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Abstract. In this paper, a one-sample point predictor of the random vari-
able X is studied. X is the occurrence of an event in any successive visits Li

and Ri :i = 1, 2, . . . , n (interval censoring). Our proposed method is based
on finding the expected value of the conditional distribution of X given Li

and Ri (i = 1, 2, . . . , n). To make the desired prediction, our approach is
on the basis of approximating the unknown Weibull parameters using the
mid-point approximation and approximate maximum likelihood (AML). Af-
ter obtaining the parameter estimation, the prediction of X can be made.
Moreover, the 95% bootstrap confidence intervals of unknown parameters
and the 95% bootstrap prediction bounds of X are presented. The perfor-
mance of the proposed procedure based on the mean squared error (MSE)
and the average width (AW ) of the confidence interval is investigated by em-
ploying Monte Carlo simulation. A Real data set is also studied to illustrate
the proposed procedure.
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1 Introduction
Censoring is very common in reliability and survival analysis. If the lifetimes
are censored before all failure times are observed, we will have the right cen-
soring. However, sometimes, the desired event is only known to occur within
an interval of time, say [L,R]. Namely, interval censored lifetime data arise
when individuals in a study are monitored intermittently, not continuously,
so that a lifetime observed (or a unit failed) lies between two successive times.
This situation may occur in clinical trials when patients are visited only at
a pre-scheduled visit say, L and R. If the event has not occurred at the
time of visit L, but occurred by the following visit time R, then the event
must belong to the interval [L,R] (see Tomazella and Nadarajah (2015)).
This type of censoring can be considered in lifetime study and it has at-
tracted a lot of attention itself mainly in clinical biological studies where
experimental units are human beings or animal subjects who are checked
at discrete intervals (for example, quarterly, hourly or monthly check-ups).
The desired events occur at some time between examinations (see Aggarwala
(2001)). Also, according to Sun (2006), many areas including demographical,
epidemiological, financial, medical, sociological, and engineering studies can
utilize interval-censored failure time data (see Guure et al. (2013)). Thus,
prediction of the event that occurred between the two observation periods
has an important role in many fields such as medical sciences and reliability
analysis. The focus of this paper is on interval censoring, which presumably is
more important than right censoring. Sun (1997) has introduced a method
based on a discrete logistic model (interval-censored data that arise from
clinical trials with a discrete scale) for the regression analysis of interval-
censored failure time data with a focus on the comparison of failure time
distributions among different treatments. Lindsey and Ryan (1998) studied
standard methods and software algorithms for analyzing interval-censored
data (Aggarwala (2001)). As stated by Turnbull (1976), one could define an
interval-censored observation as a union of several non-overlapping windows
or intervals. Researchers who have discussed interval-censored data in the
classical point of view are, Odell et al. (1992), Lindsey (1998), Scallan (1999),
Lawless (2003) and Flygare and Buckwalter (2010) (see Guure et al. (2013)).
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Pradhan and Kundu (2014) worked the Bayesian and Non-Bayesian analysis
of interval-censored data for the unknown parameters, with Weibull distri-
bution as the underlying lifetime distribution. For further investigation of
inference under interval-censored lifetime, data see Gomez et al. (2004), Law-
less and Babineau (2006), Dumbgen et al. (2006) and Singh and Totawattage
(2013).

The problem of estimation for another type of interval-censored data,
progressive type-I interval censoring has been considered for many other
distributions, for more details, we refer to Xiang and Tse (2005), Lawless
and Babineau (2006), Ng and Wang (2009), Chen and Lio (2010), Lio et
al. (2011), Lin and Lio (2012), Pradhan and Kundu (2014) and Ahmadi
and Yousefzadeh (2015). For more applications of interval-censored data on
reliability, failure risk, repairable systems, etc. see Hashimoto et al. (2013),
Garcia-Mora et al. (2015) and Peng et al. (2017).

