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Abstract. In this article, we propose a new method for selecting level de-
pendent threshold in wavelet shrinkage using the empirical Bayes framework.
We employ both Bayesian and frequentist testing hypothesis instead of point
estimation method. The best test yields the best prior and hence the more
appropriate wavelet thresholds. The standard model functions are used to
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1 Introduction
There are several ways to consider prior information in a prior distribution
which is the key of Bayesian inference. In Parametric Empirical Bayes (PEB)
method, the prior distribution which belongs to a parametric family is deter-
mined by estimating prior parameters (hyperparameters) (Martiz and Lwin,
1989, e.g. see). This method employs marginal likelihood of hyperparameters
given observations which yields a complete data based method of choosing
the prior parameters. This approach seems so far unique in combining the
∗ Corresponding author



134 Parametric Empirical Bayes Test and Its Application . . .

properties of fast computation, good theoretical properties and performance
in computation of wavelet thresholds (Johnstone and Silverman, 2005).

Consider the non-parametric regression model:

yi = f(ti) + εi, i = 1, . . . , n,

where the ti’s are equally spaced points, εi are independently distributed as
N (0, σ2ε) and f is an unknown function to be recovered through the observa-
tions. Recovering f opens a wide class of solution called spatially adaptation.
A heuristic solution to spatial adaptation has been put forward by Donoho
and Johnstone (1994) and some other methods have been discussed therein.
In a special class of soft and hard thresholds, Donoho and Johnstone (1994)
explore the admissible level thresholds. Their wavelet-based method for esti-
mation of f proceed by taking the empirical wavelet coefficients of the data yi
and replace small magnitude wavelet coefficients with zero and keep or shrink
the other coefficients. The resulting coefficients are denoised and then trans-
form back to obtain the estimate. The quality of estimation is quite sensitive
to the choice of threshold, with the best choice being dependent on the prob-
lem setting. Abramovich and Benjamini (1996) present a multiple testing to
construct a proportion of the universal threshold for each coefficients based
on the false recovery rate. Ogden and Parzen (1996) employ change-point
approaches and consequently Kolmogorov-Smirnov test to keep or eliminate
wavelet coefficients by considering the position of the coefficients as well as
their magnitudes. Bayesian approach for adaptation has been studied by
Chipman et al. (1997), Clyde et al. (1998) and Silverman (1999) which
they all consider prior as a mixture of a Gaussian density and a Dirac mass
function at zero. In both theoretically and practically points, the distribu-
tion of the wavelet coefficients has tails heavier than Gaussian, so, the heavy
tailed density is more appropriate. Johnstone and Silverman (2005) present
a class of empirical Bayes methods for level dependent threshold selection
in wavelet shrinkage using a heavy tailed mixture prior. The remaining is
computing of a posteriori statistic such as mean, median and maximum a
posteriori with respect to loss function. Although the posterior mean is the
most popular a posteriori characteristics, practical facts may induce some
other statistics, for instance Abramovich et al. (1998) investigate the use
of the posterior median. Many methods for choosing thresholds have been
mentioned by Vidakovic (1999), Chapter 6.

According to the hyperparameter determination for wavelet coefficients,
we use testing approach, proposed by Aminghafari and Mohammadpour

c⃝ 2012, SRTC Iran



M. Shokripour, A. Mohammadpour and M. Aminghafari 135

(2006), to select the best prior which considerably improves the inference
about the wavelet shrinkage, for convenience sake, this method is called
PEB test.

The paper is organized as follows. In Section 2, we find the best test
function using both frequentist and Bayesian criteria which lead to the best
choice for prior. Section 3 contains an introduction of the prior for wavelet
coefficients and procedure of selecting the best prior is presented. The last
section is dedicated to the comparison of proposed method with traditional
PEB approach.

