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Abstract. In this study, a mixed δ-shock model with discrete-time is defined
by combining δ-shock and extreme shock models. In this model, a system
with multiple states fails in two ways: first, when k interarrival times between
two consecutive shocks with magnitude larger than the critical threshold γ
are in [δ1, δ2], δ1 < δ2; and second, when the interarrival time between two
consecutive shocks is less than δ1. The lifetime of the system and the Markov
chain of the system’s lifetime under the proposed mixed δ-shock model is
obtained. Also, the mean lifetime of the system is calculated and a numerical
example for validating the analytical results is established here.
Keywords. Discrete time, extreme shocks, interarrival times, lifetime,
markov chain, mixed δ-shock model.

1 Introduction
A shock model is introduced to represent the operating system failure pro-
cess. In reliability, four major shock models are studied: i) Shanthikumar
and Sumita (1983) and Gut (1990) introduced the cumulative shock model;
ii) Gut and Hüsler (1999) studied an extreme shock model that results in the
system failure if the magnitude of a shock is more than a threshold γ; iii) the
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216 The Lifetime Behavior of a New Discrete Time Mixed δ-shock Model

run shock model proposed by Mallor and Omey (2001), and iv) the δ-shock
model, a special type of shock model, in which the system fails if the inter-
arrival time between two consecutive shocks is less than a critical threshold
δ, and it has been studied in detail by Li et al. (1999), Wang and Zhang
(2001), Bai and Xiao (2008) and Eryilmaz (2013). Li and Zhao (2007) have
also stated different applications of the δ-shock model including in engineer-
ing reliability, electrical systems, inventory theory, insurance mathematics,
and customer relation management (CRM). Eryilmaz (2015a) presented an
extension of the extreme shock model in which if the magnitude of a shock
alternates between two critical levels, then the system switches to a lower
partial function state with a reduced capacity. Eryilmaz and Tekin (2019)
studied a new mixed shock model that combines run and extreme shock
models. Lorvand et al. (2020) investigated an extended discrete-time mixed
δ-shock model. Eryilmaz and Kan (2021) studied a mixed shock model for
the case when the times between successive shocks and the magnitudes of
shocks have discrete phase-type distributions.

Li et al. (1999) presented failure time distribution under a δ-shock model
according to a Poisson distribution with a mean λ in per unit time. Ery-
ilmaz (2012) studied the life behavior of a system by assuming the arrival
shocks are a type of mixed shock model under the discrete probability distri-
bution. Eryilmaz and Bayramoglu (2014) considered a δ-shock model with
arrival processes from a renewal process. Parvardeh and Balakrishnan (2015)
verified a new δ-shock model, as an extension of the model of Eryilmaz and
Bayramoglu (2014), in which the system fails if the interarrival time between
two consecutive shocks is less than a threshold δ, or the magnitude of the
shock is more than a threshold γ. Tuncel and Eryilmaz (2018) investigated
the δ-shock model in which the interarrival time among two successive shocks
is independent but not identically. The shock arrival process and the optimal
replacement policy for the δ-shock model are described by a Polya process
studied by Eryilmaz (2017). Lorvand et al. (2019) studied the distributional
properties of a new mixed δ-shock model in which a system fails in three
different ways.

Eryilmaz (2015b) surveyed three different discrete-time shock models in
two ways: (i) shocks are independent, and (ii) shocks are Markov dependent.
Eryilmaz (2016) studied a system under two shock models over Markovian
by assuming the system fails if the cumulative shock magnitude overpasses a
threshold or when the cumulative effect of the shocks in consecutive periods
is upper than a threshold. Nair et al. (2018) provided the theoretical concepts
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and results required to model and analyze the discrete reliability systems.

The purpose of this paper is to discuss the discrete-time version of the
introduced mixed δ-shock model by Roozegar and Entezari (2022). In this
proposed mixed δ-shock model is assumed that i) the magnitudes of arrival
shocks are random, and ii) interarrival times between two consecutive shocks
are independent and identically distributed (i.i.d.) sequence of geometric
distribution with parameter p. According to the definition, the multi-state
system would fail in two ways: first, when k interarrival times between two
consecutive shocks with a magnitude larger than the critical threshold γ
are in [δ1, δ2], δ1 < δ2; and second, when the interarrival time between two
consecutive shocks is less than δ1.

