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1 Introduction
Censored sampling arises in a life testing experiment whenever the experi-
menter does not observe (either intentionally or unintentionally) the failure
times of all units placed on a life test. Suppose n components are put to
* Corresponding author



32 Reconstruction of Weibull Past Failure Times

test simultaneously at time 0, and the failure times of these components are
recorded. But sometimes, the failure times are not observed continuously.
This can happen because the experimenter might not always be in a position
to observe the lifetimes of all the items put on test due to time limitations
or other restrictions. Let us suppose that out of n items put on life test ex-
periment, only the largest n− r life times have been observed and the failure
times for the first r components remain unobserved or missing. In the liter-
ature of reliability and survival analysis, this type of censoring is known as
a left type-II censoring scheme. There are many applications of left type-II
censored data in the analysis of survival data. For example, in medical stud-
ies, we may know the date of a medical exam that revealed a disease such as
cancer, but we don’t know when the patient has been infected. In scientific
experiments, we may not be able to measure some quantity because it is be-
low the threshold of detection (e.g. chemical concentration). In behavioral
sciences, we may know that teenagers are subject to alcohol, but we don’t
know the exact time at which teenagers begin to drink alcohol. However, as
mentioned by Mitra and Kundu (2008), discovery of a condition only tells
us that the onset of sickness fell in the period since the previous examination
and nothing about the exact date of the attack. Thus the time elapsed since
onset has been left censored. For more details and some other applications
of left type-II censoring scheme, see Balakrishnan (1989); Balakrishnan and
Varadan (1991); Scallan (1999); Bagger (2005); Mitra and Kundu (2008);
Bhaumik et al. (2009) and Noor and Aslam (2013).

It is obvious that in left type-II censored plan, the life test experiment
has been conducted on a random sample of n items. We have missed the
contained information in the first failure times, so it is worthwhile, if one
can reconstruct the missing failure times. Reconstruction of the past fail-
ure times in the left censored setup is an interesting topic which is used in
actuarial, medical and engineering sciences. In the recent years, several au-
thors have considered reconstruction problems involving order statistics and
record values. Klimczak and Rychlik (2005) obtained upper bounds for the
expectations of increments of order statistics and record values under the
condition that the values of future order statistics and records are available.
Balakrishnan et al. (2009) have addressed the problem of reconstructing
past records from the known values of future records when the underlying
distributions were exponential and Pareto distributions. Razmkhah et al.
(2010) have derived point and interval reconstructors for the missing order
statistics from two parameter exponential distribution. Asgharzadeh et al.
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(2012) discussed reconstructors of times to failure of units censored in a left-
censored sample from the proportional reversed hazard rate models. Khatib
et al. (2013) have considered the Bayesian reconstruction of the missing fail-
ure times in exponential distribution. Asgharzadeh et al. (2014) studied the
estimation and reconstruction problems for the two-parameter Pareto distri-
bution based on the left censored data. El-Adll and Aly (2016) obtained
reconstructors for past fractional upper (lower) records from exponential and
Frećhet distributions.

Suppose that out of a total of n observations, we only observe the largest
n− r life times Xr+1 < Xr+2 < · · · < Xn and r observations are censored on
the left. Our main aim is to reconstruct the past failure times X1 < X2 <
· · · < Xr based on the n−r observed order statistics X = (Xr+1, . . . , Xn). In
what follows, we intend to study this problem for Weibull distribution and
present several reconstructors of Y = Xs, (1 ⩽ s ⩽ r) via non-Bayesian and
Bayesian approaches. The Weibull model, having exponential and Rayleigh
as special sub-models, appears very frequent in practical problems when we
observe data representing failure times. It is used for modeling lifetime data
and analysis of survival data.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries. In Section 3, the maximum likelihood reconstructor is derived for
the past failure times. Best unbiased and conditional median reconstructors
are provided in Section 4. The Bayesian reconstructor is derived in Section
5 and it is observed that the Bayesian reconstructor cannot be obtained in a
closed form and a simple sampling technique is used to find an approximate
for it. In Section 6, some reconstruction intervals (RI’s) for the past failure
times based on Bayesian and non-Bayesian approaches are given. In Section
7, a real data set analysis is presented for illustrative purposes. Finally in
Section 8, numerical comparisons are made between proposed reconstructors
using Monte Carlo simulations.

