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Abstract. Covariance functions and variograms play a fundamental role in
exploratory analysis and statistical modelling of spatial and spatio-temporal
datasets. In this paper, we construct a new class of spatial covariance func-
tions using the Fourier transform of some higher-order kernels. Moreover,
we extend this class of spatial covariance functions to the spatio-temporal
setting using the idea used in Ma (2003).
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1 Introduction
Suppose that {Z(u);u ∈ D ⊂ Rd} is a spatial random process observed at n
fixed locations u1, . . . , un. In most practical applications, it is assumed that
d = 2 or 3. In spatial data analysis, the main goal is usually to optimally
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predict unobserved parts of the process based on the observations. The most
important ingredient to achieve this goal is an appropriate model that pro-
vides information about how the observations co-vary with respect to each
other in space. In other words, for optimal prediction we need a suitable
covariance or variogram model. The variogram is a suitable tool for describ-
ing the degree of spatial dependence of a spatial random field or stochastic
process Z(.). Thus, a fundamental concept for making inferences about the
stochastic process under study is a covariance or variogram function, and a
new class of models is a welcome contribution to the analysis of spatial and
spatio-temporal data.

We now review a few important concepts of spatial statistics. Throughout
the paper, we assume that the spatial process Z(·) satisfies the regularity
condition, i.e., Var[Z(u)] < ∞, for all u ∈ D, which implies that the first
two moments exist. By this assumption, at each location point u in D we
can define the mean function as

µ(u) = E[Z(u)]

and for every two location points u1 and u2 in D, the covariance and the
semivariogram functions are respectively defined as

C(u1, u2) = Cov[Z(u1), Z(u2)]

and
γ(u1, u2) =

1

2
Var[Z(u1)− Z(u2)],

provided that they exist. The variogram is twice of the semivariogram. If
the spatial process has a constant mean µ, the semivariogram corresponds
to the expected value for the quadratic increase of the values between the
locations u1 and u2 (Wackernagel (2003)), i.e.,

γ(u1, u2) =
1

2
E[Z(u1)− Z(u2)]

2.

We also assume that the process {Z(u)} is second-order stationary, meaning
that the mean function is constant and the covariance function depends on
the difference between two distinct points only, i.e., for some function C0,

C(u1, u2) = C0(u1 − u2).
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The function C0 is a valid covariance function if it is even and satisfies
the positive definiteness condition. That is, for any u1, . . . , um and reals
a1, a2, . . . , am, and any positive integer m, C0 must satisfy

m∑
i=1

m∑
j=1

aiajC0(ui − uj) ≥ 0.

For a continuous covariance function C0 evaluated at spatial lag h = ui − uj
this is equivalent to the Bochner’s theorem, which states that C0 is positive
definite if and only if it can be represented as

C0(h) =

∫
eih

TωdF (ω),

where F is a non-decreasing, right continuous, and bounded real-valued func-
tion called the spectral measure of C0(h) (Ripley (1981); Lindgren (2012);
Finkenstadt et al. (2007)) and hT is the transpose of h. If F is absolutely
continuous with respect to the Lebesgue measure, then dF (ω) = f(ω)dω
and f(ω) is called the spectral density. Therefore for any non-decreasing,
continuous, and bounded real-valued function F , the covariance function C0

is its characteristic function.

There is another type of stationarity, called intrinsic stationarity, which is
based on the variogram, and it is more general than second-order stationarity
since there are processes for which the variogram is well defined but the
covariance is not. The process Z(.) is said to be intrinsically stationary, if
its mean function is constant and the variogram depends only on the spatial
distances u1−u2 for every u1, u2 ∈ Rd. The corresponding semivariogram for
some function γ0 is denoted by γ0(u) and said to be an intrinsically stationary
semivariogram. If the process Z(.) is second-order stationary, then it is also
intrinsically stationary and

γ(h) = C(0)− C(h), u ∈d . (1)

Hence, statistical methods for second-order stationary random fields can
be represented using either the semivariogram or the covariance function.
While statisticians are more familiar with variances and covariances, many
geostatisticians prefer the semivariogram. Working with γ(.) has distinct
advantages over C(.), especially when estimating these functions from obser-
vational data (see e.g., Cressie (1993); Wikle and Cressie (2019)).
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Further, a second-order stationary random process Z(·) is said isotropic
if its covariance function C(h) (or the variogram function γ(h)) only depends
on ∥h∥, where ∥.∥ indicates the Euclidean distance. Hereafter, we assume
that the process Z(·) is isotropic. To assure positive definiteness, it is usually
assumed that the covariance function C0 belongs to a parametric family
whose members are known to be positive definite. That is, one assumes that

