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Comparing the Shape Parameters of Two
Weibull Distributions Using Records: A
Generalized Inference
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Abstract. The Weibull distribution is a very applicable model for the life-
time data. For inference about two Weibull distributions using records, the
shape parameters of the distributions are usually considered equal. However,
there is not an appropriate method for comparing the shape parameters in
the literature. Therefore, comparing the shape parameters of two Weibull
distributions is very important. In this paper, we propose a method for
constructing confidence interval and testing hypotheses about the ratio and
difference of shape parameters using the concept of the generalized p-value
and the generalized confidence interval. Simulation studies showed that our
method is satisfactory. In the end, a real example is proposed to illustrate
this method.
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1 Introduction

Chandler (1952) introduced the concept of record value and studied some
of its properties. Record data arise in a wide variety of practical situations;
for example industrial stress testing, meteorological analysis, sporting and
athletic events, and mining surveys. Properties of record data have been
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extensively studied in the literature. Ahsanullah (1995) and Arnold et al.
(1998) are two good references about records and their properties.

Let X1, X5,... be a sequence of independent and identically distributed
continuous random variables having the same distribution as the (popula-
tion) random variable X. The random variable X} is an upper record value
if it is greater than all preceding values X1, Xo,..., X;_1. The sequence of
record time {T,,,n > 0} is defined as follows:

To =1 with probability 1, and T, =min{i: X; > X7, ,} n>1

The sequence of upper record values is defined by {R,, = X1, ,n=0,1,...}.
By definition, X is taken as the first upper record value. In the same way,
an analogous definition can be provided for lower record values.

Suppose that we observe the first n+1 upper record values Ry, R1,..., Ry,
from the cumulative distribution function (cdf) Fyp(z) and the probability
density function (pdf) fg(x), where 0 is a vector of parameters. Then, the
joint distribution of the first n 4 1 record values (for more details see Arnold
et al., 1998, page 10) is given by

feT
f f9 rnH : ro <1y < - < Ty,

where R = (Ro, R1,...,Ry) and 7 = (ro,71,...,7T0).

Some researches have considered inference about the Weibull distribution
based on records: Hoinkes and Padgett (1994) discussed the maximum like-
lihood estimates (MLE’s) for both scale and shape parameters of a Weibull
distribution. Chan (1998). and Sultan and Balakrishnan (1999) presented
some inferential methods for the location-scale families of the distributions.
Exact confidence intervals and exact joint confidence regions for the param-
eters of a Weibull distribution are derived by Chen (2004). Wu and Tseng
(2006) proposed a computational approach for inference about the shape
parameter. Soliman et al. (2006) obtained the MLE’s for the parameters
of a Weibull distribution and developed a Bayesian analysis using record
values. Exact joint confidence regions for the parameters are also derived
by Asgharzadeh and Abdi (2011), meanwhile Teimouri and Gupta (2012)
proposed a confidence interval for nth upper/lower record value. Teimouri
and Nadarajah (2013) derived exact expressions for constructing bias cor-
rected MLE’s. When the shape parameters of two Weibull distributions are
equal, the stress-strength parameter of these distributions has a closed form.
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For such a case, Baklizi (2012) proposed some methods for estimating and
constructing confidence interval for the parameter of stress-strength reliabil-
ity based on record values. However, it seems that there is no method for
inference about the shape parameters of two Weibull distributions.

In this paper, we have considered constructing confidence interval and
testing the hypothesis about the ratio (and difference) of two shape pa-
rameters. This is an extension of the method proposed by Wu and Tseng
(2006) for the shape parameter of one Weibull distribution. For inference, we
have applied the concepts of generalized confidence interval and generalized
p-value introduced by Tsui and Weerahandi (1989) and Weerahandi (1993),
respectively. These approaches have been used successfully to address several
complex problems (see Weerahandi, 1995) such as inference about the mean
of a Weibull distribution (Krishnamoorthy et al., 2009), the stress-strength
reliability involving two independent Weibull distributions (Krishnamoorthy
and Lin, 2010), the stress-strength reliability in two-parameter exponential
distribution (Baklizi, 2013), inference on common mean of several normal
populations (Krishnamoorthy and Lu, 2003), inference on common mean of
several log-normal populations (Behboodian and Jafari, 2006) and compar-
ing two generalized variances of multivariate distributions (Jafari, 2012).

