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Abstract. Balanced acceptance sampling is a relatively new sampling
scheme that has potential to improve the efficiency of spatial studies. There
are two drawbacks of the design, it can have low entropy and some of the
unbiased estimates can not be calculated. In this paper, such shortcomings
have been addressed by integrating simple random sampling with balanced
acceptance sampling. In a simulation study on two datasets, the entropy and
spatially balance of the introduced sampling design are calculated and are
compared with the same results from balanced acceptance sampling and sim-
ple random sampling. Simulation results show that the introduced sampling
design has the flexibility to balance the entropy and spatially balance.
Keywords. Entropy of sampling design, Halton sequence, inclusion proba-
bility, spatially balanced sampling.
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1 Introduction
In two-dimensional populations where the variable of interest has a spa-
tial trend, using sampling designs which are spatially balanced can improve
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2 BAS+m Design

the efficiency of estimators (e.g., Stevens and Olsen (2004); Theobald et al.
(2007); Grafström (2012); Grafström et al. (2012); Grafström and Lundström
(2013)). In spatially balanced sampling (SBS) designs, sample units are se-
lected that are well-spread over the area, with few nearby units. Some of
the interesting properties of SBS in natural resource applications, discussed
by Theobald et al. (2007), include high efficiency, good spatial distribution,
easy to calculate estimators and high cost-effective.
Spatially balanced sampling designs have been applied in soil studies, en-
vironmental protection, and mapping. Systematic sampling with a regular
grid, has been studied by Bickford et al. (1963) , Messer et al. (1986), Hazard
(1989), and is an example of the early SBS designs.

Robertson et al. (2013) introduced another SBS design, balanced accep-
tance sampling (BAS), which can give better spatial balance than some of
the other SBS designs.

One limitation in the calculation of the statistical estimators with BAS,
and some other SBS designs, is that the second order inclusion probabilities
are approximately zero for neighborhood units. In such situations, the vari-
ance estimator, introduced by Horvitz and Thompson (1952) and Yates and
Grundy (1953), cannot be calculated. Also, as with systematic sampling,
BAS has low entropy. Sampling designs with high entropy generate highly
randomized and more robust samples (Tillé and Haziza (2010)). Grafström
(2010) mentioned that sampling designs that yield low entropy in general
should be avoided. Another advantage of high entropy, for unequal proba-
bility sampling, is that an approximation of the second order inclusion prob-
abilities can be derived from the first order inclusion probabilities (Brewer
and Donadio (2003); Matei and Tillé (2005); Rao et al. (2008)).

Poisson sampling and Bernoulli sampling designs have high entropy. Tillé
and Haziza (2010) show that the simple random sampling without replace-
ment (SRSWOR) and Bernoulli sampling have approximately the same en-
tropy, when the population size is enough large.

We introduce a modification to BAS, BAS+m, where the sample is se-
lected in two stages, a BAS sample is selected in the first stage and in the
second stage, the remained sample size is selected by SRSWOR. BAS+m can
be considered to be a flexible sampling design between the two extremes of
BAS and SRSWOR. The SRSWOR yields a good entropy sample and the
BAS yields a good spatially balanced sample. Also, as shown in Section 2,
the second order inclusion probabilities in BAS+m are non-zero.

In section 2, BAS, BAS+m, and the first and the second order inclusion
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probabilities of BAS+m are introduced. When the researcher is free to define
sampling units a closed form is given for inclusion probabilities. In section
3, a simulation study is undertaken with two datasets and an artificial pop-
ulation. Finally, concluded remarks are given in section 4.

