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Abstract. Shannon entropy is increasingly used in many applications. In
this article, an estimator of the entropy of a continuous random variable is
proposed. Consistency and scale invariance of variance and mean squared
error of the proposed estimator is proved and then comparisons are made
with Vasicek’s (1976), van Es (1992), Ebrahimi et al. (1994) and Correa
(1995) entropy estimators. A simulation study is performed and the results
indicate that the proposed estimator has smaller mean squared error than
competing estimators.
Keywords. Information theory; entropy estimator; exponential distribu-
tion; normal distribution; uniform distribution.
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1 Introduction
Suppose that a random variable X has a distribution function F (x) with a
continuous density function f(x). The entropy H(f) of the random variable
X is defined by Shannon (1948) to be

H(f) = −
∫ ∞

−∞
f(x) log f(x) dx.

Vasicek (1976) showed that

H(f) =

∫ 1

0
log

{
d

dp
F−1(p)

}
dp,

and then by replacing the distribution function F by the empirical distribu-
tion function Fn , and using a difference operator instead of the differential
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operator, an estimator constructed. The derivative of F−1(p) is then esti-
mated by a function of the order statistics. If X1, . . . , Xn is a random sample,
then the Vasicek estimator is given by

HVmn =
1

n

n∑
i=1

log
[ n
2m

{X(i+m) −X(i−m)}
]
,

where the window size m is a positive integer smaller than n/2 , X(i) = X(1) if
i < 1, X(i) = X(n) if i > n and X(1) 6 X(2) 6 . . . 6 X(n) are order statistics
based on a random sample of size n. Vasicek proved that HVmn

pr.→H(f) as
n→ ∞ , m→ ∞ , m

n → 0.
Van Es (1992) based on spacings proposed another estimator of entropy

and proved its consistency. Van Es’estimator is given by

HV Emn =
1

n−m

n−m∑
i=1

[
n+ 1

m
{X(i+m) −X(i)}

]
+

n∑
k=m

1

k
+log(m)−log(n+1) .

Ebrahimi et al. (1994) modified the Vasicek’s estimator and proposed
their estimator as

HEmn =
1

n

n∑
i=1

log

[
n

cim
{X(i+m) −X(i−m)}

]
,

where

ci =


1 + i−1

m , 1 6 i 6 m,

2, m+ 1 6 i 6 n−m,

1 + n−i
m , n−m+ 1 6 i 6 n.

They proved that HEmn
pr.→H(f) as n→ ∞, m→ ∞ , m

n → 0.
Correa (1995) proposed a modification of Vasicek estimator which has

a smaller mean square error (MSE) based on a local linear model. The
estimator of entropy proposed by Correa is given by

HCmn = − 1

n

n∑
i=1

log


i+m∑
j=i−m

{X(j) − X̄(i)}(j − i)

n
i+m∑
j=i−m

{X(j) − X̄(i)}2

,
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where

X̄(i) =
1

2m+ 1

i+m∑
j=i−m

X(j) .

He showed that his estimator has smaller MSE than Vasicek entropy esti-
mator. Also, for some of m his estimator has smaller MSE than van Es
estimator.

Because

1) Entropy is a useful measure of uncertainty and dispersion and has been
widely employed in many pattern analysis applications;

2) Many researchers have used the estimators of entropy for developing
entropy based statistical procedure. See, for example, Esteban et al.
(2001), Park and Park (2003), Choi et al. (2004), Goria et al. (2005),
Choi (2008), Vexler et al. (2011), and Alizadeh Noughabi and Arghami
(2011, 2012, 2013);

3) In nonparametric statistics, we often have a random sample of an un-
known population and inferences are based on the observations;
it will be of interest to introduce an entropy estimator based on ob-
servations of an unknown population. Our goal in this paper is to
introduce an entropy estimator with a better performance than the
existing estimators.

In Section 2, a new estimator of entropy is introduced and its consistency
is proved. Scale invariance of variance and mean squared error of the pro-
posed estimator is established. In Section 3, results of a comparison of our
estimator with the competing estimators by a simulation study are given.

2 The New Estimator
It is clear that

Si(m,n) =
2m
n

X(i+m) −X(i−m)
, (1)

is not a correct formula for the slope when i 6 m or i > n−m+1. Therefore,
in order to correctly estimate the slopes at these points the denominator
and/or the numerator should be modified.