The rest of the present article is organized as follows: In Section 2, we
briefly review the concepts of generalized confidence interval and generalized
p-value. A method for inference about the ratio and difference of two shape
parameters is proposed in Section 3. In Section 4, we investigate the perfor-
mance of the proposed approach using a simulation study. An illustrative
example is proposed in Section 5.

2 Generalized p-value and Generalized Confidence
Interval

Let X be a random variable whose distribution depends on a vector param-
eters @ = (7, ), where 7 is a scale parameter of interest and A is a vector
of nuisance parameters. Let & denotes the observed value of X. A general-
ized pivotal quantity for 7 is a random quantity denoted by T'(X;x;7) and
satisfies the following conditions:

(i) The distribution of T'(X; x; 7) is free of any unknown parameters.

(ii)) The value of T(X;x;7) at X = x, i.e., T(x; x;7) is free of the nuisance
parameter A. In most cases, T (x;x;7) = T.
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Appropriate percentiles of T'(X;x;7) form a confidence interval for .
Specifically, if Ts denotes the 100§ percentage point of T'(X;x;7), then
(T2, T—/2) is a 100(1 — v)% generalized confidence interval for 7. Be-
cause, for a given x, the distribution of 7'(X;;7) does not depend on any
unknown parameters, its percentiles can be found.

In the above setup, suppose that we are interested in testing the hypothe-
ses

Hy:7<m1 OER Hi:7m> 1, (1)

for a specified known 7. The generalized test variable, denoted by T*(X; x; 7),
is defined as follows:

(i) The value of T*(X; x;7) at X = @ is free of any unknown parameters.

(ii) The distribution of 7% (X ; x; ) is stochastically monotone (i.e., stochas-
tically increasing or stochastically decreasing) in 7 for any fixed  and

A
(iii) The distribution of T*(X;x;T) is free of any unknown parameters.

Let t* = T*(x;x;79) denotes the observed value of T*(X;x;7) at
(X;7) = («;70). When the above three conditions in (i)-(iii) hold, the
generalized p-value for testing the hypotheses in (1) is defined as

p=P((T" (X;x;79) <t%), (2)

if T*(X;x;7) is stochastically decreasing in 7. In many situations,
T (X;x;7) = T(X;2;7) — 7, where T(X;x;7) is a generalized pivotal
variable. The test based on the generalized p-value rejects Hy when the gen-
eralized p-value is smaller than a given level v. However, the size and the
power function of such a test may depend on the nuisance parameters.

For more details on generalized p-values and generalized confidence in-
tervals, we refer readers to Weerahandi (1995).

3 Inference About the Parameters

The Weibull distribution with parameters « and § has the pdf

z\8
Fa)=1-¢&),  2>0, a>0, >0,
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and the cdf
2\
f(z)= %xﬂ_lef(a) , x> 0.

This distribution is a generalization of the exponential distribution and
the Rayleigh distribution. Also, Y = log(X) has extreme value (Gumbel)
distribution with parameters b = % and a = log(a), when X has a Weibull
distribution with parameters « and 5. It is a well-known distribution that
is widely used for lifetime models while having numerous varieties of shapes
and being very flexible such that it has both increasing and decreasing failure
rates. Based on this, the Weibull distribution is used for many applications
such as hydrology, reliability engineering, weather forecasting and insurance.

Suppose R; = (Rio, Ri1,...,Rini), © = 1,2 are the set of records cor-
responding to an independent and identically sequence of a Weibull distri-
bution with parameters a; and ;. In this section, we consider constructing
confidence interval for the ratio of the shape parameters, 7 = %, and testing
the one-sided hypotheses

Hy:m < m vs. Hy: 7> m, (3)
and the two-sided hypotheses
Hy:m=mg vS. Hy : 7 # m, (4)

where 7 is a specified value.
The cdf of the record values, R;, can be written as

Bm+l B m B; i 1
frr) = e (T
@; =0

) 0<rip <mip < -+ < Ting,

where r; = (r0,7i1,...,7in;). Therefore, (Rian?;o Rij> is a sufficient

statistic for (o, 5;). In addition, the MLE’s of the parameters «; and §; are
(see Soliman et al., 2006):

~ n; +1

Rini
B =

S, log ( RJ) (ni + 1) %

Based on the equality of shape parameters of two Weibull distributions,
i.e. B = P2 = [, the joint density function of these record values can be
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written as

fratnat2 _(mnl 5_(7"2”2

)ﬁ - T 1
T T
§=0 h=0

fRiRy(T1,72) = a,f(nﬁ-l) aéﬂ(nm) ¢

Therefore, (le,Rgm, H}io Ri; [T Rgh) is a sufficient statistic for (a1,
ag, ), and the MLE’s of the parameters oy, ag and [ are (see Baklizi, 2012):

ni +no + 2 G — Rz’ni
ni 1 Rlnl no 1 R2n2 ’ v i
Yjmolog () + 22520 log (7 (n; +1)7

Wu and Tseng (2006) has proposed an approach for inference about the
shape parameter of a Weibull distribution. We will use this method for
inference about 7, and propose a generalized confidence interval for this
parameter as well as a generalized test variable for testing the hypotheses in
(3) and (4).