2 Some Preliminaries

Let X = (Xr+1, Xr+2, . . . , Xn) be the available left type-II censored sample
from a random sample of size n from a life-time distribution with cumulative
distribution function (cdf) F (x; η) and probability density function (pdf)
f(x; η), where η represents the vector of unknown parameters. Then, the
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joint pdf of X = (Xr+1, Xr+2, . . . , Xn) is given by

f(x; η) =
n!

r!
[F (xr+1; η)]

r
n∏

i=r+1

f(xi; η), xr+1 < xr+2 < · · · < xn, (1)

where x = (xr+1, xr+2, . . . , xn) is the vector of observations. Our objective
is to reconstruct the sth past failure time Y = Xs (1 ⩽ s ⩽ r) based
on the observed censored sample X = (Xr+1, . . . , Xn). Due to Markovian
property of order statistics, the conditional distribution of Y = Xs, given x =
(xr+1, . . . , xn) is equal to the conditional distribution of Y givenXr+1 = xr+1

which is given by

f(y|xr+1; η) = s

(
r

s

)
f(y; η) [F (y; η)]s−1 [F (xr+1;η)− F (y; η)]r−s [F (xr+1;η)]

−r

(2)
for y ⩽ xr+1. The expression in (2) can be rewritten as

f(y|xr+1; η) = s

(
r

s

)[
F (y; η)

F (xr+1;η)

]s−1 [
1− F (y; η)

F (xr+1;η)

]r−s f(y; η)

F (xr+1;η)
. (3)

Now, take U =
(

F (Y ;η)
F (xr+1;η)

)
, then the conditional pdf of U given Xr+1 = xr+1

is
g(y|xr+1; η) =

Γ(r + 1)

Γ(s)Γ(r − s+ 1)
us−1(1− u)r−s, 0 < u < 1, (4)

i.e. U |Xr+1 = xr+1 has beta distribution with parameters s and r − s+ 1.

In what follows, we assume that Xr+1, Xr+2, . . . , Xn are the available left
type-II censored data from a random sample of size n from a two-parameter
Weibull distribution (denoted by W (λ, θ)) with cdf

F (x;λ, θ) = 1− exp (−xλ/θ), x ⩾ 0, (5)

where λ and θ are positive real values. It is known that the Weibull distri-
bution is one of the most widely used distributions in reliability and survival
analysis which includes the exponential and Rayleigh distributions as special
case. Because of the shape and scale parameters, it has been used very effec-
tively for analyzing lifetime data, particularly when the data are censored,
which is very common in most life testing experiments. It also has increasing
and decreasing failure rates depending on the shape parameter. A detailed
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discussion on Weibull model can be found in Johnson et al. (1994).

From equations (1) and (5) the joint pdf of X = (Xr+1, Xr+2, . . . , Xn) is
given by

f(x;λ, θ) =
n!

r!
(λ/θ)n−r

[
1− exp(−xλr+1/θ)

]r
exp

[
−

n∑
i=r+1

xλi /θ

]
n∏

i=r+1

xλ−1
i ,

0 ⩽ xr+1 < · · · < xn. (6)

Then, the log-likelihood function is given by

lnL(λ, θ) ∝ (n− r) ln

(
λ

θ

)
+ r ln

[
1− exp(−

xλr+1

θ
)

]
+ (λ− 1)

n∑
i=r+1

lnxi

−
n∑

i=r+1

xλi /θ. (7)

From (7), the maximum likelihood estimators (MLEs) of λ and θ can be
obtained by solving the following likelihood equations:

∂ lnL(λ, θ)

∂λ
=

n− r

λ
+
r xλr+1 ln(xr+1)