As a practical example, an earthquake is a natural phenomenon that
causes damage in an area. After the earthquake, it will have aftershocks
that if the specific number (k) of these aftershocks occurs in a determined
time [δ1, δ2] and the intensity aftershock (Z) is bigger than threshold γ, it
will cause fatal damage, or if the aftershock occurs in a determined time less
than δ1, it will cause fatal damage.

As another application, the economic, social and political occurrences are
one of significant factors in stock market that can be considered as shocks.
Usually, the stock market requires time to recover after each occurrence,
denoted by δ1. If the next occurrence happens before the recovery time,
this market will bankrupt. Also, if the stock market faces a specific number
of occurrences in the time interval [δ1, δ2] with predetermined intensity γ,
this market will bankrupt. This can be considered as an application of our
proposed mixed δ shock model.

The rest of this paper is the following. We investigate the lifetime of
the system and the mean of lifetime under this discrete-time mixed δ-shock
model in section 2. Also, the Markov chain of the lifetime of the system is
derived in section 3. In section 4, an example of this study is carried out to
evaluate the accuracy of the analytical results established here. Finally, the
concluding remarks of this paper are presented in 5.

We will use the following terms to examine the properties of the behavior
of the lifetime of this mixed δ-shock model:
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218 The Lifetime Behavior of a New Discrete Time Mixed δ-shock Model

N Number of interarrival times between two consecutive shocks
until the system fails completely

Zi The magnitude of the ith shock
Xi Interarrival time between the (i− 1)th and ith shocks, for i = 1, 2, ...

δj The critical threshold for δ-shock, j = 1, 2

γ The critical threshold for shock magnitude
k Number of interarrival times between two consecutive shocks

with our considered condition δ1 < Xi < δ2, Zi > γ

T Lifetime of the system
F Cumulative distribution function

2 The Behavior of the System’s Lifetime
To obtain the lifetime of this discrete-time mixed δ-shock model, letN denote
the number of interarrival times between two successive shocks that cause the
system to fail. So, N = nmeans that n shocks arrived at the system. Then, it
can be enumerated as follows, for j = 0, 1, . . . , k−1 and l = 0, 1, . . . , n−j−1:

(N = n)=
[
k − 1 of (n− 1) (Xi, Zi) are (δ1 < Xi < δ2, Zi > γ)

and
{
j of n− k (Xi, Zi) are (δ1 < Xi < δ2, Zi < γ)

and n− k − j of n− k (Xi, Zi) are Xi > δ2)
}

and δ1 < Xn < δ2, Zn > γ
]

∪
[
k − 1 of (n− 1)(Xi, Zi) are (δ1 < Xi < δ2, Zi > γ)

and
{
j of n− k (Xi, Zi) are (δ1 < Xi < δ2, Zi < γ)

and n− k − j of n− k (Xi, Zi) areXi > δ2)
}
and Xn < δ1

]
∪
[
j of (n− 1) (Xi, Zi) are (δ1 < Xi < δ2, Zi > γ)

and
{
l of n− j − 1 (Xi, Zi) are (δ1 < Xi < δ2, Zi < γ)

and (n− j − 1− l) of n− j − 1 (Xi, Zi) areXi > δ2)
}
and Xn < δ1

]
.
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Before obtaining the pmf of the system’s lifetime under this discrete-time
mixed model, the following Lemma is useful.

Lemma 1. (Makri et al. (2007)) The number of allocations of α indis-
tinguishable balls into r distinguishable cells, in such a way that each of
m (0 ≤ m ≤ r) specified cells is occupied by at most k balls, is given by

Hm(α, r, k) =

min(m,[ α
k+1

])∑
j=0

(−1)j
(
m

j

)(
α− (k + 1)j + r − 1

α− (k + 1)j

)
,

for α ≥ 0, r > 0 and Hm(α, r, k) = 0 otherwise, where [x] denotes the integer
part of x.

The following Theorem derived the pmf of lifetime of this discrete-time
mixed δ-shock model according to the definition of N .

Theorem 1. Suppose Xi are the interarrival times between two consecutive
shocks and Zi are the magnitudes of shocks and these are mutually indepen-
dent, for i = 1, 2, · · · . Let T =

∑N
i=1Xi be the lifetime of the system. Then,

the pmf of the system’s lifetime is as follows:

P (T = n)=

[
n+(k+1)(δ2−δ1)

(δ2−δ1)+1
]∑

i=k+1

(
i− 2

k − 1

)[min(k,[
n−i−(i−(k+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
k

l

)
×
(
n− (i− (k − l)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−k(γ)F̄ k(γ)

+
k−1∑
j=0

[
n+(j+1)(δ2−δ1)

(δ2−δ1)+1
]∑

i=j+1

(
i− 1

j

)[min(j,[
n−i−(i−(j+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
j

l

)

×
(
n− (i− (j − 1)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−j−1(γ)F̄ j(γ).

