φnα−2

(
0nα−2; Inα−2 +

1
21

T
nα−21nα−2

)
2
√
πΦnα−1

(
0nα−1; Inα−1 + 1Tnα−11nα−1

)
× E

(
Zk
nα−2, 1√

2
1nα−2,Inα−2

)
,

and

E(X) =
1

2
√
π

∞∑
n=1

(1−θ)θn−1×nα(nα−1)Φnα−2

(
0nα−2; Inα−2 +

1

2
1Tnα−21nα−2

)
,

respectively. One can derive the second moment of PNG distribution as

E(X2) = 1 +
α(1− θ)

4
√
3π

∞∑
n=1

θn−1n(nα− 1)(nα− 3)

× Φnα−3

(
0nα−3; Inα−3 +

1

3
1Tnα−31nα−3

)
.

Table 1 lists the first four moments, variance, skewness and kurtosis of the
PNG(0, 1, α, θ) for different values α and θ.
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102 The PNG Distribution

Table 1. The first four moments, variance, skewness and kurtusis of PNG distribution for
µ = 0, σ = 1.

α = 2 α = 4 α = 6

θ = 0.1 θ = 0.5 θ = 0.9 θ = 0.1 θ = 0.5 θ = 0.9 θ = 0.1 θ = 0.5 θ = 0.9

E(X) 0.6133 0.8878 1.6179 1.0710 1.3056 1.9439 1.3055 1.5219 2.1176

E(X2) 1.0602 1.4749 3.2261 1.6424 2.2125 4.2558 2.1241 2.7513 4.9051

E(X3) 1.5505 2.4995 6.9808 2.9022 4.2427 10.0280 3.9515 5.5531 12.1061

E(X4) 3.2632 5.2069 16.3990 5.8471 9.0400 25.1023 8.1930 12.2525 31.4899

V AR 0.6842 0.6866 0.6085 0.4954 0.5078 0.4770 0.4198 0.4352 0.4211

SK 0.1080 −0.0513 −0.4375 0.2356 0.0773 −0.3023 0.3033 0.1443 −0.2351

KUR 3.0507 3.0585 3.6037 3.1391 3.0795 3.4361 3.2039 3.1082 3.3726

4 Estimation and Inference

Let x1, · · · , xn be n observations from PNG(µ, σ, α, θ) and Θ = (µ, σ, α, θ)T

be the parameter vector. Then the log-likelihood function can be written as

ln(Θ;x) = n log(αθ)− n log(σ)− n

2
log(2π)− 1

2

n∑
i=1

u2i +

n∑
i=1

log(C
′
([θΦ(ui)]

α)

+ (α− 1)

n∑
i=1

log (Φ (ui))− n log

(
θ

1− θ

)
,

where ui = xi−µ
σ for i = 1, · · · , n. The maximum likelihood estimators

(MLEs) ofΘ = (µ, σ, α, θ)T can be obtained by maximizing the log-likelihood
function with respect to the PNG parameters. The normal equations can
be obtained by taking derivatives of ln with respect to µ, σ, α and θ, re-
spectively, and equating them to 0. Clearly, MLEs cannot be obtained in
closed forms. We propose to use EM algorithm to compute the MLEs. Let,
(Xi, Zi), i = 1, 2, ·, n be the complete data, where Xi is the observed data
and Zi is considered as missing data. We define a hypothetical complete-data
distribution with a joint probability density function in the form

g(z, x;Θ) =
αz(1− θ)θz−1

σ
ϕ

(
xi − µ

σ

)
Φαz−1

(
xi − µ

σ

)
,

where θ, σ > 0, α > 1, x∈R and z ∈ N . SupposeΘ(h) = (µ(h), σ(h), α(h), θ(h))
is the current estimate (in the hth iteration) of Θ. Based on the EM algo-
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rithm principle, in the E-step, we should first present the expectation of
(Z | X;Θ(h)). The conditional probability mass function of Z given X = x
is

g(z | x) = g(z, x;Θ)

f(x)
=

θz−1zΦα(z−1)
(xi−µ

σ

)(
1− θ

[
Φ
(x−µ

σ

)]α)−2 .

The conditional expectation become

E(Z | X = x) = 1 +
2θ
[
Φ
(x−µ

σ

)]α
1− θ

[
Φ
(x−µ

σ

)]α . (5)

The M-step of EM cycle is completed by using the maximum likelihood
estimation over Θ, with the missing Z’s replaced by their conditional ex-
pectations given in 5. The complete-data log likelihood, ignoring the values
that do not depend on the parameters, is obtained

ln = (x, z;Θ) ∝
n∑

i=1

zi log θ + n logα− n log σ − 1

2σ2

n∑
i=1

(xi − µ)2

+

n∑
i=1

(αzi − 1) log

(
Φ

(
xi − µ

σ

))
− n log

(
θ

1− θ

)
.

