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Abstract. This paper considers parameter estimations in Lomax distribu-
tion under progressive type-II censoring with random removals, assuming
that the number of units removed at each failure time has a binomial distri-
bution. The maximum likelihood estimators (MLEs) are derived using the
expectation-maximization (EM) algorithm. The Bayes estimates of the pa-
rameters are obtained using both the squared error and the asymmetric loss
functions based on the Lindley approximation. We compare the performance
of our procedures using a simulation study and real data.
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1 Introduction
Lomax distribution was first introduced in the literature of Lomax (1954)
for modeling of business failure data. It has also been applied in areas of
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114 Statistical Inference for the Lomax Distribution

statistical modeling such as economics and reliability theory. In the sta-
tistical literature, many works have been devoted to Lomax distribution.
Several authors have estimated the parameters of Lomax distribution using
both classical and Bayesian techniques. The scheme of progressive type-II
censored sampling is an important scheme in lifetime experiments that al-
lows the removal of surviving experimental units before the termination of
the test. For more information on the subject of progressively censoring, see
Balakrishnan (2000) and Balakrishnan (2007). Under these assumptions, n
units are placed on test at time zero, and m failures are going to be observed.
When the first failure is observed, r1 surviving units is randomly selected and
removed from the experiment, and so on. Finally, this process stops at the
time of the mth failure and remaining rm = n − r1 − r2 − · · · − rm−1 − m
surviving units are all removed. Note that, in this scheme, r1, r2, · · · , rm are
all prefixed. However, in some practical situations, these numbers may be
random, see Yuen (1996). In some reliability experiments, an experimenter
may decide that it is inappropriate or too dangerous to carry on the test-
ing on some of the tested units even though these units have not failed. In
these cases, the removal pattern at each failure is random, and researchers
choose a distribution for removing the number of unfailed units independent
of the lifetime distribution. They discussed classical and Bayesian estimation
problems on different distributions. Statistical inference on the parameters of
some distributions under progressive type-II censoring with random removals
and with binomial removals has been investigated by several authors, see for
example Dey (2014), Tse et al. (2000), Wu (2001), Wu et al. (2007),
and Mubarak (2011). Asgharzadeh (2011) derived estimation of the scale
parameter of the Lomax distribution under progressive censoring. Zaman
et al. (2020) considered a partially accelerated life test for the Lomax dis-
tribution under the progressive type-II censoring scheme and obtained the
MLE of the scale parameter. Helu et al. (2015) considered estimation of
the parameter of the Lomax distribution under progressive censoring using
the EM algorithm. In this paper, we consider progressively type-II censored
data from the Lomax distribution with binomial removals. We assume that
any testing unit being dropped out from the life test is independent of the
others but with the same probability p. The MLEs for the parameters using
the EM are obtained and also using the sampling distribution of the MLEs,
the confidence intervals for the parameters are presented in Section 2. In
Section 3, Lindley’s approximation is used to obtain the Bayes estimates of
the parameters under the squared error, LINEX, and entropy loss functions.
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R. Zaman and P. Nasiri 115

Two-sided Bayes probability and credible intervals for the parameters are
also used discussed. To compare MLEs and Bayes estimators, Monte Carlo
simulations are conducted in Section 4, and finally, in Section 5 a real dataset
is analyzed for illustrative purposes.

2 Estimation of Parameters
Suppose that the random variable X has a Lomax distribution with shape
parameter α and scale parameter β, with the probability density function
(pdf) and the cumulative distribution function (CDF) given by

fX(x) =αβ(1 + βx)−(α+1), x > 0, α > 0, β > 0,

FX(x) =1− (1 + βx)−α, x > 0. (1)

LetX = (X1:m:n, X2:m:n, ..., Xm:m:n) be a progressively type-II right censored
sample from a life test of size m from a sample of size n, and (R1, R2, ..., Rm)
be the progressive censoring scheme where lifetimes have a Lomax distribu-
tion with pdf as given by (1). In this paper, the shape parameter is assumed
to be constant. Then, the likelihood function based on this progressively
type-II censored sample is

L(β) = k

m∏
i=1

f(xi:m:n, β)[1− F (xi:m:n, β)]
ri , (2)

where k = n(n−1− r1)(n−2− r1− r2) · · · (n−m+1− r1− r2−· · ·− rm−1).
Substituting (1), in (2), for a progressive type-II with predetermined number
of removals R = r, the conditional likelihood (L) and log-likelihood function
(l) are, respectively,