We propose an estimator by modifying the numerator of (1). In fact
when i 6 m the denominator of (1) is X(i+m) −X(i−m) = X(i+m) −X(1) and
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this distance is less than the actual distance. For example, let n = 10 and
m = 3, we have

i = 1 X(1+3) −X(1−3) = X(4) −X(−2) > X(4) −X(1)

i = 2 X(2+3) −X(2−3) = X(5) −X(−1) > X(4) −X(1)

i = 3 X(3+3) −X(3−3) = X(6) −X(0) > X(4) −X(1)

i = 4 X(4+3) −X(4−3) = X(7) −X(1) = X(7) −X(1)

i = 5 X(5+3) −X(5−3) = X(8) −X(2) = X(8) −X(2)

i = 6 X(6+3) −X(6−3) = X(9) −X(3) = X(9) −X(3)

i = 7 X(7+3) −X(7−3) = X(10) −X(4) = X(10) −X(4)

i = 8 X(8+3) −X(8−3) = X(11) −X(5) > X(10) −X(5)

i = 9 X(9+3) −X(9−3) = X(12) −X(6) > X(10) −X(6)

i = 10 X(10+3) −X(10−3) = X(12) −X(7) > X(10) −X(7)

Toward this end, in numerator of (1) a value from 2m
n is subtracted.

Ebrahimi et al. (1994) modified the numerator of (1) as
2m
n − 1+m−i

n = 2m
n − 1−(i−m)

n = m+i−1
n , 1 6 i 6 m,

2m
n , m+ 1 6 i 6 n−m,

2m
n − i+m−n

n = 2m
n − (i+m)−n

n = n+m−i
n , n−m+ 1 6 i 6 n,

Again, consider the above example, we have

i Denominator Numerator

i = 1 X(4) −X(−2)
2m
n − 3

n

i = 2 X(5) −X(−1)
2m
n − 2

n

i = 3 X(6) −X(0)
2m
n − 1

n

i = 4 X(7) −X(1)
2m
n

i = 5 X(8) −X(2)
2m
n

i = 6 X(9) −X(3)
2m
n

i = 7 X(10) −X(4)
2m
n

i = 8 X(11) −X(5)
2m
n − 1

n

i = 9 X(12) −X(6)
2m
n − 2

n

i = 10 X(13) −X(7)
2m
n − 3

n
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Based on the simulations obtained by Ebrahimi et al. (1994), we can
see their estimator has smaller root mean square error (MSE) than Vasicek
estimator. Here, we improve this estimator and then show the proposed
estimator has a good MSE respect to Vasicek and Ebrahimi et al. estimators.

We modify the numerator of (1) as
2m
n − 3

2
1+m−i

n = 2m
n − 3−3(i−m)

2n = m+3(i−1)
2n , 1 6 i 6 m,

2m
n , m+ 1 6 i 6 n−m,

2m
n − 3

2
i+m−n

n = 2m
n − 3(i+m)−3n

2n = m+3(n−i)
2n , n−m+ 1 6 i 6 n,

Consider the above example, we have

i Denominator Numerator

i = 1 X(4) −X(−2)
2m
n − 9

2n

i = 2 X(5) −X(−1)
2m
n − 6

2n

i = 3 X(6) −X(0)
2m
n − 3

2n

i = 4 X(7) −X(1)
2m
n

i = 5 X(8) −X(2)
2m
n

i = 6 X(9) −X(3)
2m
n

i = 7 X(10) −X(4)
2m
n

i = 8 X(11) −X(5)
2m
n − 3

2n

i = 9 X(12) −X(6)
2m
n − 6

2n

i = 10 X(13) −X(7)
2m
n − 9

2n

Therefore, we propose entropy estimator of Shannon entropy H(f) of an
unknown continuous probability density function by

HNmn =
1

n

n∑
i=1

log

[
n

aim
{X(i+m) −X(i−m)}

]
,

where

ai =


m+3(i−1)

2m , 1 6 i 6 m,

2, m+ 1 6 i 6 n−m,

m+3(n−i)
2m , n−m+ 1 6 i 6 n.

and X(i−m) = X(1) for i 6 m and X(i+m) = X(n) for i > n−m.
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The reason that we propose the above estimator is as follows. We can see
from the simulation study presented in Ebrahimi et al. (1994) that the es-
timated value of entropy by Vasicek (1976)’s and Ebrahimi et al. (1994)’s
estimators are less than the value of entropy of the considered population.
For example, let the distribution of the population is the standard expo-
nential. Therefore, H(f) = 1. Now, if we estimate the entropy by the
observations generated from the exponential distribution (we repeat this ex-
periment several times), we can see that almost all the estimated values of
entropy are less than one. This show that these estimators are underes-
timate. Therefore, we use the coefficient 3/2 so that this problem can be
solved. Actually, we modify the numerator so that the estimator produce
larger values than the values of the existing estimators. We will show, in
Theorem 2, that HNmn > HVmn and HNmn > HEmn. This show that the
problem of underestimate can be solved by the proposed estimator.