Some prediction studies have also been conducted based on the maxi-
mum likelihood approach. For instance, Raqab (2004) based on a general
multiple Type-II censored sample from a shifted exponential distribution,
proposed some approximate predictors of missing failure times. Basak et
al. (2006) studied the prediction of time to failure of units censored under
a progressively censored sample from an absolutely continuous population.
The best linear unbiased predictors (BLUPs), the ML predictors (MLPs)
and the approximate MLPs of units under progressively censored sample for
the Pareto distribution could be found in Raqab et al. (2010). Some other
recent studies and applications of interval-censored data could be conducted
in Zhang (2009), Shen (2014), Hyun et al. (2017), Wu and Cook (2020) and
Yao et al. (2021). �

In this paper, we focus on the prediction of an event (a failure time) say,
X cannot be observed directly but can only be determined to lie in an inter-
val [L,R]. Because the prediction of the value of X is important. Therefore,
a simple proposed method such as the expectation of the conditional dis-
tribution of X given L and R can be used. To achieve this purpose, the
estimation of unknown parameters is required. Then, using the estimated
parameters, the prediction of the random variable X can be made. One of
the advantages of this method is its simplicity. In addition to this prediction
method for X, the possibility of obtaining other methods of prediction would
be investigated by future researchs.

In summary, the estimation of unknown parameters (based on mid-point
and AML methods) in the Weibull distribution can be obtained. Concerning
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the estimated parameters, the point prediction of X using the expected value
of the conditional distribution of X given L and R easily expressed. The rest
of the paper is organized as follows.
At the beginning of Section 2, based on a sample of size n from intervals
[Li, Ri] (i = 1, 2, . . . , n), the general likelihood equations derived to get es-
timations for unknown Weibull parameters. But, due to the simplicity
of the extreme value distribution and its equivalence with the Weibel dis-
tribution, likelihood equations of extreme values presented. Subsection 2.1
discusses about mid-point approximation method for parameter estimation.
Subsection 2.2, introduces approximate maximum likelihood estimation for
unknown parameters. Finally, in subsection 2.3, using the estimated param-
eters and through the conditional distribution of X given L and R, the point
predictor of a failed unit (say X) is introduced. In Section 3, a simulation
study (and using the percentile bootstrap method for the prediction bounds
of X) as well as an illustrative example have been analyzed for illustrative
purposes.

2 ML Estimation of Parameters and Prediction
for X

In this section, the likelihood equations for finding the estimation of un-
known Weibull parameters are derived. In the following, the estimation of
unknown Weibull parameters via mid-point and approximate ML are pro-
posed. They will be used to get the average of the expected value of the
conditional distribution of X given Li and Ri, i = 1, 2, . . . , n as a predictor
of X. One of the widely used distributions for analyzing lifetime data in
reliability and survival analysis is the Weibull model. The corresponding
probability density function (pdf) is

f(x;α, β) = αβxβ−1e−αxβ
, x > 0, α, β > 0. (1)

Also, the likelihood function L(α, β;Li, Ri; i = 1, 2, . . . , n) under interval
censoring is given by (see Gomez et al. (2004) and Guure et al. (2015))

L(α, β;Li, Ri, i = 1, 2, . . . , n) = L =
n∏

i=1

[
F (Ri, α, β)− F (Li, α, β)

]
. (2)

Therefore, from (1) and (2), the log likelihood function (LLF) will be of the
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form

lnL =
n∑

i=1

ln
(
e−αLβ

i − e−αRβ
i
)
.

Differentiating with respect to α and β, and then equating to zero, we get
1 : ∂ lnL

∂α =
∑n

i=1
Rβ

i exp(−αRβ
i )−Lβ

i exp(−αLβ
i )

exp(−αLβ
i )−exp(−αRβ

i )
= 0,

2 : ∂ lnL
∂β = α

∑n
i=1

Rβ
i exp(−αRβ

i ) ln(Ri)−Lβ
i exp(−αLβ

i ) ln(Li)

exp(−αLβ
i )−exp(−αRβ

i )
= 0.

(3)

It is worthwhile to mention that instead of working with the Weibull model
for X, it is often easier to work with the equivalent model for the log-lifetime
Y = lnX. Then, Y has an extreme value distribution with pdf f1 and
cumulative distribution function F1, respectively, given by

f1(y;µ, σ) =
1

σ
e(

y−µ
σ

)−e(
y−µ
σ )

,

F1(y;µ, σ) = 1− e−e(
y−µ
σ )

, −∞ < y < ∞, −∞ < µ < ∞, σ > 0,

where, σ = β−1 and µ = β−1 ln(α−1).
Now, suppose [L∗

i , R
∗
i ], i = 1, 2, . . . , n denote the interval censored data from

a distribution function F1 with unknown parameters. Let Yi represent the
unknown time, that is, L∗

i ≤ Yi ≤ R∗
i , where L∗

i is the last inspection time
and R∗

i is the state of end time.