2 Inclusion Probabilities for BAS+m

Let a population with units u1, u2, ..., uN and the corresponding study vari-
ables y1, y2, ...yN be located in a d-dimensional area. In the BAS design,
random points are determined sequentially from the random start Halton
sequence (Wang and Hickernell (2000)). The d-dimensional Halton sequence
(Halton (1960)) {Xk}∞k=0 = {(x(1)k , x

(2)
k , ..., x

(d)
k )}∞k=0 is a deterministic se-

quence in [0, 1)d, where the ith component of the kth point, x(i)k , is defined,
using van der Corput sequence, as follows:
Any natural number, k, has a base bi representation of the form

k = λMλM−1...λ1λ0 =

M∑
j=0

λjb
j
i ,

where λj ∈ {0, 1, ..., bi − 1} is the jth digit of k in its base bi expansion and
M is a positive integer. Van der Corput sequence is given by defining the
radical inverse function x

(i)
k as follows:

x
(i)
k = 0.λ0λ1...λM−1λM =

M∑
j=0

λj

bj+1
i

.

The sequence is uniformly distributed, if all bases bi for i = 1, . . . , d,
are pairwise co-prime (Faure et al. (2015)). If the first term is randomly
selected from the sequence, then the given sequence is known as a random
start Halton sequence.

First, the N points are replaced with N non-overlapping equally sized
boxes with positive Lebesgue measure, where each box contains exactly one
point. Then, a random-start Halton sequence is defined over a minimal
bounding box containing all N boxes. If the random selected value from
Halton sequence, say x1, is within a unit’s box, that unit is included in the
sample. Otherwise, no unit is selected. The next point in the sequence, x2,
is then considered and the method repeats (Robertson et al. (2013)).
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4 BAS+m Design

The exact first order inclusion probability for unit i is simply the fraction
of sequences that contain unit i, and is given by

πi =
1

Rd

Rd∑
j=1

Ii({X(j)
k }vk=1),

where ν is the least integer such that n distinct sample units are observed,
Ii({X(j)

k }vk=1) = 1 if unit i is selected by the jth random-start Halton se-
quence, X(j), and zero otherwise. The exact second order inclusion proba-
bility for units i and j is given similarly as the fraction of sequences that
contain both units i and j, and is given as follows:

πij =
1

Rd

Rd∑
j′=1

Iij({X(j′)
k }vk=1),

where Iij({X(j′)
k }vk=1) = 1 if both units i and j are selected by the j′th

random-start Halton sequence, X(j′), and zero otherwise (Robertson et al.
(2013)).

For inclusion probabilities, closed forms can be found, if sample units
are set based on a feature of the Halton series, explained by Price and Price
(2012); Halton (1960); Robertson et al. (2017). Price and Price (2012), in
Proposition 2, show a feature of Halton sequence, where in two-dimensional
case, for (b1, b2) = (2, 3), it can be written as follows:

”Let the unit hypercube be subdivided into boxes of equal size and shape,
where each box is of the form

[
m1b

−J1
1 , (m1 + 1)b−J1

1

)
∗
[
m2b

−J2
2 , (m2 + 1)b−J2

2

)
(1)

for integers m1 and m2 satisfying 0 ≤ m1 < bJ11 , 0 ≤ m2 < bJ22 and J1, J2 are
positive integers.

Then any consecutive N = bJ11 bJ22 = 2J13J2 points in the scrambled prime
recycling Halton sequence have exactly one point in each box.”

Boxes are usually indexed by {0, 1, ..., B − 1} and to adopt sampling
literature, we have indexed it as {1, ..., N}. Here, sample units are set as the
given boxes and the initial sample unit, say ur, is selected randomly from
the set {u1, ..., uN}. The remaining sample units are selected consecutively
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Figure 1. Halton boxes with b1 = 2 and b2 = 3 for different Ji values. Left: J = (1, 1) and
N = 2× 3 = 6; Right: J = (1, 2) and N = 2× 32 = 18.

from the set {u1, ..., uN} similar to circular systematic sampling design. More
detailed are explained in Example 1.