L(β | R = r) = kαmβm
m∏
i=1

(1 + βxi)
−((ri+1)α+1), (3)

l(β | R = r) = log k+m logα+m log β−
m∑
i=1

((ri+1)α+1) log(1+βxi). (4)

Suppose that an individual unit is removed from the life test. As we
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know that, it is independent of other units but with the same probability p.
Then, the number of units removed at each failure time follows a binomial
distribution such that

P (R1 = r1) =

(
n−m

r1

)
pr1(1− p)n−m−r1 , r1 = 0, · · · , n−m, (5)

and

P (Ri = ri | Ri−1 = ri−1, · · · , R1 = r1) =

(
n−m−

∑i−1
k=1 rk

ri

)
×pri(1− p)n−m−

∑i
k=1 rk , (6)

where ri = 0, · · · , n−m−
∑i−1

k=1 rk, i = 2, 3, · · · ,m− 1.
Moreover, suppose that Ri is independent of Xi. Then, the joint likelihood
function X = (X1, X2, ..., Xm) and R = (R1, R2, ..., Rm) can be expressed as

L(β, p;x, r) = L(β, x | R = r)P (R = r), (7)

where

P (R = r) = P (Rm−1 = rm−1 | Rm−2 = rm−2, · · · , R1 = r1)

· · · P (R2 = r2 | R1 = r1)P (R1 = r1). (8)

Substituting (5) and (6) in (8), we have

P (R = r) =
(n−m)!∏m−1

i=1 ri!(n−m−
∑m−1

i=1 ri)!

× p
∑m−1

i=1 ri(1− p)(m−1)(n−m)−
∑m−1

i=1 (m−i)ri . (9)

Also, substituting (4) and (8) in (7), then the likelihood function can be
written

L(β, p;x, r) = AL1(β)L2(p), (10)

where
A =

kαm(n−m)!∏m−1
i=1 ri!(n−m−

∑m−1
i=1 ri)!

,
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R. Zaman and P. Nasiri 117

L1(β) = βm
m∏
i=1

(1 + βxi)
−(ri+1)α−1, (11)

L2(p) = p
∑m−1

i=1 ri(1− p)(m−1)(n−m)−
∑m−1

i=1 (m−i)ri . (12)

In the following, the maximum likelihood estimation of the parameters β and
p are obtained based on progressively type-II censored sample with binomial
removals.
Due to the L1(β) does not depend on the parameter p, so the MLE of β can
be derived from (11) directly. The log-likelihood function L1 is

l1(β) = l1(β | R = r) = m log β −
m∑
i=1

((ri + 1)α+ 1) log(1 + βxi). (13)

In fact, the MLE of β can be obtained from the following equation

∂l1(β)

∂β
=

m

β
−

m∑
i=1

((ri + 1)α+ 1)xi
1 + βxi

= 0. (14)

The recent equation is nonlinear and does not have an explicit answer. Then,
equation (14) must be solved by numerical methods to obtain the MLE of β.

The EM algorithm was introduced by Dempster et al. (1977) to handle
any missing or incomplete data situation; readers are referred to a book
by Mclachlan (1997) for a detailed discussion on the EM algorithm and
its applications. Let X = (X1:m:n, X2:m:n, · · · , Xm:m:n) be an incomplete
observed data and Z = (Z1, Z2, · · · , Zm) with zj = (zj1, zj2, · · · , zjRj ), j =
1, · · · ,m, be the censored data. We consider the censored data as missing
data. The combination of (X,Z) = Y forms the complete data set. Log-
likelihood function based on Y is

lC(Y ;β) ∝ nlog(αβ)− (α+1)

m∑
j=1

log(1+βxj)− (α+1)

m∑
j=1

Rj∑
k=1

log(1+βzjk).

(15)
Then, the MLE of β for complete sample of Y can be obtained from the
following equation

∂lC(Y ;β)

∂β
=

n

β
−

m∑
j=1

(α+ 1)xj
(1 + βxj)

−
m∑
j=1

Rj∑
k=1

(α+ 1)zjk
(1 + βzjk)

= 0. (16)
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118 Statistical Inference for the Lomax Distribution

The EM algorithm has two steps. In the E-step (expectation step), the
expected value of the complete log-likelihood lC(Y ;β) has been calculated
with respect to the conditional distribution of Z given the observed data X
and the current estimate of the parameter β(k−1) at the (k − 1)th iteration.

n

β
−

m∑
j=1

(α+ 1)xj
(1 + βxj)

− (α+ 1)
m∑
j=1

Rj∑
k=1

A(β) = 0, (17)

where

A(β) = E

(
zjk

(1 + βzjk)
| Zjk > yj

)
,

= α(1 + βxj)
α

∫ ∞

xj

β
zjk

(1 + βzjk)
(

1

1 + βzjk
)α+1dzj ,

=
αβxj + (1 + βxj)(1 + α)

β(1 + α)(1 + βxj)
. (18)

In the M-step (maximization step), EM algorithm will maximize A(β) with
respect to β to give an update value β(k) until convergence with an acceptable
error.