θ

exp(−xλr+1/θ)

1− exp(−xλr+1/θ)

−1

θ

n∑
i=r+1

xλi lnxi +

n∑
i=r+1

lnxi = 0, (8)

∂ lnL(λ, θ)

∂θ
= −(n− r)

θ
− r

θ2
xλr+1

exp(−xλr+1/θ)

1− exp(−xλr+1/θ)
+

1

θ2

n∑
i=r+1

xλi = 0. (9)

It is observed that numerical computations are needed to obtain λ̂ and θ̂.
Also, for the Weibull distribution with cdf in (5), the identity (3) reduces to

f(y|xr+1;λ, θ) = s

(
r

s

)
(
λ

θ
)yλ−1 exp(−(yλ/θ))

[
1− exp(−yλ/θ)

]s−1

×
[
exp(−yλ/θ)− exp(−xλr+1/θ)

]r−s

×
[
1− exp(−xλr+1/θ)

]−r
, y ⩽ xr+1. (10)

In the next sections, we use (10) to construct some reconstructors.
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3 Maximum Likelihood Reconstructor

Here, we use the likelihood approach to obtain maximum likelihood re-
constructor (MLR). The likelihood approach was suggested by Kaminsky
and Rhodin (1985) for predicting future observations. See also Raqab
and Nagaraja (1995) and Raqab et al. (2010). We use this approach
for reconstructing the past failure times. Let X = (Xr+1, . . . , Xn) and
Y = Xs (1 ⩽ s ⩽ r) have the joint pdf f(x, y; η) indexed by the param-
eter η ∈ Rk. Here, our aim is reconstructing the past random variable Y ,
based on observed x = (xr+1, . . . , xn). The reconstructive likelihood function
(RLF) of Y and η is given by

L(y, η) = f(x, y; η) = f(y|x; η)f(x; η).

Suppose Ŷ = u(X) and η̂ = v(X) are statistics for which

L(u(x), v(x)) = sup
(y,η)

L(y, η),

then u(X) and v(X) are, respectively, called the MLR of Y and the recon-
structive maximum likelihood estimator (RMLE) of η.

For the Weibull distribution, using (6) and (10), we derive the RLF of Y
and (λ, θ) for y ⩽ xr+1 as

L(y, λ, θ) = c

(
λ

θ

)n−r+1

exp

(
−1

θ

[
yλ +

n∑
i=r+1

xλi

])
yλ−1

n∏
i=r+1

xλ−1
i

×
[
1− exp(−yλ/θ)

]s−1 [
exp(−yλ/θ)− exp(−xλr+1/θ)

]r−s
(11)

where c = n!
(s−1)!(r−s)! . Apart from a constant term, the reconstructive log-

likelihood function of Y and (λ, θ) is

lnL(y, λ, θ) ∝ (n− r + 1) ln(
λ

θ
)− 1

θ

[
yλ +

n∑
i=r+1

xλi

]

+ (λ− 1)

[
ln(y) +

n∑
i=r+1

ln(xi)

]
+ (s− 1) ln

[
1− exp(−yλ/θ)

]
+ (r − s) ln

[
exp(−yλ/θ)− exp(−xλr+1/θ)

]
. (12)
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From (12), the reconstructive likelihood equations (RLEs) for y, λ and θ are
given, respectively, by

∂ lnL(y, λ, θ)

∂y
= −λ

θ
yλ−1 +

λ− 1

y
+ (s− 1)

λyλ−1

θ
× exp(−yλ/θ)

1− exp(−yλ/θ)

− (r − s)
λyλ−1

θ
× exp(−yλ/θ)

exp(−yλ/θ)− exp(−xλr+1/θ)

= 0, (13)

∂ lnL(y, λ, θ)

∂λ
=

(n− r + 1)

λ
− 1

θ

[
yλ ln y +

n∑
i=r+1

xλi ln(xi)

]

+

[
ln(y) +

n∑
i=r+1

ln(xi)