C0(h) = C0(h; θ), (2)

where C0 satisfies the positive definiteness condition for all θ ∈ Θ ⊂ Rd. The
vector parameter θ usually consists of one or more of the following parame-
ters: the nugget effect, the sill, the partial sill, and the range. The nugget
effect is given by γ(h) when h → 0, while the sill is γ(h) when h → ∞.
The partial sill is the difference between the sill and the nugget effect. The
range is the lag beyond which the dependence between the locations vanishes
and the observations do not affect each other. There are several commonly
used parametric models such as exponential, Gaussian, spherical, power ex-
ponential, Cauchy, and Matérn in the literature for the variogram and co-
variance functions in geostatistical modelling, see, e.g. Cressie (1993), Ripley
(1981).Spatio-temporal covariances can be constructed directly as the prod-
uct of purely valid spatial and purely valid temporal covariance functions.
The drawback of these models is that they cannot model space-time inter-
action. Therefore, nonseparable stationary spatio-temporal covariance func-
tions have been developed and studied in the literature to model space-time
interactions, see, e.g. Cressie and Huang (1999), Jones and Zhang (1997),
Brown et al. (2000), and Christakos (2000). To model the nonstationarity
of a random field, Guttorp (1992)introduced a class of nonstationary spa-
tial covariance functions and Smith (2001)presented a class of nonstationary
spatio-temporal covariance functions by means of the convolution of a kernel
function and a white noise process.

In this paper, we introduce new classes of spatial and spatio-temporal
stationary covariance functions using the characteristic functions of abso-
lutely continuous higher order kernels. A class of higher order kernels, which
can be viewed as an extension of second order kernels, has some attrac-
tive properties such as smoothness, manageable convolution formulas, and
Fourier transforms. See Schucany and Sommers (1977) for details. They
have mainly been used for bias reduction in kernel density estimation (Mar-
ron, (1994); Hansen (2005); Tsuruta and Sagae (2017)).They have currently
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been employed: to capture filtrations of stochastic processes (Salvi et al.
(2021)),to impute mixed-attribute datasets (Das et al. (2019));and to recog-
nize CNN features with higher-order pooling (Cherian et al. (2017)).The rest
of this paper is organized as follows. In Section 2, we give a brief overview
of higher-order kernels. Section 3 introduces new covariance functions gen-
erated by higher-order kernels in space, and in Section 4, we develop the
obtained models for the spatio-temporal case. Section 5 presents the analy-
sis of Swiss rainfall data. The paper ends with some conclusions.

2 Higher-order Kernels

In this section we introduce some notation and define higher order kernels
that we will use in the following sections. A function K(x) is called a sym-
metric kernel if K(x) = K(−x) and

∫
RK(x)dx = 1. Further, it is called

s-smooth if for s ≥ 1 its (s− 1)-th derivative, i.e. K(s−1), is absolutely con-
tinuous on R. For any integer j ≥ 1, we define the jth moment of the kernel
K with µj(K) =

∫
R xjK(x)dx.

Definition 1. The order of a kernel, r, is defined as the order of its first
non-zero moment. A kernel K is a higher-order kernel if r > 2.

For example, if µ1(K) = µ2(K) = µ3(K) = 0 but µ4(K) > 0, then K
is a fourth-order kernel and r = 4. The higher-order kernels are also called
bias-reducing kernels (see Hansen (2005) and Marron (1994)).

Remark 1. The order of a symmetric kernel is always even.

Remark 2. Symmetric non-negative kernels are second order kernels.
A special function which we will use throughout the paper is the spherical

Bessel function. For any integer m ≥ 0, it is given by

jm(x) =

∞∑
k=0

(−1)k(
3
2

)
m+k

k!

(x
2

)m+2k
. (3)

Here
(
3
2

)
m+k

obeys Pochhammer’s symbol given by

(α)n = α(α+ 1)(α+ 2) . . . (α+ n− 1) =
Γ(α+ n)

Γ(α)
,
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where Γ(·) is the gamma function.