∂lC(Y ;β)

∂β
=

n

β(k+1)
−

m∑
j=1

(α+ 1)xj

1 + β(k+1)xj
−

m∑
j=1

RjA(β
k) = 0, (19)

β̂EM =
n∑m

j=1
(α+1)xj

1+β(k+1)xj
+
∑m

j=1RjA(βk)
. (20)

On the other hand, L2(p) is only a function based on p, then from (12)
is used to obtain MLE of p. The log-likelihood function of L2 is

logL2(p) =

m−1∑
i=1

ri log p+

(
(m− 1)(n−m)−

m−1∑
i=1

(m− i)ri

)
log(1−p). (21)

Thus, the MLE of p be found immediately

p̂ =

∑m−1
i=1 ri

(m− 1)(n−m)−
∑m−1

i=1 (m− i− 1)ri
. (22)
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2.1 Approximate MLE for β

Suppose that the random variable of X has Lomax distribution with parame-
ters α and β. It is easy to show that Y = βX also has the Lomax distribution
with shape parameter α and scale parameter 1, (Y ∼ Lomax(α, 1)). Then
the pdf and the cdf of Y are

fY (y) = α(1 + y)−(1+α), y > 0,

and
FY (y) = 1− (1 + y)−α, y > 0,

respectively. Using the transformation xi =
yi
β and n = m+

∑m
i=1 ri, equation

in (14) may be rewritten as

∂l1(β)

∂β
=

m

β
−

m∑
i=1

((ri + 1)α+ 1)yiβ
1 + yi

,

=
m

β
− 1

β

m∑
i=1

((ri + 1)α+ 1)(1− (1− F (yi)))
1
α ,

=
−nα

β
− 1

β

m∑
i=1

((ri + 1)α+ 1)(1− F (yi))
1
α ,

= 0. (23)

For estimation of β, let us consider g(yi) = (1−F (yi))
1
α . Then, for approxi-

mating the term g(yi) by expanding it in a Taylor series around E(Yi:m:n) =
νi:m:n. Balakrishnan (2000) showed that if Ui:m:n be the ith progressively
type-II censored order statistics from U(0, 1), then F (Yi:m:n)

d
= Ui:m:n. There-

fore Yi:m:n = dF−1(Ui:m:n) and νi:m:n = E(Yi:m:n) ≈ F−1(ηi:m:n), where
ηi:m:n = E(Ui:m:n).
Balakrishnan (2000) showed that

ηi:m:n = 1−
m∏

j=m−i+1

j +Rm−j+1 + ...+Rm

j + 1 +Rm−j+1 + ...+Rm
, i = 1, ...,m.

Moreover, for the Lomax(α, 1) distribution, we have

F−1(u) = (1− u)−
1
α − 1.
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120 Statistical Inference for the Lomax Distribution

So νi:m:n can be approximated with (1− ηi:m:n)
− 1

α − 1.
We extended the function g(yi) around the point νi:m:n and keep only the
first two terms,

g(yi) ≈ g(νi:m:n) + (yi − νi:m:n)g
′(νi:m:n),

= γi + yiδi, (24)

where

γi = g(νi:m:n)− νi:m:ng
′(νi:m:n) =

1 + 2νi:m:n

(1 + νi:m:n)2
, i = 1, ...,m, (25)

and
δi = g′(νi:m:n) = − 1

(1 + νi:m:n)2
, i = 1, ...,m. (26)

Using the equation (25), the equation (23) can be rewritten as

∂l1(β)

∂β
=

−nα

β
− 1

β

m∑
i=1

((ri + 1)α+ 1)(γi + yiδi) = 0. (27)

Therefore

−nα−
m∑
i=1

((ri + 1)α+ 1)γi − β

m∑
i=1

δi((ri + 1)α+ 1)xi = 0. (28)

And finally by solving the equation (28) for β, we have an approximate of
MLE of β as follows