Example 1. In a population of size N = bJ11 bJ22 = 2 × 3 = 6, all of the
sample units (Halton boxes (1)) and BAS samples of size n = 3 are shown
in Table (1).
Since, 0 ≤ m1 < 2 and 0 ≤ m2 < 3 the intervals

[
m1b

−J1
1 , (m1 + 1)b−J1

1

)
are

as [0, 12) and [12 , 1) and intervals
[
m2b

−J2
2 , (m2 + 1)b−J2

2

)
are as [0, 13), [

1
3 ,

2
3)

and [23 , 1).
For example, if the random value is r = 5, then 5 mod 2 = 1, the first

interval is [0, 12), and 5 mod 3 = 2, the second interval is [13 ,
2
3), and the

first sample unit of the BAS sample is then u5 = [0, 12) ∗ [
1
3 ,

2
3) and the BAS

sample is given by {u5, u6, u1}. Partitioning the area into 6 sample units is
shown in the left panel of Figure 1 and for N = 2 ∗ 32 = 18 sample units is
shown in the right panel.

Here, the first and the second order inclusion probabilities are given in
Lemma 1.

Lemma 1. In a BAS sample of size n, where sample units are set as the
given boxes by Halton series, the inclusion probabilities for units (boxes) ui
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6 BAS+m Design

Table 1. All BAS samples of size n = 3, in a population of size N = 6, b1 = 2 and b2 = 3.

r 1 2 3 4 5 6

(m1,m2) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)[
m1/2, (m1 + 1)/2

)
[0, 1

2
) [ 1

2
, 1) [0, 1

2
) [ 1

2
, 1) [0, 1

2
) [ 1

2
, 1)

[
m2/3, (m2 + 1)/3

)
[0, 1

3
) [ 1

3
, 2
3
) [ 2

3
, 1) [0, 1

3
) [ 1

3
, 2
3
) [ 2

3
, 1)

The first sample unit u1 = [0, 1
2
)[0, 1

3
) u2 = [ 1

2
, 1)[ 1

3
, 2
3
) u3 = [0, 1

2
)[ 2

3
, 1) u4 = [ 1

2
, 1)[0, 1

3
) u5 = [0, 1

2
)[ 1

3
, 2
3
) u6 = [ 1

2
, 1)[ 2

3
, 1)

BAS sample s1 = {u1, u2, u3} s2 = {u2, u3, u4} s3 = {u3, u4, u5} s4 = {u4, u5, u6} s5 = {u5, u6, u1} s6 = {u6, u1, u2}

and uj are given as follows:

πij = (
n− |i− j|

N
)I{0,1,2,...,n−1}(|i− j|)

+ (
n−N + |i− j|

N
)I{N−n+1,N−n+2,...,N−1}(|i− j|), (2)

obviously, for i = 1, 2, ..., N ; where πii = πi and πi = n/N .

Proof. Proof in Appendix.

To check the accuracy of the inclusion probabilities, some general prop-
erties must be satisfied. For example,

∑N
i=1 πi = n, is satisfied with the

introduced the first order inclusion probabilities, where it can be proven
easily. Also, the property of the second order inclusion probability, that
summation of joint inclusion probabilities is equal to n(n − 1), is shown in
Appendix .(؟؟)

2.1 The first order inclusion probabilities in BAS+m

As mentioned in Section (1), in the first stage of BAS+m, a BAS of size n−m
is selected and in the next stage, by SRSWOR a sample of size m is selected
from the N −n+m remaining sample units, where m can be varied between
0 and n.

Let πi be the first order inclusion probability for unit i in a BAS sample
of size n −m, then in BAS+m, the first order inclusion probability for unit
i, shown by π+m

i , are given as follows;
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π+m
i = Pr(ui ∈ s

BAS+m ) = Pr(Ai ∪A′
iBi)

= Pr(Ai) + Pr(A′
iBi)

= Pr(Ai) + Pr(A′
i)Pr(Bi|A′

i)

= πi + (1− πi)
m

N − n+m
,

where Ai and Bi are the events that unit ui is selected by BAS and SRSWOR,
respectively. Obviously, for πi = (n − m)/N it can be proven that π+m

i =
n/N .