2 Parametric Empirical Bayes Test
In this section, we find the best test function in the framework of PEB
assumptions. Let X be a random variable, f(x|θ) the probability density
function (pdf) of X and θ has a prior pdf π(θ|τ), where τ is the only unknown
hyperparameter. First, we test simple versus simple hypothesis according to
the following equivalent hypotheses:{

H0 : τ = τ0
H1 : τ = τ1

or
{
H0 : π(θ|τ) = π(θ|τ0)
H1 : π(θ|τ) = π(θ|τ1)

. (1)

Using marginal pdf of X, m(x|τ), we can recover π(θ|τ) and vice versa, i.e.,

m(x|τ) =
∫
R
f(x|θ) π(θ|τ)dθ and π(θ|τ) =

∫
R
π(θ; τ |x)m(x|τ)dx,

where π(θ; τ |x) ∝ π(θ|x)π(θ|τ). So, (1) may replace by:

{
H0 : τ = τ0
H1 : τ = τ1

or
{
H0 : m(x|τ0) =

∫
R f(x|θ)π(θ|τ0)dθ = m0(x)

H1 : m(x|τ1) =
∫
R f(x|θ)π(θ|τ1)dθ = m1(x)

, (2)

Mentioned hypotheses testing in (2) is equivalent to prior selection, hence
the best prior is given by the best test.

Now, let (X1, θ1), . . . , (Xn, θn) be n independent copies of (X, θ), where
only Xi’s are observable. Note that, recovering θ = (θ1, . . . , θn) by x =
(x1, . . . , xn) is not possible, but we can recover π(θ|τ) using x. Thus, the
problem of hyperparameter determination reduces to a classical hypothesis
testing.
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In the case of simple null versus simple alternative hypothesis, the best
test, which is the most powerful (MP) test, is derived via the Neyman-
Pearson lemma. To determine the best test function, ϕ(x), it suffices to
minimize the probability of type II error, β, for the fix level of probability of
type I error, α. Formally,

α =

∫
Rn

ϕ(x) m0(x) dx = E(ϕ(X);H0),

β =

∫
Rn

(1− ϕ(x)) m1(x)dx = E(1− ϕ(X);H1), (3)

where m0(x) and m1(x) are marginal pdfs under hypotheses H0 and H1,
respectively and X = (X1, . . . , Xn).

In the general case where the hypothesis are composite, there is no MP
test. However, we can find the best test in the class of unbiased test functions
and the best test is the uniformly most powerful unbiased (UMPU) (e.g. see
Lehmann and Romano, 2005).

For two mentioned cases, the hyperparameter determination returns to
test hypotheses. When there is no preferable hypothesis since there is no idea
about the true prior, we could assume that the probabilities of two types of
errors are equal. In this situation, if there is an MP test, it is also minimax,
see also (Fergusen, 1967). The following example is devoted to the first case.

Example 1. Let x be an observation from X|θ with normal pdf, N (θ, 1),
where θ is a real unknown mean parameter. Consider testing the following
hypotheses:


H0 : π(θ) =

1
2e

−|θ|

H1 : π(θ) =
1√
2π

[
1−|θ|{1−Φ(|θ|)}

ϕ(θ)

] or


H0 : θ ∼ L(0, 1)

H1 : θ ∼ quasi − C(0, 1)
,

where Φ and ϕ are the standard normal cumulative distribution and normal
density, respectively and L(µ, ν) and quasi-C(µ, ν), which described in John-
stone and Silverman (2005) denote Laplace and quasi-Cauchy distributions,
respectively with location parameter µ and scale parameter ν. For testing
hypotheses like (2), we must calculate the marginal distribution for each

c⃝ 2012, SRTC Iran



M. Shokripour, A. Mohammadpour and M. Aminghafari 137

hypothesis, which yields H0 : m0(x) =
1
2e

1
2 [ex{1− Φ(x+ 1)}+ e−xΦ(x− 1)]

H1 : m1(x) =
1√
2π
x−2

[
1− e

−x2

2

]
.

The best test function based on n observations x = (x1, . . . , xn) is given by

ϕ(x) =


1 if

∏n
i=1

1
2
e
1
2 [exi{1−Φ(xi+1)}+e−xiΦ(xi−1)]

1√
2π

x−2
i

[
1−e

−x2
i

2

] 6 k

0 otherwise

.