]
+ (s− 1)

yλ ln(y)

θ
× exp(−yλ/θ)

1− exp(−yλ/θ)

+
r − s

θ

xλr+1 ln(xr+1) exp(−xλr+1/θ)− yλ ln(y) exp(−yλ/θ)
exp(−yλ/θ)− exp(−xλr+1/θ)

= 0, (14)

and

∂ lnL(y, λ, θ)

∂θ
= −(n− r + 1)

θ
+

1

θ2

[
yλ +

n∑
i=r+1

xλi

]

− (s− 1)
yλ

θ2
(exp(−yλ/θ)

1− (exp(−yλ/θ))

+
(r − s)

θ2
×
yλ exp(−yλ/θ)− xλr+1 exp(−xλr+1/θ)

exp(−yλ/θ)− exp(−xλr+1/θ)

= 0. (15)
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By combining the three equations, we obtain the MLR of Y as

ŶMLR =

xλ̃r+1 − θ̃ ln

 (r − s)xλ̃r+1

θ̃
(
λ̃−1

λ̃
− (n− r + 1)

)
+
∑n

i=r+1 x
λ̃
i

+ 1

1/λ̃

,

(16)
where (λ̃, θ̃) is RMLE of (λ, θ), that can be obtained numerically from two
equations (14) and (15), if we replace y in terms of λ̃ and θ̃ from (16).

4 Best Unbiased and Conditional Median Recon-
structors

The conditional distribution of Y given Xr+1 = xr+1 is used to obtain
the best unbiased and conditional median reconstructors. Following As-
gharzadeh et al. (2012), the mean of Y given Xr+1 = xr+1 is the best
unbiased reconstructor (BUR) of Y . Therefore, the BUR of Y is

ŶBUR =

∫ xr+1

0
yf(y|xr+1, λ, θ)dy. (17)

Substituting (10) into (17), and setting u =

(
1−exp (−yλ/θ)

1−exp (−xλ
r+1/θ)

)
, after some

simplifications, the the BUR of Y can be presented as

ŶBUR =

∫ 1

0

(
−θ ln

[
1− u

(
1− exp(−xλr+1/θ)

)])1/λ us−1(1− u)r−s

Beta(s, r − s+ 1)
du.

(18)
If the parameters λ and θ are unknown, they have to be estimated. Thus
one would replace λ and θ by their corresponding MLEs.

Also, the median of Y given X is known as the conditional median re-
constructor (CMR). So, a reconstructor Ŷ of Y is the CMR of Y if

Pλ,θ(Y ⩽ Ŷ |X = x) = Pλ,θ(Y ⩾ Ŷ |X = x). (19)

By (4) for the Weibull distribution, it follows that

U =

(
1− exp (−Y λ/θ)

1− exp (−xλr+1/θ)

)∣∣∣∣∣Xr+1 = xr+1 ∼ Beta(s, r − s+ 1). (20)
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Now, since the probability Pλ,θ(Y ⩾ Ŷ |Xr+1 = xr+1) is equivalent to

Pλ,θ

(
1− exp (−Y λ/θ)

1− exp (−xλr+1/θ)
⩾ 1− exp (−ŷλ/θ)

1− exp (−xλr+1/θ)
|Xr+1 = xr+1

)

the CMR of Y is obtained by solving the following equation for Ŷ :

1− exp (−Ŷ λ/θ)

1− exp (−xλr+1/θ)
=Med(U), (21)

where Med(U) is the median of the beta random variable U ∼ Beta(s, r −
s+ 1). From (21), the CMR of Y is

ŶCMR =
[
−θ ln[1−Med(U)(1− exp(−xλr+1/θ))]

]1/λ
. (22)

If λ and θ are unknown, we can substitute λ and θ by their corresponding
MLEs.

For the special case s = r, we have Med(U) = 1/ r
√
2, and hence we

obtain
ŶCMR =

[
−θ ln[1− (1/2)1/r(1− exp(−xλr+1/θ))]

]1/λ
.