2.2 The Second Order Inclusion Probabilities in BAS+m

Let πij be the second order inclusion probability for units i and j in a BAS
sample of size n−m, then in BAS+m, the second order inclusion probability
for such units, shown by π+m

ij , are given as follows:

π+m
ij = Pr({ui, uj} ⊂ s

BAS+m )

= Pr

(
AiAj

∪
AiA

′
jBj

∪
A′

iAjBi

∪
A′

iA
′
jBiBj

)
= Pr(AiAj) + Pr(AiA

′
j)Pr

(
Bj |AiA

′
j)+

Pr(A′
iAj)Pr

(
Bi|A′

iAj) + Pr(A′
iA

′
j)Pr(BiBj |A′

iA
′
j)

=πij + (πi − πij)
m

N − n+m
+ (πj − πij)

m

N − n+m
+

(1− πi − πj + πij)
m

N − n+m
× m− 1

N − n+m− 1
,

It can be easily shown that when m > 0, the second order inclusion
probability for each pair is non-zero.

2.3 Entropy

The entropy of a sampling design p(.), denoted by I(p), is defined as

I(p) = −
∑
s∈Q

Pr(s) log(Pr(s))
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8 BAS+m Design

where Pr(s) is the probability of selecting the sample s, Q = {s|Pr(s) > 0}
is the support of the sampling design p(.) ( Tillé and Haziza (2010)).

In a population of size N , the entropy of SRSWOR is given by

I(pSRS ) = logN !− log n!− log(N − n)!,

In BAS+m, if sample units are defined as Halton boxes, the probability of
selecting a sample s is given by

PrBAS+m(s) = N−1

(
N − n+m

m

)−1

Therefore, the entropy is given by

I(p
BAS+m ) = logN + log(N − n+m)!− logm!− log(N − n)!

Generally, when sample units do not correspond to Halton boxes, in
a two-dimensional population with d = 2, the probability of selecting the
sample s and the entropy is given by

p
BAS+m (s) =R−d

dist

(
N − n+m

m

)−1

= R−2
dist

(
N − n+m

m

)−1

I(p
BAS+m ) =d logRdist + log(N − n+m)!− logm!− log(N − n)!

=2 logRdist + log(N − n+m)!− logm!− log(N − n)!,

where Rdist is the greatest integer that yields distinct samples. It should be
noted that if the population area is continuous and sample units are assumed
to be the selected points from the Halton sequence, then all the selected
points will be distinct and Rdist can be large as possible. If sample units are
assumed to be a sub-area like a rectangular, many points from the Halton
sequence will be located inside each sample unit, therefore each sample unit
would be selected many times by Halton sequence. For example, in the
Volcano population explained in Section (3), each BAS sample of size n=30
would be repeated after the next 13436928 points of the Halton sequence. In
such a cases, to calculate the exact entropy the Rdist should be assumed to
be the greatest integer that yields distinct samples. Clearly, by set m = 0,
entropy of BAS can be derived as follows:
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I(pBAS ) = 2 logRdist

2.4 Spatial Balance

The spatial balance (SB) can be evaluated with different methods. In this
paper, following Robertson et al. (2018), the method of Voronoi polygons
suggested by Stevens and Olsen (2004) is used. For a given sample, s =
{u1, u2, . . . , un}, it is calculated as follows:

SB =
1

n

∑
ui∈s

(vi − 1)2.

where vi =
∑

j:uj∈ωi
πj and ωi is the Voronoi polygon generated by unit ui.

The SB value is non-negative, the minimum value SB = 0 is given from a
sample that has the maximum spatially balance and greater values of SB
show weak spatially balances. For each sampling design, this criteria is given
by a Monte Carlo simulation, so that SB is calculated for a large number of
samples, say B = 200000, then they have been averaged as follow:

SB =

∑B
b=1 SBb

B
.

In Figure (2), two samples of size n = 30 are selected from a population
of size N = 10× 10 = 100 by BAS and SRSWOR, their spatial balances are
as SBBAS = 0.064 and SBSRSWOR = 0.361. In this example, the sample from
BAS has more spatial balance than the one from SRSWOR.

3 Simulation Study
In this section, the entropy and spatial balance of BAS+m are calculated
for two real populations. Also, in an artificial population, for the case that
sample units are defined as Halton boxes, the entropy and spatial balance
of BAS+m are calculated. In a simulation study, by 200000 selected BAS+m

samples, the average SB, SB, of BAS+m is calculated for all combinations
of sample sizes n = {30, 90} and m = {0, n6 ,

n
3 ,

n
2 , n}.