(1)

Proof. We presume Wk is the waiting time until k+1 out of 1s are separated
by at most [δ1, δ2], Z > γ failures in I1, I2, . . . or is the waiting time until
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an interarrival between successive shocks are less than δ1. For n = 1, 2, . . . ,

In =

{
1 a shock occures in the period n,

0 otherwise.

We have two patterns:

(1) 0 . . . 0︸ ︷︷ ︸
y1≥0

1︸︷︷︸
Z1<γ

0 . . . 0︸ ︷︷ ︸
y2

1︸︷︷︸
Z2<γ

0 . . . 0︸ ︷︷ ︸
y3

1︸︷︷︸
Z3<γ

. . . 1︸︷︷︸
Zi−2<γ

0 . . . 0︸ ︷︷ ︸
yi−1

1︸︷︷︸
Zi−1<γ

0 . . . 0︸ ︷︷ ︸
yi

1︸︷︷︸
Zi>γ

where y1 is the number of 0s up to getting the first 1s and ys is the
number of 0s among (s − 1)th and sth 1, so that k of ys’s are in
[δ1, δ2] and the magnitude of these shocks is bigger than threshold γ
for s = 2, 3, . . . , and the other shocks are bigger than δ2. Therefore
by using Lemma 1, the number of integer solutions to the equation
y1 + . . .+ yi = n− i under these conditions is

min(k,[
n−i−(i−(k+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
k

l

)(
n− (i− (k − l)− 1)(δ2 − δ1)− 1

i− 1

)
.

(2) 0 . . . 0︸ ︷︷ ︸
y1≥0

1︸︷︷︸
Z1<γ

0 . . . 0︸ ︷︷ ︸
y2

1︸︷︷︸
Z2<γ

0 . . . 0︸ ︷︷ ︸
y3

1︸︷︷︸
Z3<γ

. . . 1︸︷︷︸
Zi−2<γ

0 . . . 0︸ ︷︷ ︸
yi−1

1︸︷︷︸
Zi−1<γ

0 . . . 0︸ ︷︷ ︸
yi

1︸︷︷︸
Zi>0

where j of ys’s are in [δ1, δ2] and Zs > γ for s = 2, 3, . . . , i, j =
0, 1, . . . , k − 1 and the rest of ys’s are bigger than δ2, when the last
is less than δ1. Therefore by using Lemma 1, the number of integer
solutions to the equation y1+ . . .+ yi = n− i under these conditions is

min(j,[
n−i−(i−(j+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
j

l

)(
n− (i− (j − 1)− 1)(δ2 − δ1)− 1

i− 1

)
.
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Finally, we have

P (T = n) = P (Wk = n) =
∑

i≥k+1

min(k,[
n−i−(i−(k+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
k

l

)

×
(
n− (i− (k − l)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−k(γ)F̄ k(γ)

+

k−1∑
j=0

∑
i≥j+1

min(j,[
n−i−(i−(j+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
j

l

)

×
(
n− (i− (j − 1)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−j−1(γ)F̄ j(γ)

=

[
n+(k+1)(δ2−δ1)

(δ2−δ1)+1
]∑

i=k+1

(
i− 2

k − 1

)min(k,[
n−i−(i−(k+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
k

l

)
×
(
n− (i− (k − l)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−k(γ)F̄ k(γ)

+
k−1∑
j=0

[
n+(j+1)(δ2−δ1)

(δ2−δ1)+1
]∑

i=j+1

(
i− 1

j

)min(j,[
n−i−(i−(j+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
j

l

)

×
(
n− (i− (j − 1)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−j−1(γ)F̄ j(γ).

Note that the continuation of proof is similar to Lorvand et al. (2020).