Then, from (2) under the extreme value distribution, the likelihood func-
tion (LF) is written as

L1(µ, σ;L
∗
i , R

∗
i , i = 1, 2, . . . , n) = L1 =

n∏
i=1

[
e−e(

L∗
i −µ
σ )

− e−e(
R∗
i −µ
σ )

]
.

The LLF is reduced to

lnL1 =
n∑

i=1

ln

[
e−e(

L∗
i −µ
σ )

− e−e(
R∗
i −µ
σ )

]
. (4)

Differentiating with respect to µ and σ, and then setting to zero, possible
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likelihood equations may be expressed as

∂ lnL1
∂µ = 1

σ

∑n
i=1

e(
L∗
i −µ
σ )−e

(
L∗
i −µ
σ )

−e(
R∗
i −µ
σ )−e

(
R∗
i −µ
σ )

e−e
(
L∗
i
−µ

σ )
−e−e

(
R∗
i
−µ

σ )

= 0,

∂ lnL1
∂σ =

∑n
i=1

(
L∗
i −µ

σ2 )e(
L∗
i −µ
σ )−e

(
L∗
i −µ
σ )

−(
R∗
i −µ

σ2 )e(
R∗
i −µ
σ )−e

(
R∗
i −µ
σ )

e−e
(
L∗
i
−µ

σ )
−e−e

(
R∗
i
−µ

σ )

= 0.

(5)

Unfortunately, these equations could not be expressed in explicit forms.

2.1 Mid-point approximation method

This subsection, provides the estimation of the unknown parameters based
on the mid-point approximation method. Suppose that mi =

L∗
i+R∗

i
2 , the

LLF can be approximated by

lnL1(µ, σ;mi, i = 1, 2, . . . , n) ∼
n∑

i=1

ln f1(mi, µ, σ) =
n∑

i=1

[
− lnσ +

mi − µ

σ
− e

mi−µ

σ

]

= −n ln(σ) +
n∑

i=1

mi − µ

σ
−

n∑
i=1

e
mi−µ

σ . (6)

Differentiating with respect to µ and σ, and then equating to zero, possible
likelihood equations can be written as

∂ lnL1(µ,σ;mi,i=1,2,...,n)
∂µ = −n

σ + 1
σ

∑n
i=1 e

(
mi−µ

σ
) = 0,

∂ lnL1(µ,σ;mi,i=1,2,...,n)
∂σ = −n

σ −
∑n

i=1(
mi−µ
σ2 ) +

∑n
i=1(

mi−µ
σ2 )e(

mi−µ

σ
) = 0.

(7)

Therefore, µ̂ can be obtained as µ̂ = σ̂ ln( 1n
∑n

i=1 e
mi
σ̂ ). By substituting µ̂ in

the second equation of (7), σ̂ is given by σ̂ = 1
n

(∑n
i=1 mie

mi
σ̂

1
n

∑n
i=1 e

mi
σ̂

−
∑n

i=1mi

)
.
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2.2 Approximate Maximum Likelihood Method

By letting mi =
L∗
i+R∗

i
2 , the LF reduces to

L1(µ, σ;mi, i = 1, 2, . . . , n) ∝
n∏

i=1

f1(mi;µ, σ). (8)

Also, by assumption of g(x) = ex−ex and zi =
mi−µ

σ , (8) changes to

L1(µ, σ;mi, i = 1, 2, . . . , n) ∝ 1

σn

n∏
i=1

g(zi;µ, σ). (9)

Then,

lnL1(µ, σ;mi, i = 1, 2, . . . , n) = −n lnσ +

n∑
i=1

ln g(zi), (10)

and 
E1 : ∂ lnL1(µ,σ;mi,i=1,2,...,n)

∂µ = − 1
σ

∑n
i=1

g′(zi)
g(zi)

= 0,

E2 : ∂ lnL1(µ,σ;mi,i=1,2,...,n)
∂σ = −n

σ −
∑n

i=1
g′(zi)zi
σg(zi)

= 0.