2.1 Müller’s Kernel
We now consider a new class of s-smooth bounded-support kernels of order
2r introduced by Muller (1984).This class of s-smooth, 2rth-order kernel on
[-1,1] minimizes the mean integrated square error in kernel density estima-
tion. Hansen (2005)presented an alternative representation of Müller’s kernel
functions. We use Hansen’s representation of an s-smooth, 2rth-order kernel
for building a new class of spatial covariance functions. Following Hansen
(2005),for any integer r ≥ 1, the Müller’s s-smooth, 2rth-order kernel on
[-1,1] is given by

M2r,s(x) = Br,s(x)Ms(x), (4)

where

Br,s(x) =

(
3
2

)
r−1

(
3
2 + s

)
r−1

(s+ 1)r−1

r−1∑
k=0

(−1)k
(
1
2 + s+ r

)
k
x2k

k!(r − 1− k)!
(
3
2

)
k

,

and for s ≥ 0

Ms(x) =

(
1
2

)
s+1

s!
(1− x2)s.

Note that Ms(x) is a special case of M2r,s(x) for the case r = 1. Granovsky
and Muller (1991)showed that

lim
s→∞

1√
2s

M2r,s

(
x√
2s

)
= G2r(x) =

(−1)rϕ(2r−1)(x)

2r−1(r − 1)!x
, (5)

where ϕ(2r−1)(x) is the (2r−1)th derivative of a standard normal density, and
thus G2r is the higher-order Gaussian kernel (Wand and Schucany (1990)).
Wand and Schucany (1990)have shown that (5) can be represented as

G2r(x) =

r−1∑
k=0

(−1)kϕ(2k)(x)

2kk!
. (6)

This representation facilitates the calculation of its characteristic function
(For more explanation see Wand and Schucany (1990).
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Table 1. Isotropic stationary higher-order Gaussian covariance functions
r 1 2 3 4

G̃2r(h) ϕ̃(h) ϕ̃(h)(1 + h2/2) ϕ̃(h)(1 + h2/2 + h4/8) ϕ̃(h)(1 + h2/2 + h4/8 + h6/48)

3 Spatial Covariance Functions Generated by Higher-
order Kernels

We construct here a family of spatial covariance functions by using the char-
acteristic function of the above kernels. Toward this end, for any function g,
we denote its characteristic function by g̃.

3.1 Higher-order Gaussian Covariance Functions
For the higher-order Gaussian kernels given in (6), the characteristic func-
tion is given by G̃2r(h) = exp(−h2/2)

∑r−1
k=0 h

2k/(2kk!), which introduce a
new class of spatial covariance functions. Particularly, for r = 1, G̃2(h) =
exp(−h2/2) is the classical Gaussian covariance model which we denote by
ϕ̃(h), see, e.g. Wackernagel (2003).Isotropic stationary higher-order Gaus-
sian covariance functions for some special values of r are listed in Table 1.
The semivariograms of the functions given in Table 1 are demonstrated in
Figure 1. They behave the same at the two ends but are slightly different
along the support. The family of higher-order Gaussian covariance functions
can be generalized by considering Laguerre polynomials, see, e.g. Fasshauer
(2007).We leave such extensions for discussion in future work.

3.1.1 Müller’s Covariance Functions

Another class of stationary spatial covariance function is obtained by us-
ing the characteristic function of Müller’s s-smooth, 2rth-order kernel. The
characteristic function of the Müller’s higher-order kernel is given by

C1(h) = M̃s(h) =

(
3

2

)
s

(
2

h

)s

js(h) (7)

and

C2(h) = M̃2r,s(h) =
2√
π

(
2

h

)s r−1∑
m=0

αs(m)js+2m(h), (8)
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Figure 1. Isotropic stationary higher-order Gaussian semivariogram functions: Gaussian
(solid line), Gaussian with order=4 (dashed line), Gaussian with order=6 (dotted line), and
Gaussian with order=8 (dot-dashed line).

where

αs(m) =
Γ
(
1
2 +m+ s

) (
1
2 + 2m+ s

)
m!

.

See more details in Hansen (2005).It is easy to show that (7) is another repre-
sentation of the Bessel covariance function (Yaglom (1987), p. 139).Further,
it can be shown that the Matérn covariance function (Matern (1960)) which
is related to the characteristics function of the student’s t distribution (Hurst
(1995)) is a special case of (8). Thus (8) provides a general class of covariance
functions for different values of r.

For computational purpose, we use the recurrence formula of the Bessel
function, jm(h), given by

jm+1(h) =
2m+ 1

h
jm(h) + jm−1(h)

with the initial condition

j0(h) =
sin(h)

h
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and

j1(h) =
sin(h)

h2
− cos(h)

h
.