Now, suppose M denotes the number of interarrival times between two
consecutive shocks till the system receives the first shock with interarrival
time between δ1 and δ2 with its magnitude larger than γ, or with interarrival
time being less than δ1 that causes the system to get out of the complete
working condition. Let S =

∑M
i=1Xi be the time that the system remains

in complete working condition. Then, to obtain the lifetime of S, we first
enumerate M as follows:

(M = m) = (X1 > δ2, · · · , Xm−1 > δ2, δ1 < Xm < δ2, Zm > γ)

∪(X1 > δ2, · · · , Xm−1 > δ2, Xm < δ1).
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Theorem 2. The system’s lifetime of S =
∑M

i=1Xi is given by

P (S = m)=

[
m+2δ1
δ1+1 ]∑
i=2

((
m− (i− 2)δ1 − 1

i− 1

)
−
(
m− (i− 1)δ1 − 1

i− 1

))
pi(1− p)m−iF i−1(γ)

+

[
m+(δ2−δ1)

(δ2−δ1)+1
]∑

i=2

((
m− (i− 2)(δ2 − δ1)− 1

i− 1

)
−
(
m− (i− 1)(δ2 − δ1)− 1

i− 1

))
× pi(1− p)m−iF i−1(γ)F̄ (γ). (2)

Proof. The proof of this Theorem is similar to Lorvand et al. (2020). Note
the difference between this Theorem and Lorvand et al. (2020)’s Theorem is
in the definition of conditions in our shock model.

Now, in the next Theorem, the lifetime of system in partially working
condition (T − S) is derived by using the definitions of N and M .

Theorem 3. With the assumptions mentioned in Theorem 1, the pmf of
T − S is presented by

P (T − S = m) =


∞∑

n=1

[
n+(δ2−δ1)

(δ2−δ1)+1
]∑

i=1

(
n−(i−2)δ1−1

i−1

)
pi(1− p)n−iF i−1(γ)F̄ (γ), m = 0,

(1− P (T − S = 0))P (
N∗∑
s=0

Xs = m), m > 0,

(3)

where P (
∑N∗

s=0Xs = m) is given by replacing k by k − 1 in Theorem 1.

Proof. The proof of this Theorem is the same as Lorvand et al. (2020). Note
the difference among this Theorem and Lorvand et al. (2020)’s Theorem is
the definition of conditions in the mixed δ-shock model.

Theorem 4. The probability generating function of a system’s lifetime is

φ(t) = E(t
∑N

t=0 Xi) =
pt

1− qt

{( F̄ (γ)pt((qt)
δ1−(qt)δ2 )

(1−qt)

1− pt(qt)δ2

1−qt − F (γ)pt((qt)
δ1−(qt)δ2 )
1−qt

)k

+

[
1−

(
F̄ (γ)

pt((qt)δ1−(qt)δ2 )
(1−qt)

1− pt(qt)δ2

1−qt

)k]
pt(1−(qt)δ1 )

1−qt

1− pt(qt)δ2

1−qt − F̄ (γ)pt((qt)
δ1−(qt)δ2 )
1−qt

}
.
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Proof. We know

E(t
∑N

i=0 Xi) = E(tX0)E(t
∑N

i=1 Xi).

Since X0 has the geometric distribution, E(tX0) = pt
1−qt and

E(t
∑N

i=1 Xi)=

∞∑
n=1

E(t
∑N

i=1 Xi |N = n)P (N = n)

=

∞∑
n=k

n−k∑
j=0

(
n− 1

k − 1

)(
n− k

j

)[
E(tX1 |δ1 < X1 < δ2)P (δ1 < X1 < δ2)F (γ)

]j
×
[
E(tX1 |X1 > δ2)P (X > δ2)

]n−k−j

×
[
E(tX1 |δ1 < X1 < δ2)P (δ1 < X1 < δ2)F̄ (γ)

]k
+

k−1∑
j=0

∞∑
n=j+1

(
n− 1

j

)[
E(tX1 |δ1 < X1 < δ2)P (δ1 < X1 < δ2)F̄ (γ)

]j
×
[
E(tX1 |X1 > δ2)P (X > δ2)

]n−j−1

E(tX1 |X1 ≤ δ1)P (X1 ≤ δ1)

=

(
E(tX1 |δ1 < X1 < δ2)P (δ1 < X1 < δ2)F̄ (γ)

1−E(tX1 |X1 > δ2)P (X1 > δ2)−E(tX1 |δ1 < X1 < δ2)P (δ1 < X1 < δ2)F (γ)

)k

+

E(tX1 |X1 ≤ δ1)P (X1 ≤ δ1)

[
1−

(
E(tX1 |δ1<X1<δ2)P (δ1<X1<δ2)

(1−E(tX1 |X1>δ2)P (X1>δ2)