(11)

Under the extreme value distribution, let G be the cumulative density
function. Then, G−1(u) = ln(− ln(1−u)), 0 < u < 1. If mi’s ordered (there-
fore, zi’s are ordered), the function g′(zi)

g(zi)
will be approximated by expanding

it in a Taylor series around the point µi = G−1(umi) = ln(− ln(1 − umi)),
where umi =

ui+ui−1

2 ; ui =
i
n for i = 1, 2, . . . n, (see Ahmadi and Yousefzadeh

(2015)). Because, by law of large numbers, as n large enough, empirical dis-
tribution function Gn(zi) tends to G(zi). Then, µi = G−1

n (umi) tends to zi
and the expansion of g′(zi)

g(zi)
in a Taylor series around the point µi is rational.

Note that in order to use ui = Gn(zi) =
i
n , mi’s are arranged in ascending

order. Now, by expanding the function g′(zi)
g(zi)

around µi and keeping only the
first two terms, this function may be approximated by

g′(zi)

g(zi)
≈ g′(µi)

g(µi)
+ (zi − µi)

(g′(µi)

g(µi)

)′
= αi − βizi, (12)
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where

αi =
g′(µi)

g(µi)
−µi

(
g′′(µi)

g(µi)
−
(g′(µi)

g(µi)

)2)
= 1+ln qmi[1−ln(− ln qmi)], qmi = 1−umi,

βi =
(g′(µi)

g(µi)

)2 − g′′(µi)

g(µi)
= − ln qmi.

Using these linear approximations, the likelihood equations E1 and E2 in
(11) can be written as


E1 : − 1

σ

∑n
i=1(αi − βizi) = 0,

E2 : −n
σ −

∑n
i=1

zi
σ (αi − βizi) = 0.

(13)

Substituting zi = mi−µ
σ into E1 of the Equation (13) and after algebraic

simplification, the AMLE of µ is obtained as µ̌ = AL − σ̌BL, where

AL =

∑n
i=1miβi∑n
i=1 βi

, BL =

∑n
i=1 αi∑n
i=1 βi

. (14)

Similarly, substituting zi =
mi−µ

σ into E2 of the Equation (13) and sim-
plifying, it can be transformed to the approximate likelihood equation form
of σ as nσ2 +DLσ − FL = 0, where

DL =

n∑
i=1

αi(mi −AL),

FL =

n∑
i=1

βi(mi −AL)
2 > 0. (15)

Therefore, (15) yields the AMLE of σ to be

σ̌ =
−DL +

√
D2

L + 4nFL

2n
, (16)
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which is the only positive root (see Bayat Mokhtari et al. (2011)).

2.3 How to Predict X

Let [L∗
i , R

∗
i ] i = 1, 2, . . . , n be the interval censored survival data where L∗

i is
the last observed time for the ith individual before the event Yi has occurred
and R∗

i indicates the first time the event Yi has been observed. According
to Self and Grossman (1986), suppose that censoring occurs noninformative
in the sense that for any y, l∗i , r∗i such that l∗i ≤ y ≤ r∗i , the conditional
density of Y given L∗

i and R∗
i , f[Y |L∗

i ,R
∗
i ]
(y|l∗i ; r∗i ), satisfies

f[Y |L∗
i ,R

∗
i ]
(y|l∗i ; r∗i ) =

fY (y)

P (Y ∈ [l∗i , r
∗
i ])

=
fY (y)

FY (r∗i )− FY (l∗i )
, i = 1, 2, . . . , n.

(17)

Therefore, after substituting mid-point approximate estimators or AM-
LEs of unknown parameters, the expected value of the conditional distribu-
tion of Y given L∗

i and R∗
i can be introduced as a predictor of Y . Let the

predictor of failed unit Y ∗ in the interval [L∗
i , R

∗
i ] under the extreme value

distribution be

Ŷ ∗
i = E[Y ∗|L∗

i ,R
∗
i ]
(y∗|l∗i ; r∗i ) =

E(Y ∗)

e−e(
l∗
i
−µ

σ ) − e−e(
r∗
i
−µ

σ )

=

∫ r∗i
l∗i

y
σe

( y
∗−µ
σ

)−e(
y∗−µ

σ )

dy∗

e−e(
l∗
i
−µ

σ ) − e−e(
r∗
i
−µ

σ )

, i = 1, 2, . . . , n.