Theorem 1. Let X1, . . . , Xn be a random sample from distribution F (x).
Then

HNmn = HVmn +
2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
,

and

HNmn = HEmn +
2

n

[
m log(2)− log

(m− 1)!

(2m− 1)!
−

m∑
i=1

log {m+ 3(i− 1)}

]
,

where HVmn and HEmn are Vasicek (1976) and Ebrahimi et al. (1994)
estimators, respectively.

Proof. By comparing the proposed estimator with Vasicek estimator, we
obtain
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HNmn =
1

n

n∑
i=1

log

[
n

aim
{X(i+m) −X(i−m)}

]

=
1

n

n∑
i=1

log

[
2n

2aim
{X(i+m) −X(i−m)}

]

= HVmn +
1

n

n∑
i=1

log
2

ai

= HVmn +
1

n

{
m∑
i=1

log
4m

m+ 3(i− 1)
+

n∑
i=n−m+1

log
4m

m+ 3(n− i)

}

= HVmn +
2

n

[
m log(4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
. (2)

Also, from Ebrahimi et al. (1994), we have

HEmn = HVmn +
2

n

{
m log(2m) + log

(m− 1)!

(2m− 1)!

}
. (3)

Therefore, we obtain from (2) and (3)

HNmn = HEmn +
2

n

[
m log(2)− log

(m− 1)!

(2m− 1)!
−

m∑
i=1

log {m+ 3(i− 1)}

]
.

Remark 1. Theil (1980) computed the entropy H(fME
n ) of an empirical

maximum entropy density fME
n , which is related to HV1n, HE1n and HA1n

as follows.

H(fME
n ) = HV1n +

2− 2 log 2

n

= HE1n +
2− 4 log 2

n

= HN1n +
2− 6 log 2

n
.
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Here, fME
n is

fME
n (x) =



n−1 4
x(2)−x(1)

exp

[
x−( 1

2
){x(1)+x(2)}

( 1
4
){x(2)−x(1)}

]
if x 6 1

2{x(1) + x(2)},

n−1 2
x(i+1)−x(i−1)

if 1
2{x(i−1) + x(i)} < x 6 1

2{x(i) + x(i+1)},
i = 2, . . . , n

n−1 4
x(n)−x(n−1)

exp

[
−x−( 1

2
){x(n−1)+x(n)}

( 1
4
){x(n)−x(n−1)}

]
if x > 1

2{x(n−1) + x(n)}.

Theorem 2. Let X1, . . . , Xn be a random sample from distribution F (x).
Then

i ) HNmn > HVmn

ii) HNmn > HEmn

Proof. i). From (2), we have

HNmn = HVmn +
2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
,

then it is enough to establish

2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
> 0 .

We can write

m log (4m)−
m∑
i=1

log {m+ 3(i− 1)} =

m∑
i=1

[log(4m)− log {m+ 3(i− 1)}]

=
m∑
i=1

[
log

{
4m

m+ 3(i− 1)

}]
.

Since
4m > m+ 3(i− 1) ∀i = 1, 2, . . . ,m,

then (i) holds.
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ii). From (2) and (3), it is enough to show

2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
>

2

n

{
m log(2m) + log

(m− 1)!

(2m− 1)!

}
,

or equivalently

m log(2) +
m∑
i=1

log

{
m+ i− 1

m+ 3(i− 1)

}
> 0

⇐⇒
m∑
i=1

log

{
2(m+ i− 1)

m+ 3(i− 1)

}
> 0 .

Since m > (i− 1), ∀i = 1, 2, . . . ,m, then (ii) holds.

The next theorem states that the scale of the random variable X has
no effect on the accuracy of HNmn in estimating H(f). Similar results have
been obtained for HVmn and HEmn by Mack (1988) and Ebrahimi et al.
(1994), respectively.

Theorem 3. Let X1, . . . , Xn be a sequence of i.i.d. random variables with
entropy HX(f) and let Yi = kXi, i = 1, . . . , n, where k > 0. Let HNX

mn and
HNY

mn be entropy estimators for HX(f) and HY (g) respectively. (here g is
pdf of Y = kX). Then the following properties hold.

i ) E
(
HNY

mn

)
= E

(
HNX

mn

)
+ log k,

ii ) Var
(
HNY

mn

)
= Var

(
HNX

mn

)
,

iii ) MSE
(
HNY

mn

)
= MSE

(
HNX

mn

)
.