)k]
1−E(tX1 |X1 > δ2)P (X1 > δ2)−E(tX1 |δ1 < X1 < δ2)P (δ1 < X1 < δ2)F̄ (γ)

=
pt

1− qt

{(
F̄ (γ) pt((qt)

δ1−(qt)δ2 )
(1−qt)

1− pt(qt)δ2

1−qt
− F (γ) pt((qt)

δ1−(qt)δ2 )
1−qt

)k

+

[
1−

(
F̄ (γ)

pt((qt)δ1−(qt)δ2 )
(1−qt)

1− pt(qt)δ2

1−qt

)k]
pt(1−(qt)δ1 )

1−qt

1− pt(qt)δ2

1−qt
− F̄ (γ) pt((qt)

δ1−(qt)δ2 )
1−qt

}
.

Remark 1. By using the derivation of Theorem 4 when t = 1, we can obtain
the mean lifetime of system as following
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E(T ) =
p

(q − 1)2

{2eγλp(q − 1)(qδ1 − 1)

(
(
e−γλp(−qδ1 + qδ2)− 1)

−1 + q + pqδ2
)k − 1

)
p(qδ1 − qδ2) + eγλ(−1 + q + pqδ2)

−
2eγλpq(−1 + qδ1)

(
− 1 + (

e−γλp(−qδ1 + qδ2)

−1 + q + pqδ2
)k
)

p(qδ1 − qδ2) + eγλ(−1 + q + pqδ2)

+

eγλp(−1 + q)qδ1
(
− 1 + (

e−γλp(−qδ1 + qδ2)

−1 + q + pqδ2
)k
)
δ1

p(qδ1 − qδ2) + eγλ(−1 + q + pqδ2)

−eγλp2(−1 + qδ1)(−1 + (
e−γλp(−qδ1 + qδ2)

−1 + q + pqδ2
)k)

×qδ1(−1 + (−1 + q)δ1) + (−1 + eγλ)qδ2(−1 + (−1 + q)δ2)

(p(qδ1 − qδ2) + eγλ(−1 + q + pqδ2))2

+eγλkp(−1 + q)(−1 + qδ1)(
e−γλp(−qδ1 + qδ2)

−1 + q + pqδ2
)k

× qδ1(−1 + (−1 + q)δ1) + qδ2(1 + pqδ1(δ1 − δ2) + δ2 − qδ2)

(qδ1 − qδ2)(−1 + q + pqδ2)(p(qδ1 − qδ2) + eγλ(−1 + q + pqδ2))

+

[
− p(qδ1 − qδ2)2 + eγλqδ1(pqδ1 + (−1 + q)(1 + k(1 + δ1 − qδ1)))

+qδ2(1− q − pqδ1 + k(−1 + q)(−1− pqδ1(δ1 − δ2) + (−1 + q)δ2))

]

×
(1 + eγλ(−1+q+pqδ1 )

p(−qδ1+qδ2 )
)−k

(qδ1 − qδ2)(eγλ(−1 + q + pqδ1) + p(−qδ1 + qδ2))

}
.

3 Markov Chain

In this section, we expanded the mixed δ-shock model to a dependent case.
Suppose that

pij = P (In = j|In = i), i, j = 0, 1,

and also, p0 = P (I1 = 0) and p1 = P (I1 = 1) = 1− P (I1 = 0).
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Theorem 5. The system’s lifetime is presented by

P (T = n) = p1p
n−1
11 I[n = k + 1]

+
k∑

j=0

(
k

j

) [
n+(δ2−δ1)(k+1)−(j+1)

(δ2−δ1)+1
]∑

i=k+1

(
i− 2

k − 1

)min(j,[
n−(i−k−1)(δ2−δ1)−(i+j+1)

(δ2−δ1)−1
])∑

l=0

× (−1)l
(
j

l

)(
n− (i− k − 1)(δ2 − δ1)− l(δ2 − δ1 − 1)− (k + 2)

i− k + j − 1

)
× p0p

n−2i
00 pi01p

i−1
10 F j−k(γ)F̄ k(γ)

+
k−1∑
h=0

[
n+δ1(h+1)

δ1+1
]∑

i=h+1

(
i− 1

h

)min(h,[
n−(i−h−1)δ1−(i+1)