The components of the score function Uc(x, z;Θ) =
(
∂l∗n
∂µ ,

∂l∗n
∂σ ,

∂l∗n
∂α ,

∂l∗n
∂θ

)
, are

∂l∗n
∂µ

=
1

σ2

n∑
i=1

(xi − µ)− 1

σ

n∑
i=1

(αzi − 1)
ϕ
(xi−µ

σ

)
Φ
(xi−µ

σ

) ,
∂l∗n
∂σ

= −n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 − 1

σ2

n∑
i=1

(αzi − 1)
(xi − µ)ϕ

(xi−µ
σ

)
Φ
(xi−µ

σ

) ,

∂l∗n
∂α

=
n

α
+

n∑
i=1

zi log

(
Φ

(
xi − µ

σ

))
,

∂l∗n
∂θ

=
1

θ

n∑
i=1

zi −
n

θ (1− θ)
.
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The maximum likelihood estimates can be obtained from the iterative algo-
rithm given by

1

σ̂(h)

n∑
i=1

(
xi − µ̂(h+1)

)
−

n∑
i=1

(
α̂(h)ẑ

(h)
i − 1

) ϕ
(
xi−µ̂(h+1)

σ̂(h)

)
Φ
(
xi−µ̂(h+1)

σ̂(h)

) = 0,

1(
σ̂(h+1)

)2 n∑
i=1

(
xi − µ̂(h)

)2
− 1

σ̂(h+1)

n∑
i=1

(
α̂(h)ẑ

(h)
i − 1

) (xi − µ̂(h)
)
ϕ
(
xi−µ̂(h)

σ̂(h+1)

)
Φ
(
xi−µ̂(h)

σ̂(h+1)

) = n,

n∑
i=1

ẑ
(h)
i log

(
Φ

(
xi − µ̂(h)

σ̂(h)

))
= 0, (1− θ̂(h+1))

n∑
i=1

ẑ
(h)
i = n,

where µ̂(h+1), σ̂(h+1), α̂(h+1) and θ̂(h+1) are found numerically. Here, for
i = 1, ..., n, we have than

ẑ
(h)
i = 1 +

2θ̂(h)
[
Φ
(
xi−µ̂(h)

σ̂(h)

)]α̂(h)

1− θ̂(h)
[
Φ
(
xi−µ̂(h)

σ̂(h)

)]α̂(h)
.

5 Simulation

Now, we present some Monte Carlo simulation results to show how the pro-
posed EM algorithm performs PNG parameters. The simulations was per-
formed using the R software. The simulations are performed 1000 times
under the PNG distribution with different sets of parameters and sample
sizes n = 50, 100, 300 and 500. We compute we computed the biases and
root of mean-squared errors (RMSE) of MLEs. The results are reported in
Table 2. Note that in the simulation example, the biases generally decrease
to zero as sample size increases. Also, the RMSE of the estimators becomes
smaller when the sample size increases and this illustrates the consistency of
the estimators.
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Table 2. The biases of the 1000 MLE’s and RMSE of EM estimators for the PNG distribution.
Bias RMSE

n (µ, σ, α, θ) µ̂ σ̂ α̂ θ̂ µ̂ σ̂ α̂ θ̂

red25 (0.0, 1.0,2,0.2) -0.0029 -0.423 -0.1201 0.0801 0.0071 0.1201 0.5927 0.3121
(0.0, 1.0,2,0.5) -0.0015 -0.0163 0.0776 -0.0553 0.0058 0.1148 0.8002 0.3052
(0.0, 1.0,2,0.9) 0.0010 0.0171 1.2800 -0.1191 0.0690 0.1182 5.000 0.2701
(0.0, 1.0,3,0.2) -0.0023 -0.0461 0.8301 0.3015 0.0053 0.1171 0.9059 0.3164
(0.0, 1.0,3,0.5) -0.0008 -0.0154 0.1401 -0.0587 0.0040 0.1084 1.1203 0.3199
(0.0, 1.0,3,0.9) -0.0111 0.0228 1.7693 -0.1227 0.1706 0.1200 7.1906 0.2671

50 (0.0, 1.0,2,0.2) -0.0025 -0.411 -0.1096 0.0773 0.0060 0.1181 0.5767 0.2977
(0.0, 1.0,2,0.5) -0.0010 -0.0153 0.0764 -0.0547 0.0050 0.1126 0.7903 0.3052
(0.0, 1.0,2,0.9) 0.0010 0.0161 1.2847 -0.1171 0.0690 0.1121 4.7024 0.2618
(0.0, 1.0,3,0.2) -0.0019 -0.0438 0.8230 0.3005 0.0047 0.1121 0.9050 0.3137
(0.0, 1.0,3,0.5) -0.0008 -0.0142 0.1351 -0.0587 0.0035 0.1057 1.1934 0.3188
(0.0, 1.0,3,0.9) -0.0101 0.0224 1.7679 -0.1218 0.1694 0.1182 7.1701 0.2638