(18)

Then, a predictor for Y can be introduced as

Ȳ ∗ =
1

n

n∑
i=1

Ŷ ∗
i (19)

It is clear that by transformations X̄ = exp(Ȳ ∗), β̂ = 1/σ̂ and α̂ = exp(−µ̂/σ̂),
the corresponding predictor of X and the estimators (mid-point or AMLE)
of α and β can be found, respectively. Also, using these estimators (mid-
point or AMLE) of α and β, the predictor of X and the percentile bootstrap
(p-boot) method, we can get the 95% confidence bounds of α and β as well
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as 95% prediction bounds of X.
It is worthwhile to mention that if we denote the 95% confidence bounds

of α, β and 95% prediction bounds of Y by
(
l(µ̂), u(µ̂)

)
,
(
l(σ̂), u(σ̂)

)
and(

l(Ȳ ∗), u(Ȳ ∗)
)
, respectively, then

(
(u(µ̂))−1, (l(µ̂))−1

)
and(

exp{l(Ȳ ∗)}, exp{u(Ȳ ∗)}
)
will be the 95% confidence bounds of β and pre-

diction bounds of X based on the Weibull distribution, respectively. Also,
if l(µ̂)

u(σ̂) < u(µ̂)
l(σ̂) , then the corresponding 95% confidence bounds of α will be(

exp{−u(µ̂)
l(σ̂) }, exp{−

l(µ̂)
u(σ̂)}

)
, otherwise the 95% confidence bounds of α can

be obtained as
(
exp{−u(µ̂)

u(σ̂)}, exp{−
l(µ̂)
l(σ̂)}

)
.

3 Numerical Studies
In this section, the performance of the proposed procedures is investigated
by a simulation study and a real data set. All codes in this numerical study
are conducted in R software (R i386 4.1.2) and they can be obtained from
the authors upon request.

3.1 Simulation Results
This subsection is devoted to testing the performance of the obtained predic-
tor of X, based on a sample of size n from intervals [Li, Ri] (i = 1, 2, . . . , n),
the AMLEs of α and β, the prediction bounds of X as well as the 95% confi-
dence bounds of α and β. The predictor of X and its mean square prediction
errors (MSPEs), as well as α̂, β̂ and their mean squared errors (MSEs) are
calculated. In addition, the average widths (AWs) for the prediction bounds
of X as well as 95% confidence bounds of α and β are computed.

Each data set contains n = 25, 50, 100 interval-censored observations. Let
the true survival time follow an extreme value distribution.

It is worthwhile to mention that there are some generation methods of
interval-censored data with similar consequences (see e.g. Kiani and Arasan
(2012)). Here, the generation of interval-censored is according to Guure et
al. (2013) and Guure et al. (2015). It is involved the following steps.

(1) Generate a single observation from the extreme value distribution say,
y with initial values of µ = 1 and σ = 0.5, 1.5 (arbitrary initial values of µ
and σ).
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(2) Generate a vector say V , for a set of clinic visits. Assume there are 10
clinic visits, for the extreme value distribution, take the first visit to be V [1]
and generate it from U(0, b)(b is an arbitrary natural number which is clinical
visit step). The next visit of V [2] is also generated from U(V [1], V [1] + b).
Subsequent generations are carried out with a similar approach.

(3) Generate a set of matrix called bounds for each of the data set. The
lower and upper bounds can be defined as:

Bounds[i, 1] =


0 if y[i] < V [1], i = 1, 2, . . . , n,

V [j] if V [j] < y[i] < V [j + 1], where j = 1, 2, . . . , 9,

V [10] if y[i] > V [10],

(20)

Bounds[i, 2] =


V [1] if y[i] < V [1], i = 1, 2, . . . , n,

V [j + 1] if V [j] < y[i] < V [j + 1], where j = 1, 2, . . . , 9,

1000 if y[i] > V [10].

(21)

(4) An indicator is defined such that

Indicator[i] =

{
0 if Bounds[i, 2] = 1000,

1 otherwise.
(22)

(5) The predictor of Y is given according to Equation (19). Also, the
mid-point estimators and AMLEs of µ and σ are computed.

(6) For nboot = 200 bootstrap iterations, find the two-sided 95% per-
centile bootstrap confidence bounds of Y and the 95% percentile bootstrap
confidence bounds of µ, σ.

(7) Steps (1)-(6) are repeated B = 3× 103 times.
(8) Suitable mentioned transformations carried out to get the correspond-

ing predictor of X, the estimators (mid-point as well as AMLE) of α and β,
the 95% confidence bounds of α, β and 95% prediction bounds of X.

(9) The average point predictor of X, the mean square prediction errors
(MSPEs) of X̂ along with mid-point estimators and AMLEs of α and β, the
MSEs for α and β and the AWs of all confidence intervals are reported. The
results with B = 3×103 Monte Carlo replications and 200 bootstrap samples
are presented in Tables 1 and 2.