The case study datasets are from a study of volcanoes in New Zealand
and a study of marine crabs in Qatar. The datasets are just two examples

J. Statist. Res. Iran 17 (2020): 1–18



10 BAS+m Design

Figure 2. Two generated samples of size n = 30 by BAS and SRSWOR from a population of
size N = 10×10 = 100. The given spatial balances are as SBBAS = 0.064 and SBSRSWOR =
0.361.

of populations where spatial information is available. The populations are
quite different in size so that the effect of population size can be evaluated.
The volcano dataset is available in R (Team, R (2017)) and is data from
Maunga Whau, one of the volcanoes in the Auckland volcanic field. The
dataset has topographic information for Auckland’s Maunga Whau Volcano
on a 10m by 10m grid presented in a matrix with 87 rows and 61 columns.
The artificial population, the edited Volcano, was created to use Halton boxes
as sample units in the Volcano population. Then we assume the Volcano area
is partitioned into 5184 sample units with 81 = 34 rows and 64 = 26 columns.

The other dataset is of the count of crab burrows for a Nasima dotilli-
formis poulation in the intertidal mudflat of Al Khor from 400×400 = 160000
equal quadrats. Salehi et al. (2015) investigated the effect of quadrat size
and constructed different quadrat sizes by partitioning the area into 50× 50
equal quadrats.

The results are shown in Table 2, spatial balance and entropy values are
shown in two columns. Since in the case m = 0, BAS+m is transformed to a
BAS of size n and in the case m = n, BAS+m is transformed to a SRSWOR
of size n, we have compared both entropy and spatial balance of BAS+m

rather than BAS and SRSWOR with equal sample size.
The results show that when m is increased from 0 to n, the SB is de-

creased and entropy is increased. It can be concluded that by determining an
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Figure 3. The red curves show the relative entropy of BAS+m compared with SRSWOR,
I(p

BAS+m
)

I(p
SRS

)
, for different m values. The black curves show the relative spatial balance of

BAS compared with BAS+m, SBBAS

SB
BAS+m

, for different m values.

appropriate value of m, a balance can be made between spatial balance and
entropy. For example, in Volcano population, if 25 units be selected by BAS
and 5 units by SRSWOR, the spatially balance is equal to 64% of the case
that 30 units are selected by BAS and the entropy is 38% of the case that 30
units are selected by SRSWOR. Also, comparing the entropy of BAS with
equal sample sizes in the Volcano and the edited Volcano datasets, Tables
2 and 3, shows that in the edited Volcano entropy is smaller than for the
Volcano dataset. When sample units are defined as Halton boxes (refer to
Formula(1) and Example 1), simple formulae are given for inclusion proba-
bilities, although we note that the entropy is decreased compared with when
the sample units are defined arbitrary. Determining the value of m depends
on the degree of interest in both entropy and SB. Figure 3 shows that SB
decreases rapidly with increasing m. We recommend that, if SB is more of
interest, m should not be more than about 20% of the sample size. As Figure
3 shows, the relative entropy in both populations are approximately equal
but their relative SB are slightly different, especially for larger sample size
n=90. When the sample units are defined as the generated Halton boxes as
in the edited Volcano population, the relative entropy is decreased compared
with the Volcano population.

J. Statist. Res. Iran 17 (2020): 1–18



12 BAS+m Design

Table 2. The spatial balance and the entropy of BAS+m, in Volcano population Rdist(n =
30) = 13436928 and Rdist(n = 90) = 107495424, in Nasima population Rdist(n = 30) =
1353024 and Rdist(n = 90) = 21695488.