5 Bayesian Reconstructor

In this section, our interest is to reconstruct the sth past failure time Y =
Xs (1 ⩽ s ⩽ r) based on the observed censored sample X = (Xr+1, . . . , Xn)
from a Bayesian approach. Following Aitchison and Dunsmore (1975), the
Bayes reconstructive density of Y = Xs given x is

f∗s (y|x) =
∫ ∞

0

∫ ∞

0
f(y|x, θ, λ)π(θ, λ|x)dθdλ, (23)

where f(y|x, θ, λ) is the conditional density of Y = Xs given x = (xr+1, . . . , xn)
and π(θ, λ|x) is the joint posterior density of θ and λ. We take independent
priors for λ and θ which are gamma, Γ(a1, b1), and inverse gamma, IΓ(a2, b2),
with density functions as

π(λ) =
λa1−1ba11
Γ(a1)

e−b1λ and π(θ) =
θ−(a2+1)ba22

Γ(a2)
e−

b2
θ , (24)

J. Statist. Res. Iran 14 (2017): 31–51



40 Reconstruction of Weibull Past Failure Times

respectively, where a1, b1, a2 and b2 are all positive. Then, the joint posterior
density function of θ and λ given the data can be written as

π(θ, λ|x) ∝ g1(θ|λ,x)g2(λ|x)h(θ, λ;x), (25)

see for example Kundu (2007, 2008). Here g1(θ|λ,x) is an inverse gamma
density function with the shape and scale parameters as n − r + a2 and∑n

i=r+1 x
λ
i + b2 respectively,

h(θ, λ;x) =
(
1− exp(−xλr+1/θ)

)r
, (26)

and
g2(λ|x) ∝

λn−r+a1−1e−b1λ(∑n
i=r+1 x

λ
i + b2

)n−r+a2

n∏
i=r+1

xλ−1
i . (27)

Therefore, the Bayes reconstructive density f∗s (y|x), by using equation
(25), is as follows

f∗s (y|x) ∝
∫ ∞

0

∫ ∞

0
f(y|x, θ, λ)g1(θ|λ,x)g2(λ|x)h(θ, λ|x)dθdλ. (28)

It is seen that (28) can not be computed explicitly, therefore, we use a sim-
ple sampling procedure to approximate f∗s (y|x). First, we show that the
conditional distribution of λ given the data, g2(λ|x), is log-concave. The
log-likelihood of g2(λ|x) is

ln g2(λ|x) ∝ (n− r + a1 − 1) lnλ− b1λ− (n− r + a2) ln

(
n∑

i=r+1

xλi + b2

)

+ (λ− 1)

n∑
i=r+1

lnxi.

Now, using Lemma 1 of Kundu (2007), we have d2

dλ2 ln
(∑n

i=r+1 x
λ
i + b2

)
⩾

0. Therefore, the conditional density g2(λ|x) is log-concave. A general method
to generate samples from a log-concave density function has been proposed
by Devroye (1984). By adopting the method of Devroye (1984), we can gen-
erate samples from (27). Now, we use the idea of Geman and Geman (1984)
to generate samples from the joint posterior density function (25) using the
following algorithm.
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1. Generate λ1 from g2(λ|x) in (27) using the method of Devroye (1984).

2. Generate θ1 from g1(θ|λ1,x).

3. Repeat steps 1 and 2, M times and obtain the Monte Carlo (MC)
samples (λ1, θ1), . . . , (λM , θM ).

Note that the steps for generating λ from g2(λ|x) using the Devroye algorithm
are as follows:

(i) Compute c = g2(m|x) (m is the mode of g2(λ|x)).

(ii) Generate U uniform on [0, 2], and V uniform on [0, 1].

(iii) If U ⩽ 1 then λ = U and T = V , else λ = 1 − ln(U − 1) and T =
V (U − 1).

(iv) Let λ = m+ λ
c .

(v) If T ⩽ g2(λ|x)
c , then λ is a sample from g2(λ|x) else go to Step (i).