Remark: To apply AML method in both the Monte Carlo simulation study
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Table 1. Simulation results for b = 2, n = 25, 50, 100 with α = 0.818, 0.406, 0.156 and
β = 1, 1.428 (µ = 0.2, 0.9, 1.3 and σ = 0.7, 1), via AMLE method for parameters with
nboot = 200 bootstrap iterations.

Estimate (MSPE) Estimate (MSE) AW
α β n X̂ α̂ β̂ X α β

0.156 1.428 25 3.219(0.923) 0.055(0.010) 1.546(0.081) 4.197 0.088 0.809
50 3.254(0.950) 0.056(0.010) 1.482(0.027) 4.386 0.061 0.534
100 3.215(0.884) 0.057(0.009) 1.450(0.011) 4.361 0.043 0.366

0.406 1 25 2.615(1.072) 0.078(0.107) 1.538(0.414) 2.971 0.108 0.819
50 2.583(1.076) 0.082(0.105) 1.438(0.232) 2.987 0.075 0.518
100 2.608(1.074) 0.084(0.103) 1.393(0.172) 3.099 0.052 0.353

0.818 1 25 1.753(0.889) 0.066(0.567) 2.580(3.261) 1.359 0.134 1.575
50 1.742(0.903) 0.073(0.555) 2.303(2.052) 1.323 0.095 0.876
100 1.753(0.876) 0.078(0.549) 2.153(1.464) 1.396 0.067 0.552

and the following illustrative example, mi’s should be arranged in ascending
order.

From Tables 1 and 2, it is interesting to see that the larger sample n,
the smaller MSPE of predictor X and the shorter length of 95% prediction
bounds for X. Also, in both mid-point and AML methods, as α = 0.156
and β = 1.428 (σ = 0.7 and µ = 1.3), it is clear that the smaller MSPE of
predictor X and MSE of α̂ as well as β̂, roughly. When α = 0.818 and β = 1
(σ = 1 and µ = 0.2), the shorter length of 95% prediction bounds for X
under mid-point and AML methods, can be resulted. On the other hand, we
can observe that the AML method, for almost all sample sizes and selected
values of α and β, tends to give better results than the mid-point method
for the MSPE of predictor X, the AWs of confidence intervals of α and β
and the MSE of β̂ . However, this situation is reversed for the MSE of α̂
and the AW of prediction interval for X for almost selected values of α and
β under all sample sizes. As expected from the simulation study, Figure 1
presents the mid-point method is the better method for estimating α. Figure
2 displays that for estimation of β the AML method and mid-point method
are not much different, although the AML method is slightly better. Finally,
Figure 3 shows the AML method often performs better than the mid-point
method.
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Table 2. Simulation results for b = 2, n = 25, 50, 100 with α = 0.818, 0.406, 0.156 and
β = 1, 1.428 (µ = 0.2, 0.9, 1.3 and σ = 0.7, 1), via mid-point method for parameters with
nboot = 200 bootstrap iterations.

Estimate (MSPE) Estimate (MSE) AW
α β n X̂ α̂ β̂ X α β

0.156 1.428 25 3.198(0.921) 0.114(0.002) 1.562(0.083) 2.861 0.208 0.924
50 3.164(0.869) 0.119(0.001) 1.497(0.030) 2.860 0.152 0.579
100 3.203(0.900) 0.122(0.001) 1.464(0.012) 2.961 0.110 0.389

0.406 1 25 2.600(1.184) 0.162(0.061) 1.546(0.431) 2.029 0.243 1.161
50 2.622(1.093) 0.176(0.054) 1.433(0.227) 2.076 0.182 0.671
100 2.651(1.149) 0.179(0.051) 1.398(0.176) 2.159 0.131 0.444

0.818 1 25 1.763(0.911) 0.139(0.465) 2.572(3.261) 0.915 0.237 2.449
50 1.758(0.885) 0.161(0.434) 2.240(1.874) 0.900 0.191 1.417
100 1.753(0.901) 0.175(0.415) 2.075(1.289) 0.893 0.145 0.887

Figure 1. Plots of MSEs for α estimates versus sample size n under different values of α
and β with AML and mid-point methods.
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Figure 2. Plots of MSEs for β estimates versus sample size n under different values of α
and β with AML and mid-point methods.