Let

B =

i=1,2. (6)

ni - pbi
Wi (Bi) = 2= Ry 5 i=1,2.

(ni +1) (H?;o Rij) e
Wu and Tseng (2006) show that W;(;) is an increasing function with respect
to B;. Also, the distribution of W; (53;) does not depend on parameters «;
and F;. In fact, W;(5;) is distributed as

* Jj=0""1j
Wk = —,

7
i x| Ml
(ni +1) (Hq]%:o RZ-]-) "
where R}, R}, ..., R}

in, is the record values from the standard exponential
distribution. However, the exact distribution of W;(/3;) is very complicated,
and its percentiles are obtained using the Monte Carlo simulation.

Let

Srior SRy
g (B) = =0y W (7

By
1

it D (Iors) ™ u et D(ITZo 7)™

where 7;; is the observed value of R;;,7 =1,2,5 = 0,1,...,n;,and R}y, R}, . ..
R}, are the record values from the standard exponential distribution.
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Theorem 1. Let T; be the solution of the following equations with respect to
Bi:

g (Bi) =0, i=1,2. (8)
Then

1. T; is unique.

7. T; is a generalized pivotal variable for [3;.

1
Proof. i. Consider By = ;L3 Y274 1y and Gf = ([T} Ry) ™ i = 1,2
are the arithmetic mean and geometric mean of R, R}, .. RY, 16 is well-
known G} < R}. Therefore,
. G; .
l_lglo g (Bi) =1—=; <0, lim g; (;) = oo.

Also, g;(8;) is an increasing function with respect to 3; (for more deltalis see
Wu and Tseng, 2006). So, T; is unique.

ii. It is obvious using the substitution approach described by Weerahandi
(2004), page 24. O

Based on the Theorem 1, it can be understood that i) the observed value
of T; is B; and does not depend on the nuisance parameter, «;, and ii) the
distribution of 7; does not depend on any parameter. Now define

G—E.

(9)
Therefore, G is a generalized pivotal variable for = and can be used for con-
structing confidence interval for this parameter. A generalized test variable

can also be defined as
G"=G —.

The cdf of G* is Fg« () = Fg(z+m), where F(+) is the cdf of the generalized
pivotal variable G in (9) and does not depend on any parameter. Therefore,
Fg+(x) is an increasing function with respect to 7, and G* is stochastically
decreasing with respect to m, and the generalized p-values for testing the
one-sided hypothesis in (3) and (4) are

p=P(G* <0|my) = P(G < mp), (10)
p=2min{P(G < m), P(G > )}, (11)
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respectively. This generalized confidence interval and the generalized p-
values can be obtained using Monte Carlo simulation. To do this, an al-
gorithm is given in Section 4.

Remark 1. A generalized pivotal approach can also be defined for difference
between two shape parameters, 51 — 82 as H =11 — Ts.

4  Simulation Study

A simulation study is performed to assess the accuracy of the proposed gen-
eralized procedure. We evaluated the coverage probability and the expected
length of the 95% generalized confidence about = = /31/82. To do this, with-
out loss of generality, we set a1 = ag = 1 and use Monte Carlo simulation
by the following algorithm:

Algorithm 1. For given S and (o,

1. Two sets of records, 7o, ..., n,, (¢ = 1,2) were generated from the
Weibull distributions.

2. Generate the record values Ry, ..., R, from the standard exponential
distribution.

3. Write the equations g;(3;), i = 1,2 in (7) and obtain T; by solving the
equations in (8).

4. Calculate G = T /T».
5. Repeat Steps 2-4, M = 10, 000 times and obtain the values G1, . ..., G.

6. Sort the values of Gy, denoted by G(yy,...,G ). The 100(1 — )%
generalized confidence for 7 is [G(v My2)s G((1=v/2) M)].