100 (0.0, 1.0,2,0.2) -0.0016 -0.0267 -0.1095 0.0690 0.0042 0.0878 0.4604 0.2597
(0.0, 1.0,2,0.5) -0.0007 -0.0013 0.0707 -0.0618 0.0034 0.0852 0.6503 0.2734
(0.0, 1.0,2,0.9) 0.0000 0.0062 0.4764 -0.0482 0.0030 0.0692 1.5248 0.1403
(0.0, 1.0,3,0.2) -0.0015 -0.022 0.8547 0.0667 0.0036 0.0837 0.6776 0.2633
(0.0, 1.0,3,0.5) -0.0005 -0.0105 0.0788 -0.0466 0.0024 0.0840 0.9509 0.2764
(0.0, 1.0,3,0.9) 0.0000 0.0049 0.6673 -0.048 0.0022 0.0638 2.1000 0.1300

300 (0.0, 1.0,2,0.2) 0.0007 -0.0106 -0.0577 0.0286 0.0020 0.0543 0.2920 0.1858
(0.0, 1.0,2,0.5) 0.0000 0.0007 0.0417 -0.0288 0.0012 0.0544 0.4070 0.1802
(0.0, 1.0,2,0.9) -0.0002 0.0045 0.1028 -0.0144 0.0021 0.0410 0.8081 0.0623
(0.0, 1.0,3,0.2) -0.0006 -0.0092 -0.0825 0.0356 0.0016 0.0516 0.4099 0.1911
(0.0, 1.0,3,0.5) -0.0001 -0.0014 0.0402 -0.0313 0.0009 0.0546 0.5735 0.1933
(0.0, 1.0,3,0.9) -0.0001 0.0009 0.1992 -0.0146 0.0014 0.0391 1.1400 0.0632

500 (0.0, 1.0,2,0.2) -0.0005 -0.0068 -0.0338 0.0211 0.0013 0.0419 0.2307 0.1545
(0.0, 1.0,2,0.5) 0.0001 0.0020 0.0282 -0.0223 0.0009 0.0416 0.3105 0.1430
(0.0, 1.0,2,0.9) -0.0001 0.0022 0.0883 -0.0095 0.0015 0.0312 0.5989 0.0427
(0.0, 1.0,3,0.2) -0.0004 -0.0036 -0.0223 0.0049 0.0012 0.0382 0.3207 0.1556
(0.0, 1.0,3,0.5) 0.0000 -0.0011 0.0275 -0.0173 0.0007 0.427 0.4399 0.1480
(0.0, 1.0,3,0.9) 0.0001 0.0002 0.1149 -0.0083 0.0011 0.0312 0.9184 0.0457
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106 The PNG Distribution

Table 3. Parameter estimates, AIC and BIC for velocities of 82 distant galaxies.
Dist. Parameter estimates K-S P-value − log(L) AIC BIC
PNG µ̂ = −3.82, σ̂=7.64, α̂=11.87, θ̂=0.99 red0.088 red0.418 232.45 472.89 482.51
PN µ̂=22.34, σ̂=4.01, α̂=0.67 red0.092 red0.367 240.28 486.56 493.78
Normal µ̂= 20.83, σ̂=4.54 red0.092 red0.367 240.42 484.83 489.65
SN µ̂=24.61, σ̂=5.90, α̂ = −1.39 red0.091 red0.363 239.21 484.42 491.64

6 Application

Two real data are used to illustrate to show that the PNG distribution can
provide a better fit with the data sets than the PN, the SN and normal
distributions.

The first data set concerning the velocities of 82 distant galaxies, diverg-
ing from our own galaxy and are available at http://www.stats.bris.ac.uk/∼peter
/mixdata. For the PNG, the PN, the SN and the normal distributions the
MLEs of the parameters, red the Kolmogorov–Smirnov statistic with its re-
spective p-value, the log-likelihood, the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) were derived and displayed in Ta-
ble 3. Based on the AIC and the BIC, one can see that the PNG distribution
is the best among the fitted models. Also the estimated density functions of
the data including the respected histograms, plotted in Figure 3 confirm this
conclusion.

Figure 3. Velocities of 82 distant galaxies data histogram and fitted pdf of distributions.
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Table 4. Parameter estimates, AIC and BIC for AIS data.