β̂AML = −
nα+

∑m
i=1((ri + 1)α+ 1)γi∑m

i=1 δi((ri + 1)α+ 1)xi
. (29)

2.2 Interval Estimation

In this subsection, we are going to derive the approximate confidence intervals
for the parameters ξ = (β, p) based on the asymptotic distributions of the
MLE. It is known that the asymptotic distribution of the MLE ξ is (ξ̂−ξ) →
N2(0, I

−1(ξ)), where I−1(ξ), the inverse of the observed information matrix
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of the parameters ξ = (β, p) may be written as (see Lawless (2011))

I−1(ξ) =

[
−∂2 logL(β,p)

∂β2 −∂2 logL(β,p)
∂β∂p

−∂2 logL(β,p)
∂p∂β −∂2 logL(β,p)

∂p2

]−1

(β,p)=(β̂,p̂)

=

[
Var(β̂) cov(β̂, p̂)

cov(p̂, β̂) Var(p̂)

]

where

∂2 logL(β, p)

∂β2
=

−m

β2
−

m∑
i=1

((ri + 1)α+ 1)x2i
(1 + βxi)2

,

∂2 logL(β, p)

∂p2
=

−
∑m−1

i=1 ri
p2

−
(m− 1)(n−m)−

∑m−1
i=1 (m− i)ri

(1− p)2
,

∂2 logL(β, p)

∂β∂p
=

∂2 logL(β, p)

∂p∂β
= 0.

The approximate 100(1− τ)% confidence intervals of the parameters β and
p are derived, respectively,

β̂AML ± z τ
2

√
var(β̂),

p̂AML ± z τ
2

√
var(p̂).

where z τ
2
is the upper τ

2 th percentile of the standard normal distribution.

3 Bayes Estimation

In this section, we want to derive the point and interval estimates of the
parameters β and p based on progressively type-II censored data with bino-
mial removals. We have assumed square error loss (SEL) function, LINEX
(Linear-Exponential) loss function and entropy loss function.

Ls(d(θ), d̂(θ)) = (d̂(θ)− d(θ))2,

LL(d(θ), d̂(θ)) = ec(d̂(θ)−d(θ)) − c(d̂(θ)− d(θ))− 1, c ̸= 0,

LE(d(θ), d̂(θ)) = (
d̂(θ)

d(θ)
)ν − ν log(

d̂(θ)

d(θ)
)− 1, ν ̸= 0,

where d̂(θ) is the estimation of parameter of d(θ).
It is known that the Bayes estimator of parameter under SEL is mean of

J. Statist. Res. Iran 17 (2020): 113–134



122 Statistical Inference for the Lomax Distribution

posterior distribution and it under LINEX and entropy loss functions is,
respectively, (see Zellner (1986))

d̂L(θ) = −1

c
ln{Eθ(e

−cd(θ) | x)},

d̂E(θ) = {Eθ(d
−ν(θ) | x)}−

1
ν .

The prior density of the parameters β and p are considered independent
priors as

π1(β) ∝ βr−1e−γβ, β, r, γ > 0,

π1(p) ∝ pa−1(1− p)b−1, 0 < p < 1, a, b > 0. (30)

Then the join prior distribution for β and p is given by

π(β, p) ∝ βr−1e−γβpa−1(1− p)b−1. (31)

Using the likelihood function (10) and the join prior distribution (31), the
posterior density of ξ = (β, p) is

π(β, p | x, r) =
βm+r−1e−γβ

∏m
i=1(1 + βxi)

−(ri+1)α−1∫∞
0 βm+r−1e−γβ

∏m
i=1(1 + βxi)−(ri+1)α−1dβ

× pa+
∑m−1

i=1 ri−1(1− p)b+(m−1)(n−m)−
∑m−1

i=1 (m−i)ri∫ 1
0 pa+

∑m−1
i=1 ri−1(1− p)b+(m−1)(n−m)−

∑m−1
i=1 (m−i)ridp

.(32)

Using the equation in (32), the marginal posterior pdfs of p and β are re-
spectively,

π1(p | x, r) = pa+
∑m−1

i=1 ri−1(1− p)b+(m−1)(n−m)−
∑m−1

i=1 (m−i)ri

B(a+
∑m−1

i=1 ri, b+ (m− 1)(n−m)−
∑m−1

i=1 (m− i)ri + 1)
,

(33)

π2(β | x, r) =
βm+r−1e−γβ

∏m
i=1(1 + βxi)

−t∏m
i=1

∑∞
k=0

(
k+t−1

k

)
xki Γ(r + k)(mγ )

r+k
, (34)

where B is beta function and t = (ri + 1)α− 1.
The Bayes estimator of a function U = U(θ) of the parameter θ, under
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squared error loss function is the posterior mean

ÛBS = E(U | X) =

∫
uπ(θ | x)dθ =

∫
uπ(θ | x)dθ∫
π(θ | x)dθ

.