7. Set D; =1 if G(,YM/Q) < % < G((1—7/2)M)’ otherwise D; = 0.

8. Repeat Steps 1-7, N = 10000 times. Then coverage probability is
1 N
~ e Di-
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For 8o = 2, and some selected values for (1, ni, and ne, the coverage
probabilities and the expected lengths of the generalized confidence interval,
with 10000 repetition, are given in Table 1. Empirically, we can conclude

that

i.

ii.

iii.

iv.

The coverage probability of our method is close to the nominal confi-
dence coefficient.

For fixed n; and ns, the expected length of the method is increasing in
the parameter shape, (.

For fixed 1 and for fixed ni, the expected length of the method is
decreasing in no.

For fixed 51 and for fixed no, the expected length of the method is
decreasing in nj.

Table 1. Empirical coverage probabilities and expected lengths of the 95%
generalized confidence interval.

B1
ni, N2 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Empirical 3,3 0.946 0.952 0.953 0.946 0.948  0.949 0.952
Coverage 3,7 0.952  0.948 0.951 0.953 0.954 0.947  0.948
3,14 0.950 0.952  0.951 0.948 0.953  0.946 0.944

7,3 0.956  0.948 0.952 0.946 0.953 0.954 0.951

7,7 0.953 0.951 0.948 0.950 0.953 0947  0.945

7,14 0.952 0.952 0.953 0.947 0.946 0.953 0.954

14,3 0.945 0.952 0.954 0.950 0.947  0.949 0.952

14,7 0.948 0.953 0.945 0.949 0.952 0.954 0.944

14,14 0.951 0.948 0.950 0.950 0.949  0.946 0.953

Expected 3,3 2.567 4.372 5440 6.306 9.438 11.664 24.562
Length 3,7 1.266  2.681 3.503 4.179 5.244 9.541 13.034
3,14 0.987 2463 2.221 3443 3.851 6.891  11.660

7,3 1.567 2.78 4.116 5.200 5.852 10.089 15.026

7 0.908 1.680 2.157 2.705 3.390  5.169 8.050

7,14 0.641 1.306 1.648 2.025 2.904  3.958 6.460

14,3 1.418 2.608 3.522 4.425 5310 7.814 13.786

14,7 0.711 1.521 1.698 2125 3.062 4.191 7.348

14,14 0.523 1.077 1.207 1.691 2.040 2.913 5.195
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5 An Illustrative Example

In this section, we have consider a real data, due to Nelson (1982), concerning
the data on time to breakdown of an insulating fluid between electrodes at
two voltages of 34 and 36 kV (minutes). This data set is also given by Lawless
(2003, page 3). The times to breakdown at voltages of 34 kV and 36 kV are
given bellow;

Voltage of 34 kV: 0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50
8.27 3391 32,52 3.16 4.8 278 4.67 1.31

12.06 36.71 72.89

Voltage of 36 kV: 1.97 0.59 258 1.69 2.71 2550 0.35 0.99
3.99  3.67 207 096 535 290 13.77

Therefore, the upper record values at voltage of 34 kV are 0.96, 4.15, 8.01,
31.75, 33.91, 36.71, 72.89, and at voltage of 36 kV are 1.97, 2.58, 2.71, 25.50.

A model suggested by engineering considerations is that, for a fixed volt-
age level, the time to breakdown has a Weibull distribution (Soliman et
al., 2006). Based on (5), the MLE’s of the parameters are B = 0.5990,
32 = 0.5639, a1 = 2.8303, &g = 2.1822, and their standard errors using the
Hessian matrix are s.e.(f1) = 0.2264, s.e.(82) = 0.2820, s.e.(a1) = 3.9072,
s.e.(Gg) = 3.3074.

The %95 generalized confidence interval for m = /31 /2 is (0.2550,4.9537).
At the same time, %95 generalized confidence interval for 51 — (2 is (—0.7849,
0.7283). Also, we consider testing the equality of shape parameters of two
Weibull distributions, i.e. Hy : 81 = B2 vs. Hy : (1 # P2. Using the
Algorithm 1 with my = 1, the generalized p-value for testing this hypotheses
is 0.9830. So, it can be concluded that the shape parameters of two Weibull
distributions are equal, i.e. f; = (o = [ at level 0.05. In this case, the
MLE’s of all parameters are B = 0.5857, &1 = 2.6297, & = 2.3916, and their

~

standard errors are s.e.(5) = 0.1766, s.e.(d1) = 3.1333, s.e.(42) = 2.66009.
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