δ1−1
])∑

l=0

(−1)l
(
h

l

)
×
(
n− (i− 1)δ1 − l(δ1 − 1)− (h+ 2)

i− h− 1

)
× p0p

n−2i
00 pi−2

01 pi−2
10 F i−h(γ)F̄ h(γ)[p00p11 + p01p10]

+
k∑

j=0

(
k

j

) [
n+(δ2−δ1)(k+1)−j

(δ2−δ1)+1
]∑

i=k+1

(
i− 2

k − 1

)min(j,[
n−(i−k−1)(δ2−δ1)−(i+j)

(δ2−δ1)−1
])∑

l=0

× (−1)l
(
j

l

)(
n− (i− k − 1)(δ2 − δ1)− l(δ2 − δ1 − 1)− (k + 2)

i− k + j − 2

)
× p1p

n−2i+1
00 pi−1

01 pi−1
10 F j−k(γ)F̄ k(γ)

+

k−1∑
h=0

[
n+(δ1)(h+1)

δ1+1
]∑

i=h+1

(
i− 1

h

)min(h,[
n−(i−h−1)δ1

δ1−1
])∑

l=0

(−1)l
(
h

l

)
×
(
n− (i− h− 1)δ1 − l(δ1 − 1)− (h+ 2)

i− h− 2

)
× p1p

n−2i
00 pi−2

01 pi−2
10 F i−h(γ)F̄ h(γ)[p00p11 + p01p10].

Proof. To prove this Theorem, we can obtain five ways for the mixed δ-
shock model as follows

(A)
1 1︸︷︷︸
y1=0

1 1︸︷︷︸
y2=0

. . . 1 1︸︷︷︸
yk−1=0

1 1︸︷︷︸
yk=0

,
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(B)
0 . . . 0︸ ︷︷ ︸
y1>0

1︸︷︷︸
Z1

0 . . . 0︸ ︷︷ ︸
y2>0

1︸︷︷︸
Z2

0 . . . 0︸ ︷︷ ︸
y3>0

1︸︷︷︸
Z3

. . . 1︸︷︷︸
Zi−2

0 . . . 0︸ ︷︷ ︸
yi−1>0

1︸︷︷︸
Zi−1

0 . . . 0︸ ︷︷ ︸
yi>0

1︸︷︷︸
Zi

,

(C) 
0 . . . 0︸ ︷︷ ︸
y1>0

1︸︷︷︸
Z1<γ

0 . . . 0︸ ︷︷ ︸
y2>δ1

1︸︷︷︸
Z2<γ

0 . . . 0︸ ︷︷ ︸
y3>δ1

1︸︷︷︸
Z3<γ

. . . 1︸︷︷︸
Zi−2<γ

0 . . . 0︸ ︷︷ ︸
yi−1>δ1

1︸︷︷︸
Zi−1<γ

0 . . . 0︸ ︷︷ ︸
0<yi<δ1

,

0 . . . 0︸ ︷︷ ︸
y1>0

1︸︷︷︸
Z1<γ

0 . . . 0︸ ︷︷ ︸
y2>δ1

1︸︷︷︸
Z2<γ

0 . . . 0︸ ︷︷ ︸
y3>δ1

1︸︷︷︸
Z3<γ

. . . 1︸︷︷︸
Zi−2<γ

0 . . . 0︸ ︷︷ ︸
yi−1>δ1

1︸︷︷︸
Zi−1<γ

0 . . . 0︸ ︷︷ ︸
yi=0

,

(D)
1︸︷︷︸
Z1

0 . . . 0︸ ︷︷ ︸
y1>0

1︸︷︷︸
Z2

0 . . . 0︸ ︷︷ ︸
y2>0

1︸︷︷︸
Z3

. . . 1︸︷︷︸
Zi−2

0 . . . 0︸ ︷︷ ︸
yi−2>0

1︸︷︷︸
Zi−1

0 . . . 0︸ ︷︷ ︸
yi−1>0

1︸︷︷︸
Zi

,

(E) 
1︸︷︷︸

Z1<γ

0 . . . 0︸ ︷︷ ︸
y1>0

1︸︷︷︸
Z2<γ

0 . . . 0︸ ︷︷ ︸
y2>δ1

1︸︷︷︸
Z3<γ

0 . . . 0︸ ︷︷ ︸
y3>δ1

. . . 1︸︷︷︸
Zi−2<γ

0 . . . 0︸ ︷︷ ︸
yi−2>0

1︸︷︷︸
0<yi−1<δ1

,

1︸︷︷︸
Z1<γ

0 . . . 0︸ ︷︷ ︸
y1>0

1︸︷︷︸
Z1<γ

0 . . . 0︸ ︷︷ ︸
y2>δ1

1︸︷︷︸
Z2<γ

0 . . . 0︸ ︷︷ ︸
y3>δ1

1︸︷︷︸
Z3<γ

. . . 1︸︷︷︸
yi−1=0

.