The Bayes estimator is the ratio of two integrals that cannot be obtained
in a closed-form. The various methods suggested to approximate the ratio
of integrals of the above form, in this paper, Lindley’s approximate method
is used (see Lindley (1980)). This method has been used by many authors
to obtain Bayes estimators of the parameters for some lifetime distributions,
see among others, Howlader (1980), Soliman (2001).
In a two-parameter case, θ = (θ1, θ2), based on Lindley’s approximation, the
approximate Bayes estimation of a function U(θ) = U(θ1, θ2), under the SEL
function, leads to

I(x) = E[U(θ) | X] = U(θ)+
A

2
+ρ1A12+ρ2A21+

1

2
[l30B12+l21C12+l12C21+l03B21],

(35)
can be evaluated as

I(x) = U(θ̂1, θ̂2) +
A

2
+ ρ1A12 + ..., (36)

where

lks =
∂Lk+s

∂θk1∂θ
s
2

, k, s = 0, 1, 2, 3, k + s = 3,

A =

2∑
i=1

2∑
j=1

Uijδij , i, j = 1, 2,

ρi =
∂ρ

∂θi
, Ui =

∂U

∂θi
, Uij =

∂2U

∂θi∂θj
,

Aij = Uiδii + Ujδji,

Bij = (Uiδii + Ujδij)δii,

Cij = 3Uiδiiδij + Uj(δiiδjj + 2δ2ij),

where δij is the (i, j)th element of the inverse of the matrix {−lij = − ∂2l
∂θi∂θj

},
all evaluated at the MLE of parameters.
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124 Statistical Inference for the Lomax Distribution

a) Bayes estimator of p under SEL function is

p̂BS =
a+

∑m−1
1 ri

a+
∑m−1

1 ri + b+ (m− 1)(n−m)−
∑m−1

i=1 (m− i)ri + 1
.

(37)
The posterior risk of the Bayes estimator and the maximum likelihood
estimator of p is obtained as follows

R(p̂B) =
(a+

∑m−1
1 ri)(a+

∑m−1
1 ri + 1)C − (a+

∑m−1
1 ri)

2C2

C2(C + 1)
,

(38)

R(p̂ML) =
(a+

∑m−1
1 ri)(a+

∑m−1
1 ri + 1)

C(C + 1)

− (

∑m−1
i=1 ri

(m− 1)(n−m)−
∑m−1

i=1 (m− i− 1)ri
)2, (39)

where C = a+
∑m−1

1 ri + b+ (m− 1)(n−m)−
∑m−1

i=1 (m− i)ri + 1.

b) Lindley approximation of Bayes estimator of β under SEL function
If U(θ) = β then

U1 =
∂u

∂β
= 1, U11 =

∂2U

∂β∂β
= 0, U12 =

∂2U

∂β∂p
= 0,

U2 =
∂u

∂p
= 0, U21 =

∂2U

∂β∂p
= 0, U22 =

∂2U

∂p∂p
= 0 ⇒ A = 0,

A12 = U1δ11 + U2δ21 = δ11,

A21 = U2δ22 + U1δ12 = δ12,

B12 = (U1δ11 + U2δ12)δ11 = δ211,

B21 = (U2δ22 + U1δ21)δ22 = δ21δ22,

C12 = 3U1δ11δ12 + U2(δ11δ22 + 2δ212) = 3δ11δ12,

C21 = 3U2δ22δ12 + U1(δ22δ11 + 2δ221) = δ11δ22 + 2δ221.

From equation (10) the log-Likelihood function can be obtained as
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l(β, p | R = r) = logA+m log β −
m∑
i=1

((ri + 1)α+ 1) log(1 + βxi)

+

m−1∑
i=1

ri log p+ ((m− 1)(n−m)−
m−1∑
i=1

(m− i)ri) log(1− p).

