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Abstract. In this paper we consider a general setting of skew-symmetric
distribution which was constructed by Azzalini (1985), and its proper-

ties are presented. A suitable empirical estimator for a skew-symmetric

distribution is proposed. In data analysis, by comparing this empirical

model with the estimated skew-normal distribution, we show that the

proposed empirical model has a better fit in density estimation, via

some simulations.
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1 Introduction

A family of skew-symmetric distributions was introduced by Azzalini (1985),
in the following form

o(z; ) = 20(2)P(\2); —00 < Z2 < 00 (1)

where ¢(-) and ®(-) denote the standard normal density and cumulative
distribution function, respectively. He called this distribution “skew-normal
distribution”. The parameter A\ varies in the real line and composes the
skewness.

Some authors used other symmetric distributions like Student’s ¢, Cauchy,
Laplace, and Logistic for constructing some skew-symmetric distributions,
(see e.g., Gupta et al., 2002).
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A general form of skew distributions generated by the normal kernel was
introduced by Nadarajah and Kotz (2003). This kind of skew distributions
are in the form 2f(z)G(Ax), where f(-) is taken to be the standard normal
density function while the cumulative distribution function G(-) is taken to
come from Student’s ¢, Uniform, Cauchy.

This paper is concerned with another general class of skew distributions
of the form

fx(x) =2f(x)G(A\x); —00 < x <00 (2)

where f(-) is any symmetric density function and G(-) is a cumulative dis-
tribution function (cdf) of a symmetric random variable. The construction
of these skew-symmetric distributions is due to Azzalini (1985). Obviously
this class contains skew-normal distribution and the other normal kernel
distributions.

These classes of skewed distributions are suitable for the analysis of data
with unimodal empirical distribution functions having some skewness, which
is often occurring in data analysis. Also these distributions can be used in
studying robustness and Bayesian estimation (see e.g., Arnold et al., 1983,
and Mukhopadhyay and Vidacovic, 1995).

In section 2, we present the structural and important properties of a
skew-symmetric distribution with density (2). A method for constructing a
suitable empirical skew density function in the special form of (2) is proposed
in section 3. Then, we show that in data analysis, sometimes, the model (2)
is more appropriate than (1) as a density function of the data. Also, this
preference is shown via some simulations.

2 Some Properties of the General Skew-symmetric
Distribution

A random variable X ¢ ) is said to have a skew distribution with functional
parameters f, G and fixed parameter A, if its probability density function
(pdf) is given by

fx(x) =2f(z)G(\x); —00 <1 < 00

where f and ¢ are two symmetric pdfs and F and G are their cdfs. The
parameter A varies in the real line and regulate the skewness. We use the
notation SD(f, G, ) for this distribution and we can extend the above defi-
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nition to a location-scale family.

Definition 1. The location-scale skew distribution is defined as that of
Z =pu+o0X, where X ~ SD(f,G,\), p € Rand o > 0. Its density function
is given by

fz<z>=§f<z_“>G(Az_“>; vz € R (3)

(oa o

we denote this distribution by SD(u, o; f, G, \).
In the following propositions, we present some structural properties of
the SD(f, G, \).

Proposition 1. The following are two representations of a SD(f,G,\)
random variable:

1. Let U be a random variable with pdf f(-) and conditionally on U =
u, Sy = 1 with probability G(Au) and Sy = —1 with probability
1 — G(\), Then X = SyU ~ SD(f, G, \).

This result is due to Azzalini (1986).

2. Let U andV be two independent random variables with symmetric pdfs
f, g, and cdfs F,G, respectively. Then the conditional distribution of U
given V< AU is SD(f,G, \).

Proof. We only prove part (2) of the proposition. Under the assumptions
of part (2), we can find the conditional distribution of U given V' < AU,

A Fu)g(v)dv
fuvaw(u) = / P(V <g)\U)

_ fw)G(w)

P(V < \U)
_ fwGw)

fj;o P(V < M) f(u)du
_ wGw)

[ G f(u)du
=2f(u)G(Au).

It can be easily found the following properties of SD(f, G, \):

Proposition 2. Let U andV be two independent random variables with
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symmetric pdfs f, g, and cdfs F, G, respectively and X7 g  hasa SD(f,G, \).
We can conclude the following results:

d
(a) Xpgo=U

d
(b)  —Xrea=Xrc-a

d
() |Xraal=IU|

(d)  If X tends to +o0, then X¢ gy converges to |U| in distribution. Also,
if X tends to —oo, then Xy \ converges to —|U| in distribution.

(e)  The distribution of 77 = min(U, V) is a mixture of the distributions
SD(f,G,—1) and SD(g, F,—1) with probability %

(f)  The distribution of 75 = max(U, V) is a mixture of the distributions
SD(f,G,1) and SD(g, F,1) with probability %

It is useful to present a new representation of the pdf (2) such that some
common measures of skewness exactly appear in the visual form of the density
function.

Remark 1. In the pdf (2), A is a measure of skewness and can be for exam-
ple Pearson’s skewness coefficients or AG measure (Arnold and Groeneveld,
1995) defined as:

AG = 2P(X > mode) — 1.