Proof. Since
HV kX

mn = HV X
mn + log(k),

then from (2), we have

E(HNkX
mn) = E(HV kX

mn ) +
2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]

= E(HV X
mn) + log(k) +

2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
= E(HNX

mn) + log(k).
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Moreover,

Var(HNkX
mn) = Var(HV kX

mn ) = Var(HV X
mn) = Var(HNX

mn) ,

and

MSE(HNkX
mn) = Var(HNkX

mn) +
{
E(HNkX

mn)−HKX(g)
}2

= Var(HNX
mn) +

{
E(HNX

mn) + log(k)−HX(f)− log(k)
}2

= Var(HNX
mn) +

{
E(HNX

mn)−HX(f)
}2

= MSE(HNX
mn).

Therefore, the proof of this theorem is complete.

The following theorem establishes the consistency of HNmn.
Theorem 4. Let C be the class of continuous densities with finite entropies
and let X1, . . . , Xn be a random sample from f ∈ C. If n→ ∞, m→ ∞ and
m
n → 0, then

HNmn −→ H(f).

Proof. We have

HNmn = HVmn +
2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
,

and
HVmn −→ H(f),

(Vasicek, 1976). Moreover,

2

n

[
m log(4m)−

m∑
i=1

log{m+ 3(i− 1)}

]
=

2

n

m∑
i=1

log

{
4m

m+ 3(i− 1)

}
,

and
0 6 2

n

m∑
i=1

log

{
4m

m+ 3(i− 1)

}
6 m

n
{2 log(4)} .

Since the terms 0 and m
n (2 log(4)) go to zero if n→ ∞, m→ ∞ and m

n → 0,
the term

2

n

[
m log (4m)−

m∑
i=1

log {m+ 3(i− 1)}

]
goes to zero and consequently the theorem is hold.
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3 Simulation Study
A simulation study was performed to analyze the behavior of the proposed
estimator. The proposed estimator compared with Vasicek’s estimator, van
Es’s estimator, Correa’s estimator and Ebrahimi et al.’s estimator. For each
sample size 20000 samples were generated and the RMSEs of the estimators
were computed. Similar to Correa (1995), we considered normal, exponential
and uniform distributions. The formula for computing MSE is

MSE =
1

B

B∑
i=1

{HNmn(i)−H(f)}2,

where B is number of iterations (here, 20,000) and HNmn(i) is the value of
the proposed estimator for ith iteration. Further, H(f) is the value of the
population entropy. For example, for the statndard normal, the standard
exponential and uniform distributions the value of H(f) is log

√
2πe, 1, 0,

respectively.
Still an open problem in entropy estimation is the optimal choice of m

for given n. The following heuristic formula for computing the competitors
estimators is considered. (see Grzegorzewski and Wieczorkowski, 1999)

m =
[√
n+ 0.5

]
.

Table 1 reports the values of m which the proposed estimator obtains rea-
sonably good (not best) RMSE. With increasing n the optimal choice of m
increases.

Table 1. Proposed values of m for different values of n

sample size n window size m

n 6 7 2
8 6 n 6 15 3
16 6 n 6 25 4
26 6 n 6 40 5
41 6 n 6 60 6
61 6 n 6 90 7
91 6 n 6 120 8

Tables 2-4 give the RMSE values of the five estimators at different sample
size for each of the three considered distributions.
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Table 2. Root of mean square error of estimators in estimate of entropy H(f)
for standard normal distribution.

RMSE

n HVmn HV Emn HCmn HEmn HNmn

5 0.994 0.509 0.793 0.665 0.452
10 0.618 0.366 0.470 0.402 0.277
15 0.474 0.318 0.348 0.301 0.231
20 0.373 0.276 0.265 0.247 0.183
30 0.282 0.243 0.194 0.186 0.145
50 0.198 0.212 0.135 0.128 0.109

Table 3. Root of mean square error of estimators in estimate of entropy H(f)
for exponential distribution with mean one.

RMSE

n HVmn HV Emn HCmn HEmn HNmn

5 0.930 0.596 0.743 0.652 0.556
10 0.570 0.392 0.435 0.401 0.360
15 0.421 0.310 0.328 0.310 0.286
20 0.356 0.274 0.272 0.261 0.245
30 0.276 0.227 0.208 0.203 0.199
50 0.194 0.179 0.155 0.151 0.151

Table 4. Root of mean square error of estimators in estimate of entropy H(f)
for uniform distribution on (0,1).

RMSE

n HVmn HV Emn HCmn HEmn HNmn

5 0.774 0.407 0.566 0.456 0.345
10 0.455 0.216 0.295 0.234 0.173
15 0.343 0.155 0.208 0.160 0.117
20 0.274 0.121 0.157 0.135 0.091
30 0.210 0.086 0.110 0.097 0.065
50 0.156 0.058 0.076 0.063 0.040

We observe that the proposed estimator performs better than the com-
petitor estimators. In fact, it is evident from the simulation results that our
proposed estimator can be said to dominate the other estimators.
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