(40)

Then, we get

l12 =
∂l

∂β∂p2
=

∂l

∂p2

(
m

β
−

m∑
i=1

((ri + 1)α+ 1)xi
1 + βxi

)
= 0,

l21 =
∂l

∂p∂β2
=

∂l

∂β2
(

∑m−1
i=1 ri
p

−
((m− 1)(n−m)−

∑m−1
i=1 (m− i)ri)

1− p
) = 0,

l30 =
∂3l

∂β3
=

2m

β3
−

m∑
i=1

2((ri + 1)α+ 1)x3i
(1 + βxi)3

,

l03 =
∂3l

∂p3
=

2
∑m−1

i=1 ri
p3

−
2((m− 1)(n−m)−

∑m−1
i=1 (m− i)ri)

(1− p)3
,

(−lij)
−1 =

[
1
B1

0

0 1
B2

]
, δ11 =

1

B1
, δ12 = δ21 = 0, δ22 =

1

B2
,

where
B1 =

m

β2
−

m∑
i=1

((ri + 1)α+ 1)x2i
(1 + βxi)2

,

and

B2 =

∑m−1
i=1 ri
p2

+
((m− 1)(n−m)−

∑m−1
i=1 (m− i)ri)

(1− p)2
.

Substituting all the above components in (35), the Bayes estimation of
β under the SEL function, becomes

β̂Lindley
BS = β +R1, (41)
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where R1 = ρ1δ11 +
1
2 l30δ

2
11 and ρ1 =

r−1
β − γ.

The posterior risk of the Bayes estimator and the maximum likelihood
estimator of β are obtained as follows

R(β̂B) = [1 + (2(r − 1)− 2β̂Bγ]δ11

+
(2m
β̂2
B

− β̂B

m∑
1

((ri + 1)α+ 1)
2x3i

(1 + β̂Bxi)3

)
δ211, (42)

R(β̂ML) = [1 + (2(r − 1)− 2β̂MLγ]δ11

+
( 2m

β̂2
ML

− β̂ML

m∑
1

((ri + 1)α+ 1)
2x3i

(1 + β̂Bxi)3

)
δ211.(43)

c) Lindley approximation of Bayes estimator of β under Linex loss func-
tion
If U(θ) = e−cβ then

U1 = −ce−cβ , U11 = c2e−cβ , U2 = U21 = U12 = U22 = 0 ⇒ A = c2e−cβδ11,

A12 = −ce−cβδ11, A21 = B21 = 0, B12 = −ce−cβδ211, C12 = −3ce−cβδ11,

C21 = −ce−cβδ11δ22.

Substituting in (35),

β̂Lindley
BL = β − 1

c
log

{
1 +

1

2
c2δ11 − cR1

}
. (44)

d) Lindley approximation of Bayes estimator of p under Linex loss func-
tion.
By substituting U(θ) = e−cp in (35), similar to before mentioned equa-
tions it can be obtained

p̂LindleyBL = p− 1

c
log

{
1 +

1

2
c2δ22 − cR2

}
, (45)

where R2 = ρ2δ22 +
1
2 l03δ

2
22 and ρ2 =

a−1
p − b−1

1−p .

e) Lindley approximation of Bayes estimator of β under entropy loss func-

© 2020, SRTC Iran



R. Zaman and P. Nasiri 127

tion
If U(θ) = β−ν then

U1 = −νβ−ν−1, U11 = ν(ν + 1)β−ν−2, U2 = U21 = U12 = U22 = 0,

A = ν(ν + 1)β−ν−2δ11,

A12 = −νβ−ν−1δ11, A21 = B21 = C12 = 0, B12 = −νβ−ν−1δ211,

C21 = −νβ−ν−1δ11δ22.

Substituting in (35),

β̂Lindley
BE = β

{
1 +

1

2
ν(ν + 1)β−2δ11 − νβ−1R1

}− 1
ν

. (46)

f) Lindley approximation of Bayes estimator of p under entropy loss func-
tion

p̂LindleyBE = p

{
1 +

1

2
ν(ν + 1)p−2δ22 − νp−1R2

}− 1
ν

. (47)

Note that (41-47) are to be evaluated at MLE’s (β̂, p̂).