Now, using the Monte Carlo (MC) samples (λ1, θ1), . . . , (λM , θM ), it is pos-
sible to obtain the simulation consistent estimator of f∗s (y|x) as

f̂∗s (y|x) =
M∑
i=1

f(y|x, θi, λi)wi, (29)

where
wi =

h(θi, λi|x)∑M
i=1 h(θi, λi|x)

. (30)

Therefore, the Bayesian reconstructor of Y under the squared error loss can
be written as

ŶB =

∫ xr+1

0
yf̂∗s (y|x)dy

=

∫ xr+1

0
y

M∑
i=1

f(y|x, θi, λi)widy. (31)

By using (10) and setting u = 1−exp (−Y λ/θ)

1−exp (−xλ
r+1/θ)

, we get

ŶB =
M∑
i=1

[∫ 1

0

[
−θi ln[1− u

(
1− exp(−xλi

r+1/θi)
)
]
]1/λi us−1(1− u)r−s

Beta(s, r − s+ 1)
du

]
wi. (32)
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42 Reconstruction of Weibull Past Failure Times

6 Reconstruction Intervals

In this section, Bayesian and non-Bayesian approaches are used to obtain
reconstruction intervals (RIs) for Y = Xs (1 ⩽ s ⩽ r) based on the left
type-II censored sample X = (Xr+1, Xr+2, . . . , Xn).

6.1 Non-Bayesian RIs

From the pivotal quantity U in (20), it follows that

P
(
b1−α/2 < U < bα/2|xr+1

)
= 1− α, (33)

where bα stands for 100α th percentile of Beta(s, r − s + 1). Then by (33),
we readily find that([

−θ ln[1− b1−(α/2)(1− exp(−xλ
r+1/θ))]

]1/λ
,
[
−θ ln[1− bα/2(1− exp(−xλ

r+1/θ))]
]1/λ)

,

(34)
is a 100(1 − α)% two sided RI for Y . When λ and θ are unknown, the
parameters in (34) have to be estimated, one can replace λ and θ by their
MLEs.

Now let us consider another reconstruction interval for Y = Xs. By
substituting λ and θ in (10) by their MLEs, we can obtain the approximate
density of Y given Xr+1 = xr+1 as

f̂(y|x) = f(y|x, λ̂, θ̂)

= s

(
r

s

)(
λ̂

θ̂

)
yλ̂−1 exp(−(yλ̂/θ̂))

[
1− exp(−yλ̂/θ̂)

]s−1

×
[
exp(−yλ̂/θ̂)− exp(−xλ̂r+1/θ̂)

]r−s [
1− exp(−xλ̂r+1/θ̂)

]−r
.

This conditional density is a unimodal function of Û =

(
1−exp (−yλ̂/θ̂)

1−exp (−xλ̂
r+1/θ̂)

)
for s > 1 and r > s (i.e; s = 2, . . . , r − 1). Then, the 100(1 − α)% highest
conditional density (HCD) RI for Y is([

−θ̂ ln[1− w1(1− exp(−xλ̂r+1/θ̂))]
]1/λ

,
[
−θ̂ ln[1− w2(1− exp(−xλ̂r+1/θ̂))]

]1/λ)
,

(35)
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where w1 and w2 satisfy the following equations:

1− α =

∫ w2

w1

g(z|xr+1)dz, (36)

and
g(w1|xr+1) = g(w2|xr+1). (37)

The equations (36) and (37) can be simplified in terms of incomplete beta
function as

Bw2(s, r − s+ 1)−Bw1(s, r − s+ 1) = 1− α,

and (
1− w2

1− w1

)r−s

=

(
w1

w2

)s−1

,

where Bt(a, b) is the incomplete beta function. For special case s = r, we
find a simple expression for 100(1− α)% HCD RI for Y , which is([

−θ̂ ln[1− α(1− exp(−xλ̂r+1/θ̂))]
]1/λ

, xr+1

)
.