Dist. Parameter estimates K-S P-value − log(L) AIC BIC
PNG µ̂= 140.83, σ̂=13.01,α̂= 4.72, θ̂=0.98 0.0492 0.9689 348.11 704.22 714.64
PN µ̂=182.08, σ̂= 5.37, α̂=0.29 0.0811 0.5257 351.30 708.61 716.42
Normal µ̂=174.59, σ̂=8.21 0.0817 0.5174 352.32 708.63 713.85
SN µ̂=170.32, σ̂=8.002, θ̂=0.0016 0.0831 0.5091 352.03 710.64 718.45

Figure 4. AIs data histogram and fitted pdf of distributions.

The second data represents the heights (in centimeters) of 100 Australian
athletes studied by Cook and Weisberg (1994). Table 4 gives the MLEs of
the parameters, red the Kolmogorov–Smirnov statistic with its respective
p-value, the log-likelihood, the AIC and BIC for the PNG, PN, SN and Nor-
mal models for the second data set. According to the AIC and the BIC, the
PNG distribution is the best among considered models. Also the plots of the
densities in Figure 4 confirmed this conclusion.

7 Bivariate
In this section we introduce the bivariate power normal geometric distri-
bution (BPNG) distribution, whose marginals are power normal geometric
distributions. Suppose {X1, · · · , Xn} and {Y1, · · · , Yn} are two sequence of
mutually independent and identically distributed (i.i.d.) from PN(µ1, σ1, α1)
and PN(µ2, σ2, α2), respectively. Let N be a geometric variable independent
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of Xi’s and Yi’s. Consider the following bivariate random variable (X,Y ),
where

U = max(X1, · · · , XN ) and V = max(Y1, · · · , YN ).

The joint cdf of (U, V ) is

FU,V (u, v) = P (U ≤ u, V ≤ v)

=

∞∑
n=1

(1− θ)θn
([

Φ

(
u− µ1

σ1

)]α1
[
Φ

(
v − µ2

σ2

)]α2
)n

=
(1− θ)

[
Φ
(
u−µ1

σ1

)]α1
[
Φ
(
v−µ2

σ2

)]α2

1− θ
[
Φ
(
u−µ1

σ1

)]α1
[
Φ
(
v−µ2

σ2

)]α2
. (6)

The bivariate random vector (U, V ) is said to have a bivariate normal geo-
metric distributions, denoted by BPNPS(µ1, µ2, σ1, σ2, α1, α2, θ); if (U, V )
has the joint cdf 6. The joint cdf of (U, V ) can be obtained as

fU,V (u, v) = (1− θ)

[
f0(u, v)(1− θF0(u, v)) + 2θf1(u, v)f2(u, v)

(1− θF0(u, v))3

]
,

where

F0(u, v) =

[
Φ

(
u− µ1

σ1

)]α1
[
Φ

(
v − µ2

σ2

)]α2

,

f0(u, v) =
α1α2

σ1σ2
ϕ

(
u− µ1

σ1

)
ϕ

(
v − µ2

σ2

)[
Φ

(
u− µ1

σ1

)]α1−1 [
Φ

(
v − µ2

σ2

)]α2−1

,

f1(u, v) =
α1

σ1
ϕ

(
u− µ1

σ1

)[
Φ

(
u− µ1

σ1

)]α1−1 [
Φ

(
v − µ2

σ2

)]α2

,

f2(u, v) =
α2

σ2
ϕ

(
v − µ2

σ2

)[
Φ

(
u− µ1

σ1

)]α1
[
Φ

(
v − µ2

σ2

)]α2−1

.

Theorem 2. If (U, V ) ∼ BPNG(µ1, µ2, σ1, σ2, α1, α2, θ), then
(i) U ∼ PNG(µ1, σ1, α1, θ) and V ∼ PNG(µ2, σ2, α2, θ).
(ii) The conditional distributions have the following forms.
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P (V ≤ v | U ≤ u) =

{
1− θ

[
Φ
(
u−µ1

σ1

)]α1
}[

Φ
(
v−µ2

σ2

)]α2

1− θ
[
Φ
(
u−µ1

σ1

)]α1
[
Φ
(
v−µ2

σ2

)]α2
.

P (U ≤ u | V ≤ v) =

{
1− θ

[
Φ
(
v−µ2

σ2

)]α2
}[

Φ
(
u−µ1

σ1

)]α1

1− θ
[
Φ
(
u−µ1

σ1

)]α1
[
Φ
(
v−µ2

σ2

)]α2
.

8 Conclusion
In this paper we introduce a new four-parameter distribution called the power
normal-geometric distributions, which is an alternative to the Azzalini skew-
normal distribution. We have derived different mathematical properties of
this distribution. The parameters estimation via EM algorithm is proposed,
and their performances are evaluated by the Monte Carlo method. We fitted
the PNG distribution to two real data sets to show the potentially of the new
proposed distribution. Finally the model has been generalized to the bivari-
ate case. More work is needed to study this proposed bivariate distribution
in details. red
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