3.1 Two-sided Bayes Probability Interval

A symmetric 100(1 − τ)% two-sided Bayes probability interval (TBPI) of p
using the marginal posterior distributions of p and β, are denoted by [pL, pU ]
and [βL, βU ] which can be obtained by solving the following equations∫ pL

0
π1(p | x, r) =

τ

2
,

∫ 1

pU

π1(p | x, r) = τ

2
,∫ βL

0
π2(β | x, r) =

τ

2
,

∫ ∞

βU

π2(β | x, r) = τ

2
. (48)

4 Simulation Study

In this section, we present a Monte Carlo simulation study to verify how our
methods work in practice. We have considered different sample sizes; n =
30, 40, 50, 100, and different effective sample sizes; m = 15, 20, 25, 35, 40, 65, 85
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Table 1. Estimation of p, α = 0.5, β = 0.1, p = 0.4

n m MLE Lindley
p̂ RMSE(p̂) CI p̂BS RMSE(p̂BS) p̂BL RMSE(p̂BL) TBPI

30 15 0.4216 0.1066 (0.2027, 0.6405) 0.4304 0.0920 0.4257 0.0895 (0.3333, 0.7171)

30 20 0.4159 0.0853 (0.2565, 0.5753) 0.4234 0.0789 0.4201 0.0772 (0.2632, 0.5549)

40 25 0.4153 0.0856 (0.2476, 0.5829) 0.4228 0.0791 0.4195 0.0775 (0.3131, 0.6162)

50 25 0.4167 0.0862 (0.2451, 0.5883) 0.4240 0.0796 0.4208 0.0779 (0.3242, 0.6487)

50 35 0.4112 0.0647 (0.2808, 0.5417) 0.4164 0.0623 0.4145 0.0615 (0.3530, 0.5959)

100 40 0.4175 0.0871 (0.2531, 0.5820) 0.4247 0.0805 0.4215 0.0788 (0.2862, 0.5917)

100 65 0.4075 0.0550 (0.3097, 0.5053) 0.4115 0.0537 0.4101 0.0531 (0.2590, 0.4380)

100 85 0.4045 0.0413 (0.3251, 0.4839) 0.4069 0.0408 0.4061 0.0405 (0.3336, 0.4898)

with a = b = γ = 2, c = r = 1 using progressively type-II censoring un-
der binomial removal scheme. With no loss of generality, we set α = 0.5,
β = 0.1 and p = 0.4. Using binomial removal technique, for a given n and
m different samples were generated. The MLEs and Bayes estimates of the
unknown parameters were obtained by the methods proposed in sections 2
and 3. A comparison between the performance of estimates was done based
on the root mean square error (RMSE) of the estimates under 10000 replica-
tions. In addition, the 95% confidence intervals (CIs), and the 95% two-sided
Bayesian probability intervals (TBPIs) based on the same 10000 replications
were computed too. We have used R-software for simulation studies. Tables
1 - 2 show the summarized results of simulation study. From these Tables,
it is concluded that with increasing sample size, the RMSE decreases. The
results show the better performance of Bayes estimates as a comparison to
MLEs. Figure 1-a presents the results of RMSEs for parameter β for dif-
ferent sample sizes, and Figure 1-b shows the same results for various m at
n = 100. In general, the lengths of TBPI are shorter than the lengths of CI
(see Table 3). The posterior risk of the MLE and the Bayes estimates of β
and p are computed and are reported in Table 4.

5 Analysis of Real Data

We apply the procedures developed in this paper to a real-life data set. We
present data analysis of the insulating fluid data presented by Nelson (1982).
The data represent the times (in minutes) to the breakdown of an insulating
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Table 2. Estimation of β, α = 0.5, β = 0.1, p = 0.4

n m MLE Lindley
β̂AML RMSE(β̂AML) β̂EM RMSE(β̂EM ) β̂BS RMSE(β̂BS) β̂BL RMSE(β̂BL) β̂BE RMSE(β̂BE)

30 15 0.0952 0.0575 0.0662 0.0524 0.0747 0.0515 0.0742 0.0511 0.0642 0.0437

30 20 0.0950 0.0499 0.0737 0.0464 0.0834 0.0424 0.0830 0.0461 0.0825 0.0457

40 25 0.0957 0.0438 0.0716 0.0430 0.0787 0.0414 0.0784 0.0412 0.0707 0.0319

50 25 0.0964 0.0433 0.0661 0.0401 0.0718 0.0332 0.0715 0.0328 0.0634 0.0292

50 35 0.0973 0.0432 0.0764 0.0377 0.0826 0.0324 0.0824 0.0321 0.0751 0.0288

100 40 0.0986 0.0358 0.0626 0.0314 0.0659 0.0228 0.0658 0.0227 0.0608 0.0211

100 65 0.0995 0.0282 0.0745 0.0232 0.0779 0.0223 0.0777 0.0222 0.0735 0.0209

100 85 0.0999 0.0248 0.0876 0.0217 0.0914 0.0214 0.0913 0.0212 0.0868 0.0201

Figure 1. a) the RMSE of β̂ for different sample sizes n, b) the RMSE of β̂ for different
effective sample sizes m at n=100.