6.2 Bayesian RIs

From the Bayes reconstructive density f∗s (y|x), we can construct a two sided
equal-tail reconstruction interval for Y . A 100(1 − γ)% Bayesian recon-
struction interval for Y can be obtained by solving the following nonlinear
equations simultaneously for the lower bound L(x) and upper bound U(x),

P (Y > L(x)|x) =
∫ xr+1

L(x)
f∗s (y|x)dy = 1− α

2

and
P (Y > U(x)|x) =

∫ xr+1

U(x)
f∗s (y|x)dy =

α

2
.

Substituting f∗s (y|x) by its estimator f̂∗s (y|x) in (29), we can obtain L(x)
and U(x) from the following equations:

1− α

2
=

M∑
i=1

[∫ 1

L1

[
−θi ln[1− u

(
1− exp(−xλi

r+1/θi)
)
]
]1/λi us−1(1− u)r−s

Beta(s, r − s+ 1)
du

]
wi,
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and

α

2
=

M∑
i=1

wi

[∫ 1

L2

[
−θi ln[1− u

(
1− exp(−xλi

r+1/θi)
)
]
]1/λi us−1(1− u)r−s

Beta(s, r − s+ 1)
du

]
,

where L1 = 1−exp (−L(x)λ/θ)

1−exp (−xλ
r+1/θ)

and L2 = 1−exp (−U(x)λ/θ)

1−exp (−xλ
r+1/θ)

. Numerical methods
are generally necessary to solve the above two equations to obtain L(x) and
U(x) for a given α.

7 Real Data Analysis
In order to illustrate the obtained results in the previous sections, the data on
the time of breakdown of an insulating fluid in an accelerated test conducted
at various test voltages is considered. The data are taken from Nelson (1982)
(P. 228, Table. 6.1) and have been used earlier by Viveros and Balakrishnan
(1994) and Wu (2002). In analyzing this data set, Nelson (1982) considered
Weibull distribution. The data are

0.19 0.78 0.96 1.31 2.78 3.16 4.15
4.67 4.85 6.50 7.35 8.01 8.27 12.06
31.75 32.52 33.91 36.71 72.89.

For the sake of comparison between the exact values and the results re-
constructed, let us assume that r = 4 observations are censored on the left so
that we only observe the largest n−r = 15 failure times. Our aim is to recon-
struct the four past failure times (X1, X2, X3, X4). Using different methods
discussed in Sections 3 and 4, we obtained Bayesian and non-Bayesian re-
constructors for Y = Xs(s ⩽ 4). The results are displayed in Table 1. Table
1 also presents the 95% RI’s for Y = Xs(s ⩽ 4). For s = 1 and s = 4, as
mentioned in Section 6.1, the HCD RIs do not exist. Note that for comput-
ing Bayesian reconstructors, since we do not have any prior information, we
assumed that the priors on λ and θ are improper, i.e. a1 = b1 = a2 = b2 = 0.

By considering the absolute value of the difference between the exact
value and the reconstrutors as a criteria, Table 1 indicates that for s = 1, 3, 4,
B is the best reconstructor while for s = 3 MLR is the best. Also, all the
reconstruction intervals contain the exact observation. It is clear that only
one real data analysis does not tell us much more. It should be mentioned
here that for computing Bayesian reconstructors, we need to generate the MC
samples (λ1, θ1), . . . , (λM , θM ) using the algorithm described in Subsection
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Table 1. Point and interval reconstructors for the past failure times.
Excat value Point reconstruction Interval reconstruction

MLR BUR CMR B Pivot meth. HCD Bayes meth.
s = 1 0.19 0.3074 0.3445 0.2209 0.2167 (0.0034, 1.3316) — (0.006, 0.8497)
s = 2 0.78 0.7718 0.8121 0.7196 0.5010 (0.0722, 2.0190) (0.0412, 1.8980) (0.0537, 1.5349)
s = 3 0.96 1.3416 1.3775 1.3688 0.8032 (0.2872, 2.5029) (0.3547, 2.5989) (0.1198, 2.1278)
s = 4 1.31 2.7800 2.0336 2.1485 1.3924 (0.7499, 2.7536) — (0.3235, 2.6784)