The test statistic has the MLR properties in
∑n

i=1 |Xi|, So we have:

ϕ(x) =


1 if

∑n
i=1 |xi| > k∗

0 if
∑n

i=1 |xi| 6 k∗
,

where k∗ is calculated by (3). Figure 1 indicates the probabilities of two
types of errors for this hypothesis.

Figure 1. Comparing the probabilities of errors in the proposed method of hyperparameter determi-
nation for different sample sizes.
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Bayes Method
In the Bayesian framework, testing hypothesis is based on Bayes factor, dis-
cussed in Robert (2001), p. 227, which is given by

BF01 =
k0(x)

k1(x)
,

where ki(x) =
∫
R m(x|τ) gi(τ)dτ , i = 0, 1 and g1(τ), g2(τ) are priors for

hyperparameter under both hypotheses. The Bayes test function for (1) is
given by

ψ(x) =

{
1 if BF01 <

π1
π0

0 if otherwise , (4)

where πi, i = 0, 1 are priors probabilities related to the hypotheses H0 and
H1, respectively.

We compare the proposed method in the classical and the Bayesian frame-
work for hyperparameter determination. Let Xi|θi ∼ N (θi, 1), i = 1, . . . , n
and θi ∼ N (τ, σ2). Consider following hypotheses:{

H0 : θ ∼ N (τ0, σ
2)

H1 : θ ∼ N (τ1, σ
2)

or
{
H0 : τ = τ0
H1 : τ = τ1

,

where τ0 and τ1 are known constants.
First, σ2 considered to be known. The best test function in the proposed

method is given by

ϕ1(x) =

1 if
√
n(x̄−τ0)√

2
> z1−α

0 if
√
n(x̄−τ0)√

2
< z1−α

,

where x̄ =
∑n

i=1 xi and z1−α is the 100(1− α)th percentile of normal distri-
bution. The Bayes test function based on (4) is given by

ψ1(x) =

{
1 if exp{n

2 (τ0 − τ1)x̄− n
4 (τ

2
0 − τ21 )} < 1−π0

π0

0 if exp{n
2 (τ0 − τ1)x̄− n

4 (τ
2
0 − τ21 )} > 1−π0

π0

.

Second, for unknown σ2, the best test function in the proposed method is
given by

ϕ2(x) =

1 if
√
n(x̄−τ0)

s > tn−1,1−α

0 if
√
n(x̄−τ0)

s < tn−1,1−α

,

c⃝ 2012, SRTC Iran



M. Shokripour, A. Mohammadpour and M. Aminghafari 139

where x̄ and s are the sample mean and standard deviation, respectively,
and tn−1,1−α is the 100(1− α)th percentile of Student’s t-distribution. In
the Bayesian approach, we must choose π0 and prior for σ2. Consider σ2 ∼
Iχ2(n − 1, σ20) which is inverse chi-square conjugate prior, the Bayes test
function is given by

ψ2(x) =

1 if
∑n

i=1 ln
(n−1)σ2

0+(xi−τ1)2

(n−1)σ2
0+(xi−τ0)2

< 2
n ln(1−π0

π0
)

0 if
∑n

i=1 ln
(n−1)σ2

0+(xi−τ1)2

(n−1)σ2
0+(xi−τ0)2

> 2
n ln(1−π0

π0
)
.

Given same sample sizes, the probabilities of two types of errors for two
approaches are shown in Figure 2. We assume that there are some evi-
dences about true prior, i.e., it can be considered that α = 0.1, 0.01 and
π0 = 0.9, 0.99. The first two rows of this figure dedicate to the known σ2

and the rest are considered by unknown σ2. In the Bayesian approach, the
probabilities of errors can be approximated by a Monte Carlo simulation.

If we have some evidence about prior, we can conclude that the Bayes
method is accepted wrongly more than the proposed method, especially in
small sample size.