Form (A):
(1) y1 = y2 = · · · = yk = 0,
(2) Each sequence of (A) has the probability p1p11.

Form (B):
(1) y1 + y2 + · · ·+ yi = n− i,
(2) j out of shocks are in δ1 < yi < δ2 so that the magnitude of k shocks

is greater than γ and j − k shocks is less than γ. Also, i− j of shocks are in
yi > δ2.

Hence, the probability of (B) is p0pn−2i
00 pi01p

i−1
10 F j−k(γ)F̄ k(γ).

Form (C):
(1) y1 + y2 + · · ·+ yi = n− i,
(2) If yi = 0, then the probability is p0pn−2i+1

00 pi−2
01 pi−2

10 p11F
i−h(γ)F̄ h(γ),

(3) If 0 < yi < δ1, the probability is p0pn−2i
00 pi−1

01 pi−1
10 F i−h(γ)F̄ h(γ).

Hence, by simplifying the two probabilities above, the probability of (C)
is

p0p
n−2i
00 pi−2

01 pi−2
10 F i−h(γ)F̄ h(γ)[p00p11 + p10p01].
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Form (D):
(1) y1 + y2 + · · ·+ yi = n− i,
(2) k out of our shocks are in δ1 < yi < δ2, Z > γ and j − k of shocks

are in δ1 < yi < δ2, Z < γ.
Hence, the probability of (D) is

p1p
n−2i+1
00 pi−1

01 pi−1
10 F j−k(γ)F̄ k(γ).

Form (E):
(1) y1 + y2 + · · ·+ yi = n− i,
(2) If yi−1 = 0, the probability is p1pn−2i+1

00 pi−2
01 pi−2

10 p11F
i−h(γ)F̄ h(γ),

(3) If 0 < yi−1 < δ1, the probability is p1pn−2i
00 pi−1

01 pi−1
10 F i−h(γ)F̄ h(γ).

Hence, by simplifying the two probabilities above, the probability of (E)
is

p1p
n−2i
00 pi−2

01 pi−2
10 F i−h(γ)F̄ h(γ)[p00p11 + p10p01].

Finally, we can obtain our system’s lifetime with these Markov chain pat-
terns.

4 Computational Results

In this section, an example of this study is carried out to validate the analyti-
cal results obtained here. It is assumed that the interarrival times X1, X2, · · ·
and the magnitudes of shocks Z1, Z2, · · · are i.i.d. random variables having
the geometric and the exponential distribution with the probability p = 0.8
and mean 0.5, respectively, and that they are also mutually independent.

Figure 1 presents the pmf of system lifetime P (T = n) for δ1 = 2, δ2 = 4,
γ = 0.2, λ = 2, p = 0.8 with respect to k = 1, 2, 3, 4. As be observed, the
system’s lifetime decreases when k increasing. Figure 2 displays the plot of
P (T = n) with respect to γ = 0.2, 0.5, 0.8, 1. As shown, the system’s lifetime
decreases when γ increasing. Also, the plot of P (T = n) is shown in Figure
3 with respect to k = 2, 3, 4 which the system’s lifetime decreases when k
increasing. In addition, with increasing interarrival time [δ1, δ2] the lifetime
of the system increases. Figure 4 presents a plot of E(T ) for δ1 = 1, δ2 = 3,
γ = 1, λ = 2 with respect to k = 1, 2, 3, 4 and shows that the mean of
the system decreases when k increasing. Also in Figure 5, with increasing
values [δ1, δ2] and fixed width interarrival time, the mean of the system first
decreases and then increases.
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Figure 1. The P (T = n) when δ1 = 2, δ2 = 4, γ = 0.2, λ = 2, p = 0.8 and for different
values of k.

