[Home ] [Archive]    
Main Menu
Journal Information::
Home::
Archive::
For Authors::
For Reviewers::
Principles of Transparency::
Contact us::
::
Search in website

Advanced Search
..
Committed to

AWT IMAGE

Attribution-NonCommercial
CC BY-NC


AWT IMAGE

Open Access Publishing


AWT IMAGE

Prevent Plagiarism

..
Registered in


..
Statistics
Journal volumes: 17
Journal issues: 34
Articles views: 683905
Articles downloads: 342215

Total authors: 581
Unique authors: 422
Repeated authors: 159
Repeated authors percent: 27

Submitted articles: 368
Accepted articles: 266
Rejected articles: 25
Published articles: 219

Acceptance rate: 72.28
Rejection rate: 6.79

Average Time to Accept: 282 days
Average Time to First Review: 27.2 days
Average Time to Publish: 26.1 days

Last 3 years statistics:
Submitted articles: 54
Accepted articles: 37
Rejected articles: 6
Published articles: 17

Acceptance rate: 68.52
Rejection rate: 11.11

Average Time to Accept: 205 days
Average Time to First Review: 6.7 days
Average Time to Publish: 118 days
____
..
:: Volume 4, Issue 1 (9-2007) ::
JSRI 2007, 4(1): 109-128 Back to browse issues page
Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Norallah Tazikeh Miyandarreh , Ebrahim Hosseini-nasab 1
1- , m.hosseininasab@modares.ac.ir
Abstract:   (3518 Views)

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA).

Dimension reduction in FDA is mandatory, and is partly done by using principal components analysis (PCA). Similar to classical PCA, functional principal components analysis (FPCA) produces a small number of constructed variables from the original data that are uncorrelated and account for most of the variation in the original data set. Therefore, it helps us to understand the underlying structure of the data.

Temperature and amount of precipitation are functions of time, so they can be analyzed by FDA. In this paper, we have treated Iranian temperature and precipitation in 2005, extract patterns of variation, explore the structure of the data, and that of correlation between the two phenomena. The data, collected from the weather stations across the country, were discrete and associated with the monthly mean of temperature and precipitation recorded at each station. However, we have first fitted appropriate curves to them in which we have taken smoothing methods into account. Then, we have started analyzing the data using FPCA, and interpreting the results. When estimating the eigenvalues, we have found that the first estimated eigenvalue $hat {theta}$ shows a strong domination of its associated variation on all other kinds. Furthermore, the first two eigenvalues explain more than 98% of the total variation, inwhich their contributions individually were 93.7 and 4.3 percent, respectively. Contributions from others, however, were less than 2 percent. Thus, we have only considered the first two components.

The first estimated principal component (PC) shows that the majority of variability among the data can be attributed to differences between summer and winter temperatures. The second PC shows regularity of temperature when moving from winter to summer. In other words, it reflects the variation from the average of the difference between the winter and summer temperatures. Furthermore, bootstrap confidence bands for eigenvalues and eigenfunctions of the real data were obtained. They contain both individual and simultaneous confidence intervals for the eigenvalues. We have also obtained single and double bootstrap bands for the first two eigenfunctions, and seen that they are extremely close to each other, reflecting the high degree of accuracy of the bands that are obtained by the single bootstrap methods.

Keywords: Bootstrap confidence bands, data registration, functional data analysis, functional principal components analysis.
Full-Text [PDF 2256 kb]   (876 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/02/21 | Accepted: 2016/02/21 | Published: 2016/02/21
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tazikeh Miyandarreh N, Hosseini-nasab E. Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis. JSRI 2007; 4 (1) :109-128
URL: http://jsri.srtc.ac.ir/article-1-181-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 4, Issue 1 (9-2007) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.05 seconds with 42 queries by YEKTAWEB 4645