In this paper, for simplicity, we define a new measure for calculating the
skewness of the distribution of a random variable X as

N=PX—-pu>0)—PX —pu<0)
=2P(X —pu>0)—1 (4)

where p = E(X). X takes values in [—1,1,] and has an intuitive interpreta-
tion for unimodal distributions. \’ takes a negative (positive) values for left
(right) skewed distributions and is equal to zero for symmetric distributions.

According to Remark 1, we can state fx(z) in (2) on the basis of X, in
the form:

fx(z) =2f(2)G1(Nx); V. (5)
where G1(-) is a cdf which is defined as:

G1($) = G(*CC)

© 2008, SRTC Iran



M. Towhidi and M. Shaghaghian 165

3 Empirical Skewed Version of a Symmetric Dis-
tribution

This section is allocated to present a method for constructing a suitable
empirical skew density function to analyze the data. An appropriate estimate
for the pdf fx(z) in (4) (with G; = F, the cdf of f(-)) can be found by
introducing logical estimates fn(), N,

fx(@) = 2fu(2) Fy (V). (6)

Let Xi,...,X, be a random sample from pdf fx(x), then the skewness
parameter A, which is defined in (4), can be estimated from the data by:
. 2 2 _
)\'ZEZ L0, 400)(Xi = X) — 11 (7)
i=1
where I(-) is the indicator function of the set A.
Also, a natural estimator for the pdf f(-) in (5), can be derived by a kernel
method (Silverman, 1986), with the normal density as a kernel function.
According to part (c) of proposition (2), the pdf of the random variable
Z = |X|is:
fz(z) =2f(2); z2=0
and a kernel estimate of the density function f() according to the random
sample Z; = |X1|,...,Z, = | X,| is:

fz(z) = n—lfLZK <Z;in>
i—1

where K (-) is a normal kernel function and h is an smoothing parameter.

Hence a kernel estimate of f(-) is as follows:

fz(a:) if x>0,
fn(x) = (8)

%fz(—x) if x <0.

>
DO[—

Finally an appropriate estimate of F(-), the cdf of f(-), is:

Fo(r) = / A (9)
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In two examples below, we compare two estimated skewed version of
symmetric distributions:

~

(@) = 2¢(z) 2(Aa),

where A is the MLE of A in the pdf(1), and X, f,, Fy, are defined in (7), (8),
(9), respectively.

From these examples, we can conclude that in some situations, the model
fg((x) is preferred over f)l( (x) for estimating the density function of X .

Example 1. Arellano-Valle et al. (2004) analyze the data concerning the
height of 100 Australian athletes. They claimed fitting a SN (A1) model to
the data would be inadequate, and introduced a new class of generalized
skew-normal distribution by defining a parameter Ay > 0. Now, we want to
compare the two fitted density functions f)l( (z), f%(x), with each other on
the basis of the data. Note that the MLEs of parameters u, o, A are:

~

f=174.58, 6=8.201,  \=0.0016,

and X can be calculated from the relation (7), N = 0. 02.
Figure 1 shows plots of the relative frequency curve, fi_pus(x) , and the

estimated pdfs f)l((ac) and f)Q( (x). Also, for the sake of comparison, we have
used two criteria

n

sup ’fsfplus(xi) - fAX(wz)’ and % Z(fsfplus(wi) - fX(xz)>2

x; °
t i=1

SUp | fs—pius (i) — fx ()] = 0.009350,

T

sup | fs—plus (1) — f% ()| = 0.0066180.

Ty

S|

[Z { Fopius () — f;((xi)}Ql = 0.00001637776,
=1

S|

[i {fs—plus(l'i) - A)Q((xz)}Ql =8.1719 x 1075,
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Table 1. The relative results of Example 2

Degrees of Freedom

3 5
Sup | fopius (1) — fi (2)] 0.034707 0.0239784
Sup | forpis (1) — F% (2)] 0.021089 0.017344

3=

S {fempins (i) — fx(z)}?]  8.53326 x 107%  5.7552678 x 10~°
=1

LIS {foprus () — f(2a)}?] 7.390103 x 1070 4.7391424 x 10~°
=1

Example 2. We have generated the data sets from two chi-square distri-
butions with distinct degrees of freedom. Figure 2 and 3 show the graphs of
fs—plus(x) and the estimated pdfs fi(z) and f3(z).

Table 1 presents the results of comparing the two fitted density functions
with the relative frequency function, fs_pus(2) , via some reasonable criteria.
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150 160 170 180 160 200
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Figure 1. The relative frequency curve for the height of 100 Australian athletes (solid line)
and plots of the fitted densities fi (x) (dotted line), f¥ (x) (dashed line)
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Figure 2. The graphs of f,_pus(z) (solid line), fk (z) (dotted line), and f (z) (dashed line)
for generated data set of chi-square distribution with 3 degrees of freedom
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Figure 3. The graphs of f._us(z) (solid line), f (z) (dotted line), and f% (z) (dashed line)
for generated data set of chi-square distribution with 5 degrees of freedom
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