In the special case by setting r = 1 and s = 0 in (8), the hole effect (in some
literature called the sine wave) model,

M̃2,0(h) =
sin(h)

h
, (9)

is obtained. Note that the hole effect model is the characteristic function
of a continuous uniform random variable on [−1, 1]. This model can be
reparametrized as

C(h, θ) = σ2
e + σ2 η

∥h∥
sin (∥h∥/η) , h ̸= 0,

θ = (σ2
e , σ

2, η), where σ2
e ≥ 0 , σ2 ≥ 0 and η ≥ 0 denote the nugget effect,

the sill and the smoothing parameter, respectively. Considering (1), the
corresponding semivariogram is given by

γ(h, θ) = σ2

(
1− η

∥h∥
sin (∥h∥/η)

)
, h ̸= 0.

This model is used for modelling the data where the empirical variogram
shows strong cyclicity with decreasing amplitudes for increasing lag dis-
tances. In the literature, so far, this was the only example of a process
where the covariance has a ciclicity behavior as a function of the distance
h, and can be directly obtained from the characteristic function of a kernel
function. Using this class of covariance models we are able to generate other
processes where the covariance function has a sinusoidal behavior but not as
strong as a sine wave. For example, consider the model M̃2,1(h) given by

M̃2,1(h) =
3

h

[
sin(h)

h2
− cos(h)

h

]
,

A parametric version of this model is given by

M̃2,1(h, θ) = σ2
e + σ2 3η

∥h∥

[
sin

(
∥h∥
η

)
η2

∥h∥2
− cos

(
∥h∥
η

)
η

∥h∥

]
, (10)
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where σ2
e ≥ 0, σ2 ≥ 0, and η ≥ 0. We call this model the sine-cosine wave

Figure 2. Examples of isotropic stationary semivariogram functions: Exponential-cosine
composite semivariogram with ν = 60 and η = 5 (solid line) and with ν = 30 and η = 5
(dashed line). Sine-cosine wave with η = 3 (dot-dashed line) and sine wave with η = 3 (doted
line). In all models σ2

e = 0 and σ2 = 1.

model. As shown in Figure 2, this model can be used in a situation where the
cyclicity weakens due to large fluctuations along the domain. Moreover, it
can be used instead of or together with the cosine-based composite covariance
functions obtained by the product of the cosine covariance function and other
positive definite covariance functions. For example, the cosine-exponential
composite model

C(h, θ) = σ2
e + σ2 exp(−3∥h∥/ν)cos(∥h∥/η), σ2 > 0, ν > 0, η > 0,

(11)

results from the product of the covariance models cosine and exponential, see
further details in Yaglom (1987), page 122.

4 Spatio-temporal Covariance Functions
Here we use the idea from Cressie and Huang (1999) and Ma (2003) to extend
the generated spatial covariance function to the spatio-temporal setting. We
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consider a real-valued random process Z(u; t) indexed in space by u ∈ Rd

and in time by t ∈ T . As in the spatial case, the spatio-temporal dependence
is usually characterized by the covariance function

C(u1, u2; t1, t2) = Cov[Z(u1; t1), Z(u2; t2)]. (12)

The covariance function C(u1, u2; t1, t2) is a well-defined space-time covari-
ance function if Var[Z(u; t)] < ∞ (Cressie (1993).The spatio-temporal stochas-
tic process Z(u; t) is called second-ordery stationary if the mean function
µ(u; t) = E[Z(u; t)] is constant and the covariance function (12) is a function
of the spatial distance h = u1−u2 and temporal lag t = t1− t2. Further, the
process is called isotropic if h = ∥h∥ and t = t. Assuming stationarity and
isotropy, for a function C0, we denote the covariance function by C0(h; t).
Corollary 1.1 in ؟ states that for a constant vector β ∈ Rd, if CS(h) is a
stationary covariance function on Rd, then

C(h; t) = CS(h+ βt), (h; t) ∈ Rd × R (13)

is a stationary covariance function on Rd × R. The same idea with slightly
different notation has been used in Cressic and Huang (1999).Thus, applying
the above corollary to the covariance functions in (7) and (8) we obtain the
following stationary space-time covariance functions,

C1(h; t) = C1(h+ βt) =

(
3

2

)
s

(
2

h+ βt

)s

js(h+ βt).

and

C2(h; t) = C2(h+ βt) =
2√
π

(
2

h+ βt

)s r−1∑
m=0

αs(m)js+2m(h+ βt),

Combining the above corollary with (9) and (11), we obtain the correspon-
dence to the hole effect model and to the sine-cosine wave model in the
space-time domain in the special case as follows,

M̃2,0(h+ βt) =
sin(h+ βt)

h+ βt
, (14)
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and
M̃2,1(h+ βt) =

3

h+ βt

[
sin(h+ βt)

h2
− cos(h+ βt)

h+ βt

]
are wave spatio-temporal covarince functions. Perspective and contour plots
of (14) are shown in Figure 3.