3 An Application to Wavelet Thresholds
Consider the non-parametric regression model:

yi = f(ti) + εi, i = 1, . . . , n,

where the ti’s are equally spaced points, εi are Gaussian white noise with
unknown variance σ2ε and f is an unknown function to be recovered through
the observations, yi. The standard wavelet method to remove noise and
estimate function f , is based on thresholding the discrete wavelet transform
of observations and then transforming back to obtain the estimation. Wavelet
thresholding (Donoho and Johnstone, 1994; Donoho et al., 1995) is a popular
method for noise reduction.

The discrete wavelet transform (DWT) of y = (y1, . . . , yn)
′ using an or-

thonormal wavelet at level J can be written as follows:

ĉJ,k = cJ,k + εJ,k k = 1, . . . , 2J ,

d̂j,k = dj,k + εj,k k = 1, . . . , 2j , j = 1, . . . , J, (5)
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Figure 2. Comparing the probabilities of errors in the proposed and the Bayesian methods of hy-
perparameter determination، we assume that α = 0.1, 0.01 and π0 = 0.9, 0.09 for different
τ1 = 0.5, 1, 1.5 when τ0 = 0 and σ2

0 = 1. Top two rows: σ2 known. Bottom two rows: σ2

unknown.
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where d̂j,k and ĉj,k are the empirical wavelet and scaling coefficients of noisy
data y and dj,k and cj,k are the wavelet and scaling coefficients of function
F , respectively and εj,k are Gaussian white noise with the same variance
as εi due to the orthogonality of DWT. The empirical scaling coefficients
ĉj,ks are kept intact because they contain important components about the
underlying function.

According to the equations (5), we have d̂j,k ∼ N (dj,k, σ
2
j ). To obtain

Bayesian shrinkage, we should consider suitable prior for the wavelet coeffi-
cients of f , dj,k. Vidakovic and Ruggeri (2001) and Johnstone and Silverman
(2005) have considered a particular mixture prior to this problem. Under this
prior the djk are independently distributed with

π(dj,k) = ϵjγ(dj,k) + (1− ϵj)δ(0),

a mixture of Dirac mass function at zero and a density γ. They apply pos-
terior mean, posterior median or maximum a posteriori for wavelet shrink-
age estimation. In the proposed framework, we apply hypotheses testing
to choose the best prior and thresholding the wavelet coefficients. We sup-
pose two different heavy tailed distributions which are double exponential
(Laplace), γ1, and quasi-Cauchy, γ2 as follows:

γ1(dj,k) =
1

2
e−|dj,k|,

γ2(dj,k) =
1√
2π

{
1− |dj,k|

1− Φ(|dj,k|)
ϕ(dj,k)

}
. (6)

Afterwards, we investigate the testing hypothesis to achieve the best prior.
We could neglect the effect of sampling variability in the estimation of the
noise variance at level j by defining zk =

d̂jk
σj

and apply the approach to
this sequence. The estimated wavelet coefficients of the discrete wavelet
transform of the sequence f(ti) are then given by:

d∗jk = σj f̂

(
djk;

d̂jk
σj

)
.

The three hypotheses are performed as follows:{
H0 : π(dj,k) = δ(0)
H1 : π(dj,k) = γ1(dj,k)

,

{
H0 : π(dj,k) = δ(0)
H1 : π(dj,k) = γ2(dj,k)
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and
{
H0 : π(dj,k) = (1− ϵj)δ(0) + ϵjγ1(dj,k)
H1 : π(dj,k) = (1− ϵj)δ(0) + ϵjγ2(dj,k)

(7)

where γ1(dj,k) and γ2(dj,k) are given in (6), these hypotheses are equivalent
to the following hypotheses, respectively.