Volcano population

n-m m SB
SRS

SB
BAS+m

SBBAS

SB
BAS+m

SB
BAS+m

I(p
BAS+m

)

I(p
BAS

)

I(p
BAS+m

)

I(p
SRS

)
I(p

BAS+m )

30 0 4.54 1 0.07 1.00 0.18 32.83
25 5 2.91 0.64 0.11 2.16 0.39 70.89
20 10 2.00 0.42 0.16 3.15 0.57 103.44
15 15 1.52 0.32 0.21 4.07 0.73 133.52
0 30 1.00 0.22 0.32 5.56 1.00 182.56
90 0 4.43 1.00 0.07 1.00 0.08 36.99
75 15 2.82 0.61 0.11 3.72 0.30 137.51
60 30 1.94 0.40 0.16 5.93 0.48 219.21
45 45 1.55 0.31 0.20 7.93 0.65 293.25
0 90 1.00 0.23 0.37 12.50 1.00 453.00

Nasima population
30 0 5.33 1.00 0.06 1.00 0.18 28.24
25 5 2.91 0.60 0.11 2.21 0.39 62.51
20 10 2.00 0.40 0.16 3.23 0.57 91.27
15 15 1.52 0.30 0.21 4.16 0.74 117.56
0 30 1.00 0.19 0.32 5.56 1.00 159.89
90 0 4.29 1 0.07 1.00 0.09 33.79
75 15 2.73 0.67 0.11 3.63 0.32 122.75
60 30 1.88 0.46 0.16 5.71 0.50 192.94
45 45 1.50 0.37 0.20 7.56 0.66 255.52
0 90 1.00 0.23 0.30 11.11 1.00 384.39
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Table 3. The spatial balance and the entropy of BAS+m in a population of size N = 34×25 =
5184, where sample units are defined as Halton boxes.

The edited Volcano

n-m m SB
SRS

SB
BAS+m

SBBAS

SB
BAS+m

SB
BAS+m

I(p
BAS+m

)

I(p
BAS

)

I(p
BAS+m

)

I(p
SRS

)
I(p

BAS+m )

30 0 5.33 1 0.06 1.00 0.05 8.55
25 5 2.91 0.59 0.11 5.44 0.26 46.51
20 10 2.00 0.39 0.16 9.23 0.43 78.93
15 15 1.52 0.30 0.21 12.74 0.60 108.89
0 30 1.00 0.19 0.32 20.00 1.00 181.86
90 0 4.43 1.00 0.07 1.00 0.02 8.55
75 15 3.10 0.66 0.10 12.71 0.24 108.71
60 30 1.94 0.43 0.16 22.23 0.42 190.06
45 45 1.55 0.34 0.20 30.85 0.58 263.74
0 90 1.00 0.23 0.31 50.0 1.00 450.87

4 Discussion

We have suggested the BAS+m sampling design, to overcome the problem
in calculating unbiased estimators for some parameters like variance, covari-
ance, correlation coefficients and regression coefficient, and to improve the
entropy of the design.

We also introduced a close form for calculating the first and the second
order inclusion probabilities, when sample units in a unit square population
are set as generated Halton boxes. Since box sides are set as [0, 1/2J1 ] ×
[0, 1/3J2 ] and values J1, J2 can be determined arbitrary, setting sample units
as Halton boxes is not a cumbersome requirement. Defining sample units,
as arbitrary equal rectangular shapes, is used conventionally in many fields
of research such as agriculture, environment, mining, oil exploration, etc. In
future works by taking into account efficiency, entropy and spatial balance,
it can be seek to find the optimal m.
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Appendix

If in a BAS sample of size n, sample units are set as the given Halton boxes,
the inclusion probabilities for units (boxes) ui and uj are given as follows:

πij = (
n− |i− j|

N
)I{0,1,2,...,n−1}(|i− j|)

+ (
n−N + |i− j|

N
)I{N−n+1,N−n+2,...,N−1}(|i− j|),

Proof. The quasi-periodic property of the Halton sequence is that for any
point Xk, the points Xk+N , Xk+2N , ... will be located in the same Halton box
(defined in 1) including Xk, where N is the number of boxes. The property
means consecutive points from the sequence cyclically visit the boxes in a
specific order determined by the mod N values (Price and Price (2012);
Halton (1960)) .