Figure 3. Plots of MSPEs for X versus sample size n under different values of α and β
with AML and mid-point methods.
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Table 3. Radiotherapy and chemotherapy data.
(8, 12] (0, 5] (30, 34]
(0, 22] (5, 8] (13, ∞]
(24, 31] (12, 20] (10, 17]
(17, 27] (11, ∞] (8, 21]
(17, 23] (33, 40] (4, 9]
(24, 30] (31, ∞] (11, ∞]
(16, 24] (13, 39] (14, 19]
(13, ∞] (19, 32] (4, 8]
(11, 13] (34, ∞] (34, ∞]
(16, 20] (13, ∞] (30, 36]
(18, 25] (16, 24] (18, 24]
(17, 26] (35, ∞] (16, 60]
(32, ∞] (15, 22] (35, 39]
(23, ∞] (11, 17] (21, ∞]
(44, 48] (22, 32] (11, 20]
(14, 17] (10, 35] (48, ∞]

3.2 Real Data Analysis

In this section, a data set from Guure et al. (2013) and Guure et al. (2015)
for illustration and comparative purposes is analyzed. The data is a retro-
spective study taken from Lawless (2003). Initially, it was implemented to
compare the cosmetic effects of radiotherapy versus radiotherapy and adju-
vant chemotherapy on women with early breast cancer. Here, only a retro-
spective study of 48 radiation plus chemotherapy patients was considered.
Patients were examined initially for every 46 months, but, when their recov-
ery progressed, the interval between visits lengthened. The desired event
was the time for the first appearance of moderate (severe) breast retraction.
When the patients were examined only at some random times, the exact
time, Xi, of breast retraction is only discovered to fall within the interval
between visits.

Patients with no moderate (severe) breast retraction until the last visit
were known as right-censored data. Then the end point of their intervals was
presumed to be Ri = ∞ and Li was presumed as the time from the beginning
to the last visit. To achieve the objective of this paper, the data have been
adapted to exclude right-censored observations. The data are presented in
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Table 4. Numerical results for radiotherapy and chemotherapy data under mid-point and
AML methods with nboot = 200 bootstrap iterations.

Estimates 95%Confidence interval (Width)
α̂ β̂ X̂ α β X

AML 0.001 1.627 27.320 (0.000, 0.006)(0.006) (1.310,2.147)(0.836) (7.329, 64.992)(57.663)

Mid-point 0.004 1.654 18.162 (0.000, 0.021)(0.021) (1.291, 2.214)(0.923) (5.142, 44.453)(39.310)

Table 3.
First, the Kolmogorov-Smirnov (K-S) procedure was implemented to test

whether the Weibull model with 0.001 ( scale) and 2.029 (shape) parameters
fitted to the data of Table 3 (using some R packages for interval-censored
such as ”interval”, ”survival”, ”fitdistrplus” and ”Icens”). The corresponding
Kolmogorov–Smirnov ( K-S) statistic, i.e. Dn is 0.162355 and the K-S P-
value obtained 0.997. For the Type-1 errors, 0.05 and 0.1, the critical values
of K-S test table are shown that the Weibull distribution fits the data of
Table 3. It can be seen n = 35 (due to discarding infinite upper bounds).
Based on initial arbitrary value b = 2 and with 10 clinic visits (arbitrary),
under nboot = 200 bootstrap iterations, the results are displayed in Table
4.

The above results confirm the simulation results which emphasize the
AML method has better results for getting the AWs of confidence intervals of
α and β and the mid-point method has the better performance in comparison
to the AML method.

4 Conclusion
In this paper, the concentration was on the prediction of a failure time that
cannot be observed directly but can only be determined to lie in an interval
[L,R]. Based on a sample of size n from intervals [Li, Ri] i = 1, 2, . . . , n, the
AMLEs for unknown Weibull parameters were obtained. Then, we found
that the prediction of failed unit X, using the conditional distribution of
X given L and R is quite straightforward. A simulation study based on
the Monte Carlo and the p-boot method is carried out. Moreover, when n
increases, as we would expect, better results (the smaller MSPE of pre-
dictor X and length of 95% prediction bounds for X), especially under the
AML approximation method can be concluded. It is even possible to use
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other methods for estimation and prediction, such as the Bayesian method
to compare with the proposed method for the estimation of parameters and
prediction of the random variable X.
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