Table 3. Interval estimation of β, α = 0.5, β = 0.1, p = 0.4

n m CI TBPI

30 15 (0.0048, 0.1427) (0.0523, 0.1031)

30 20 (0.0142, 0.1182) (0.0591, 0.1011)

40 25 (0.0243, 0.1188) (0.0964, 0.2436)

50 25 (0.0286, 0.1242) (0.0773, 0.1257)

50 35 (0.0257, 0.1063) (0.0759, 0.1186)

100 40 (0.0257, 0.1094) (0.0902, 0.1435)

100 65 (0.0497, 0.1254) (0.0811, 0.1211)

100 85 (0.0401, 0.1091) (0.0826, 0.1164)
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Table 4. posterior risk of p and β, α = 0.5, β = 0.1, p = 0.4

n m R(p̂ML) R(p̂BS) R(β̂ML) R(β̂BS) R(β̂BL)

20 15 0.0836 0.0476 0.00548 0.0054 0.0014

30 15 0.0436 0.0071 0.0049 0.0044 0.00098

30 20 0.0291 0.0089 0.0033 0.0030 0.00073

40 25 0.0286 0.0050 0.0024 0.0021 0.00063

50 25 0.0281 0.0024 0.0020 0.0018 0.0005

50 35 0.0172 0.0022 0.0019 0.0015 0.00011

Table 5. The goodness-of-fit test results for the insulating fluid data
p KSstatistic p− V alue

0.4 0.2308 0.8978

fluid between electrodes recorded at a Voltage of 34 kV. As indicated in Nel-
son (1982), the times to break down insulating fluid at these voltages are an
exponential distribution. Awwad et al. (2015) analyzed the data assuming
the Weibull distribution.
Here, we aim to discriminate among Lomax distribution and choose the best-
preferred model for fitting this data set. We are interested to analyze this
data set from the perspective of progressive type-II censoring using a bino-
mial removal scheme. Our analysis is performed on the data generated from
this data set with p = 0.4, m = 40. Figure 2 shows the plots of the QQ-plot,
histogram, and the empirical CDF for real data. Table 5 summarized the
goodness-of-fit test results from Kolmogorov-Smirnov (KS) test for the insu-
lating fluid data. The results indicate that the Lomax distribution provides
a quite reasonable fit for this censoring scheme.
The posterior risk of p and β and confidence intervals for m = 40 and m = 50
are presented in Table 6 and Table 7, respectively.

Table 6. Data analysis results of the insulating fluid data for m = 40

p R R(p̂) CIp R(p̂BS) R(p̂BL) TBPI

p = 0.4 R = c(8, 6, 4, 1, 0, 1, 0∗34) 0.0072 (0.2705, 0.5458) 0.0053 0.0029 (0.2266, 0.440)

R(β̂) CIβ R(β̂BS) R(β̂BL) TBPI

0.01007 (0.1934, 0.6329) 0.0079 0.00009 (0.4919, 0.6742)
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Table 7. Data analysis result of the insulating fluid data for m = 50
p R R(p̂) CIp R(p̂BS) R(p̂BL) TBPI

p = 0.4 R = c(2, 5, 2, 0, 1, 0∗45) 0.0012 (0.2321, 0.6373) 0.0019 0.00084 (0.2741, 0.5683)

R(β̂) CIβ R(β̂BS) R(β̂BL) TBPI

0.0054 (0.2832, 0.6221) 0.0015 0.00001 (0.5534, 0.7338)

Figure 2. a) Q-Q plot, b) Histogram of real data, c) Empirical CDF
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6 Conclusions
In progressive type-II censoring, during the experiment with the occurrence
of each failure, numbers of test units are removed randomly until the number
of failures (m) is reached. In this article, ML and Bayes estimations of the
model parameters of the Lomax distribution were studied under progressive
type-II censored data with binomial removals. The EM algorithm was used
in estimating the scale parameter because the normal equations were non-
linear. In addition, the asymptotic confidence intervals of them are obtained.
The simulation results show that the RMSE of the EM method is less than
the RMSE of the AML for the β parameter. Moreover, between Bayesian
estimations, Bayes estimation with entropy loss function shows less RMSE.
Finally, the decrease of the RMSE and the length of confidence intervals with
the increase of n and m

n is confirmed.
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