Consider a finite population of size N and let U = {u1, u2, . . . , uN} be
the set of units , where ui is corresponding to ith Halton box. Since the first
box is selected randomly with equal chance and the next boxes are selected
consecutively, then the number of BAS samples with size n in this case is
equal to N , that can be shown as follows:

s1 = { u1, u2, ..., un }
s2 = { u2, u3, ..., un−1 }
...
sN−n+1 = {uN−n+1 , uN−n+2 , . . . , uN }
sN−n+2 = {uN−n+2 , uN−n+3 , . . . , uN , u1}
...
sN = {uN , u1 , ..., un−2}

therefor the second order inclusion probability, πij , is given as follows:

πij = (
n− |i− j|

N
)I{0,1,2,...,n−1}(|i− j|)

+ (
n−N + |i− j|

N
)I{N−n+1,N−n+2,...,N−1}(|i− j|)
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We have proven that
N∑

i̸=j=1

πij = n(n − 1) is satisfied for πij from the

formula (2).

Proof. Clearly, it can be written as:
N∑

i<j=1

πij =
N∑

i<j=1

[
(
n − |i − j|

N
)I{0,1,2,...,n−1}(|i − j|) + (

n − N + |i − j|
N

)I{N−n+1,...,N−1}(|i − j|)
]

=
N∑

n−(j−i)>0

n − (j − i)

N
+

N∑
(n−N)+(j−i)>0

(n − N) + (j − i)

N

=

N−(n−1)∑
i=1

i+(n−1)∑
j=i+1

n − (j − i)

N
+

N−1∑
i=N−(n−2)

N∑
j=i+1

n − (j − i)

N

+
N∑

(n−N)+(j−i)>0

(n − N) + (j − i)

N
*

The first term of equation * is simplified as follows:
N−(n−1)∑

i=1

i+(n−1)∑
j=i+1

n − (j − i)

N
=

N−(n−1)∑
i=1

(n − 1) + (n − 2) + ... + (n − (n − 1))

N

=

N−(n−1)∑
i=1

1 + 2 + ... + (n − 1))

N
= (

N − (n − 1)

N
)(

n(n − 1)

2
)

=
n(n − 1)

2
−

n(n − 1)2

2N
A

The second term of equation * is simplified as follows:
N−1∑

i=N−(n−2)

N∑
j=i+1

n − (j − i)

N
=

N−1)∑
i=N−(n−2)

(n − 1) + (n − 2) + ... + (n − (N − i))

N

=

N−1)∑
i=N−(n−2)

(N − i)n − (1 + 2 + ... + N − i)

N

=

N−1)∑
i=N−(n−2)

(N − i)n

N
−

N−1)∑
i=N−(n−2)

(N − i)(N − i + 1)

N

=
n

N
[1 + 2 + ... + (n − 2)] −

1

2N
[1 × 2 + 2 × 3 + ... + (n − 2) × (n − 1)]

=
n

N

[
(n − 1)(n − 2)

2
]

]
−

1

2N

n−2∑
i=1

i(i − 1)

=
n

N

[
(n − 1)(n − 2)

2
]

]
−

1

2N

[
(n − 2)(n − 1)(2(n − 2) + 1)

6
+

(n − 2)(n − 1)

2

]
=

n(n − 1)(n − 2)

3N
B
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The last term of equation * is simplified as follows:
N∑

(n−N)+(j−i)>0

(n − N) + (j − i)

N
=

N−1∑
i=1

(1 + 2 + ... + (n − i))

N

=
1

N

n−1∑
i=1

(n − i)(n − i + 1)

2

=
1

2N

n−1∑
i=1

i(i + 1) =
1

2N

[
n(n − 1)(2(n − 1) + 1)

6
+

n(n − 1)

2

]

=
n(n − 1)(n + 1)

6N
C

By substituting the obtained A, B and C in equation ∗, the
N∑

i ̸=j=1

πij can be

written as:
N∑

i<j=1

πij =
n(n − 1)

2
−

n(n − 1)2

2N
+

n(n − 1)(n − 2)

3N
+

n(n − 1)(n + 1)

6N

=
n(n − 1)

2

⇒
N∑

i ̸=j=1

πij = 2
N∑

i<j=1

πij = n(n − 1)
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