H0 : m0(d̂j,k) =
1
2 exp{

√
2|d̂j,k|}

H1 : m1(d̂j,k) = exp(−|d̂j,k|)− 1√
2
exp(

√
2|d̂j,k|),

H0 : m0(d̂j,k) =
1√
2π

{
1− |d̂j,k|

1−Φ(|d̂j,k|)
ϕ(d̂j,k)

}
H1 : m1(d̂j,k) = (2π)−

1
2 d̂−2

j,k

{
1− exp

(
− d̂2j,k

2

)}
and

H0 : m0(d̂j,k) = (1− ϵj)
1
2e

−|d̂j,k| + ϵjg1(d̂j,k)

H1 : m1(d̂j,k) = (1− ϵj)(2π)
− 1

2

{
1− |d̂j,k|

1−Φ(|d̂j,k|)
ϕ(|d̂j,k|)

}
+ ϵjg2(d̂j,k)

(8)
where g1 and g2 are

g1(d̂j,k) =
exp{−|d̂j,k|}

exp{−
√
2|d̂j,k|}

,

g2(d̂j,k) = (2π)−
1
2 d̂−2

j,k

{
1− exp

(
−
d̂2j,k
2

)}
.

Therefore, by the Neyman-Pearson lemma, these tests are obtained as follows

m1(d̂j,k)

m0(d̂j,k)
> C0.

We can deduce from that in these three tests,

|d̂j,k| > C1,

where C1 > 0 is a constant determined by test size

P (|d̂j,k| > C1;H0) = α. (9)
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So the test function can be written as follows

ϕ∗(d̂j,k) =

{
1 if |d̂j,k| > C1

0 if |d̂j,k| < C1

.

We reject H0 in (7) if |d̂j,k| is greater than a threshold. When the hypothesis
H0 is not rejected in (7) or equivalently in (8), |d̂j,k| comes from noise and
it is discarded otherwise it is retained (see Vidakovic, 1999, p. 202). This is
exactly ordinary shrinkage or threshold rule when the threshold is selected
based on α and observation.

4 Comparing Methods
In this section, we apply the proposed method to select threshold in the
wavelet denoising context of the simulated examples built from well known
signals introduced in Antoniadis et al. (2001). The following three methods
are compared:

1. Laplace(median): Empirical Bayesian method with a Laplace prior and
compute the median of posterior as an estimator proposed in Johnstone
and Silverman (2005).

2. Quasi-Cauchy(median): Empirical Bayesian method with quasi-Cauchy
prior and compute the median of posterior as an estimator proposed
in Johnstone and Silverman (2005).

3. FDR: The False Discovery Rate method is derived from the principle of
controlling the false discovery rate in simultaneous testing hypothesis
and has been studied in Benjamini and Hochberg (1995).

4. PEB test: Using Parametric Empirical Bayes Test, hard thresholding
is performed using obtained threshold in equation (9).

The performance of each method is measured by the error sum of square
(ESS) over 100 runs:

ESS =
1

100σ̂2ε

100∑
k=1

N∑
n=1

{fk(n)− y̌kn}2.
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The performance results are computed for four standard samples, bumps
(bmp), blocks (blk), heavysin (hea) and doppler (dop), describe in John-
stone and Silverman (2005) which are present in Table 1, respectively. In
all methods, the variance should be estimated in each case. We see that, for
heavysin and Doppler signals with high noise, the proposed method has the
best performance and for the bumps signal has the worst performance. In the
PEBT method we could use a prior for the variance with fixed mean (recall
that variance has an exponential distribution with parameter 1). However,
for the other methods, the variance should be estimated in each case. Also,
we can use Generalized Likelihood Ratio Test (GLRT) to find threshold in
the previous section when the hyperparameter of variance prior is unknown.
We can conclude that in all four signals the proposed method work at least
as good as the FDR method except in bump signal.

Table 1. Performance of the three methods: Average over 100 replications of summed
squared errors over 1024 points for various models and methods.

High noise Low noise

Method bmp blk dop hea bmp blk dop hea

Laplace (median) 171 176 93 41 212 164 109 57
Quasi-Cauchy (median) 177 185 97 40 221 169 115 56
FDR (0.05) 169 173 93 39 223 163 110 53
PEB test 173 178 90 38 220 166 110 52
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