Table 1 gives the values of pmf P (T = n) for δ1 = 2, δ2 = 4, p = 0.8 and
λ = 2 with respect to different values of γ, k and n. As observed, the system’s
lifetime decreases when γ and n increase. When k increases, the system’s
lifetime is sensitive with respect to γ that for γ ≤ 0.5, the system’s lifetime
increases and for γ > 0.5, the system’s lifetime decreases. Table 2 gives the
values of E(T ) for λ = 2 with respect to different values of parameters. As
observed, the mean of system’s lifetime decreases when γ and p increase.
When k increases, the mean of system’s lifetime is sensitive with respect to
γ that for γ ≥ 0.5, the mean of system’s lifetime decreases and for γ < 0.5,
the mean of system’s lifetime increases. Also with increasing values [δ1, δ2]
and fixed width interarrival time, the mean of the system first decreases and
then increases.

5 Conclusion

In this study, a mixed δ-shock model with discrete-time is defined by com-
bining δ-shock and extreme shock models, such that it causes the failure of
a multi-state system in two ways: first, when k interarrival times between
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Figure 2. The P (T = n) when δ1 = 2, δ2 = 4, λ = 2, p = 0.8 and for different values of γ.

Table 1. The pmf of system lifetime P (T = n) with δ1 = 2, δ2 = 4 and different values of γ
ana p.

P (T = n)

k γ n = 3 n = 5 n = 6

1 0.2 0.0886 0.0084 0.0026

0.5 0.0915 0.0131 0.0045

0.8 0.0733 0.0137 0.0046

1 0.0700 0.0134 0.0044

2 0.2 0.2474 0.0281 0.0108

0.5 0.1380 0.0203 0.0096

0.8 0.0683 0.0113 0.0058

1 0.0428 0.0075 0.0039

3 0.2 0.2301 0.0693 0.0260

0.5 0.0693 0.0214 0.0100

0.8 0.0209 0.0055 0.0030

1 0.0094 0.0022 0.0013
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Table 2. The mean of system lifetime E(T ) for different values of parameters.
E(T )

k [δ1, δ2] γ p = 0.1 p = 0.2 p = 0.3

1 [1, 3] 0.2 47.555 14.964 8.059

0.5 44.878 13.617 7.155

0.8 38.888 11.640 6.090

1 34.329 10.324 5.447

[2, 4] 0.2 37.074 12.576 7.153

0.5 33.054 11.141 6.353

0.8 29.101 9.919 5.739

1 26.948 9.301 5.445

[5, 7] 0.2 27.509 10.735 6.674

0.5 25.527 10.091 6.376

0.8 24.194 9.688 6.199

1 23.600 9.516 6.125

2 [1, 3] 0.2 59.806 17.688 9.110

0.5 44.176 12.890 6.632

0.8 31.480 9.464 5.041

1 25.766 8.035 4.416

[2, 4] 0.2 42.434 13.761 7.622

0.5 32.278 10.811 6.193

0.8 26.561 9.246 5.463

1 24.442 8.675 5.200

[5, 7] 0.2 29.364 11.157 6.836

0.5 25.918 10.192 6.428

0.8 24.166 9.697 6.215

1 23.508 9.508 6.132

3 [1, 3] 0.2 61.091 17.679 8.983

0.5 37.847 11.202 5.888

0.8 25.603 8.1001 4.507

1 21.624 7.129 4.079

[2, 4] 0.2 42.390 13.682 7.578

0.5 30.439 10.400 6.049

0.8 25.372 9.004 5.384

1 23.735 8.537 5.153

[5, 7] 0.2 29.466 11.175 6.842

0.5 25.828 10.180 6.427

0.8 24.113 9.690 6.214

1 23.478 9.504 6.132
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Figure 3. The P (T = n) when γ = 0.2, λ = 2, p = 0.8 and for different values of k.

Figure 4. The E(T ) when δ1 = 1, δ2 = 3, γ = 1, λ = 2 and for different values of k.

two consecutive shocks with a magnitude of shock larger than threshold γ is
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Figure 5. The E(T ) when γ = 1, λ = 2 and for different values in [δ1, δ2].

in [δ1, δ2], and second, when the time among two consecutive shocks is less
than δ1.

By assuming that the shocks occur independently and randomly with
the magnitude Zi and the interarrival times among two consecutive shocks
Xi are i.i.d. random variables, we have derived explicit expressions for the
lifetime of the proposed mixed δ-shock model for three cases: (i) system’s
lifetime, (ii) when the system performs completely, and (iii) when the sys-
tem performs partially. Moreover, the generating function and mean of the
system’s lifetime have also been derived. Also, a Markovian chain has been
computed for this mixed δ-shock model. Finally, a computational result for
the lifetime and mean of the system has been presented.
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