Figure 3. Isotropic stationary spatio-temporal covariance function given in (14) with β = 1.

5 Swiss Rainfall Data
In this section we illustrate how our sine-cosine wave model is applied to the
Swiss rainfall data. The data are records of rainfall measured at 467 locations
in Switzerland on May 8, 1986. The data analyzed in this section are from
http://www.leg.ufpr.br/doku.php/pessoais:paulojus:mbgbook:datasets. This
data collection was part of a workshop organized by AI-GEOSTATS to com-
pare the different methods currently used to analyze spatial data, see Dubois
(1998) for a detailed description of the data and the project.

Let us assume that data {Z(ui) : i = 1, . . . , n} can be modeled with an
stationary process. Under the stationarity assumption, a natural estimator
based on the method of moment (Matheron (1962)),is

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z(ui)− Z(uj))
2, h ∈ Rd,
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where N(h) = {(ui, uj) : ui − uj = h, i, j = 1, . . . , n} and |N(h)| is the
number of distinct pairs with distance h. This is called the empirical esti-
mator of variogram. To estimate the parameters of a parametric variogram
model 2γ(h, θ), we minimize the weighted least square (WLS) method, which
measure the weighted discrepancy between the empirical variogram and the
parametric variogram. That is we minimize

Q(θ) =

k∑
i=1

[log(2γ̂(hi))− log(2γ(hi, θ))]
2N(hi)/2,

where, k denotes the number of lag distances at which the empirical and the-
oretical semivariograms are computed, and recall that γ̂(h) is the empirical
semivariogram (see Cressie (1993),page 69 for more detail).

We obtained the empirical semivariogram, γ̂(h), using variog function
inthe R package geoR (Ribeiro Jr and Diggle (2001)).To determine the WLS
estimate of θ, the R package nloptr (Ypma (2017))was used. First, we
used the DIRECT-L method to obtain a global optimum θ̄. Afterwards,
to polish the optimum to a greater accuracy, we used θ̄ as a starting point
for the local optimization ‘bound-constrained by quadratic approximation’
(BOBYQA) algorithm (Powell (2009))and obtained a final estimate θ̂. The
WLS estimates of the sine-cosine wave model (10) parameters when σ2

e =
2766 (by the empirical variogram) are σ̂ = 103.17 and η̂ = 14.13.

Figure 4 shows the empirical semivariogram for the data together with
simulated pointwise 0.05 significance envelopes obtained from 39 simulations
of the sine-cosine wave model (such envelopes are obtained for each value of h
by calculating the smallest and largest simulated values of γ̂(h); see Section
4.3.4 in Moller and Waagepetersen (2004)).We used the R package geoR
with some slightly modifications in its functions geoRCovModels, cov.spatial
and grf for the simulations. For the sine-cosine wave model, γ̂(h) is within the
shaded envelopes area for all value of h which indicates that the sine-cosine
wave fits the data adequately.

6 Conclusion
The covariance function is the key indicator in the analysis of dependent data,
including spatial and spatio-temporal data sets, where there is a spatial or
spatio-temporal dependence between observations due to dependence among
their position in space or in space-time. The higher order kernels have been
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Figure 4. Comparison between the empirical semivariogram of the Swiss rainfall data (cir-
cles) and the fitted sine-cosine wave model (solid line) together with 95% simultaneous rank
envelopes (shaded areas) calculated from 39 simulations of the fitted model.

proposed to be employed for nonparametric curve estimation offering new
insights in providing simple methods for constructing new families of sta-
tionary spatial and spatio-temporal stationary covariance functions from the
Fourier transform of these kernels. We study a class of higher-order Gaussian
stationary spatial and spatio-temporal covariance functions. Further, a class
of Müller’s stationary covariance functions in spatial and spatio-temporal do-
mains is constructed. Both families have very similar behavior for different
orders (r). A parametric version of the model, called the sine-cosine wave
model, is applied to the Swiss rainfall data, and comparison between the
fitted model and the 95% simultaneous envelopes shows that the sine-cosine
wave model fits the data well.
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