3.2. One can check the convergence of the generated MC samples, using the
graphical diagnostics tools like trace plot and plot of autocorrelation function
(ACF). Figure 1 shows the trace plot and ACF plot for the parameters λ and
θ. The trace plot look like a random scatter. Figure 1 also shows the fine
mixing of the chains for the parameters. ACF plot shows that chains have
very low autocorrelations. In fact, these plots show the rapid convergence of
the algorithm.

8 Numerical Comparisons
In this section, we intend to compare the performance of the proposed re-
construction methods using Monte Carlo simulations. Comparisons of the
reconstructors are performed in terms of biases and mean squared recon-
struction errors (MSREs). Different RIs are compared in terms of the aver-
age confidence lengths (CL), and coverage percentages (CP). Here we used
different n, r and the parameter values λ = 1, 2 and θ = 1. For computing
Bayesian reconstructors, we consider two priors as follows

Prior I : a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001,

Prior II : a1 = 1, b1 = 2, a2 = 2.5, b2 = 1.

Bayesian point reconstructors are computed from the Gibbs samples under
the squared error loss function and with respect to the above priors. For
different n, r, s and the above mentioned two priors, Table 2 presents the
average biases, and MSREs of the point reconstructors discussed in our pa-
per over 1000 replications. All the computations are performed using the
Mathematical software Maple.

From Table 2, the following observations are made:
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Figure 1. Plots of Markov chains for λ and θ.

1. We observe that the CMR is the best point reconstructor among the
non-Bayesian point reconstructors. It provides the smallest biases and
MSREs in most of the cases considered.

2. It is also seen that the MSREs and biases of the CMR and BUR are
very close. The MLR does not work well.
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Table 2. The values of point reconstructions for θ = 1 and different λ.
λ = 0.75 λ = 2

MLR BUR CMR SER MLR BUR CMR SER
Prior 1 Prior 2 Prior 1 Prior 2

n = 5 s = 1 Bias 0.057 0.175 0.152 0.052 0.041 0.162 0.155 0.132 0.113 0.101
MSRE 0.101 0.088 0.079 0.069 0.063 0.109 0.091 0.084 0.075 0.069

r = 2 s = 2 Bias 0.378 0.144 0.170 0.121 0.113 0.171 0.042 0.058 0.039 0.031
MSRE 0.351 0.156 0.169 0.142 0.130 0.353 0.168 0.179 0.121 0.110

s = 1 Bias 0.011 0.076 0.056 0.009 0.007 0.042 0.091 0.059 0.053 0.048
MSRE 0.033 0.035 0.033 0.029 0.019 0.051 0.044 0.039 0.034 0.027

n = 10 s = 2 Bias 0.026 0.096 0.089 0.022 0.018 0.094 0.073 0.065 0.068 0.052
MSRE 0.034 0.037 0.033 0.031 0.026 0.062 0.045 0.044 0.040 0.033

r = 4 s = 3 Bias 0.076 0.066 0.074 0.052 0.044 0.137 0.071 0.078 0.069 0.066
MSRE 0.055 0.040 0.042 0.033 0.025 0.079 0.056 0.057 0.049 0.040

s = 4 Bias 0.212 0.082 0.091 0.068 0.057 0.120 0.033 0.051 0.041 0.028
MSRE 0.097 0.044 0.049 0.042 0.037 0.105 0.063 0.064 0.057 0.051

s = 1 Bias 0.021 0.012 0.003 0.003 0.002 0.011 0.062 0.032 0.032 0.026
MSRE 0.003 0.002 0.002 0.002 0.001 0.018 0.019 0.016 0.013 0.011

s = 2 Bias 0.038 0.014 0.011 0.010 0.008 0.002 0.017 0.003 0.007 0.002
MSRE 0.006 0.004 0.004 0.003 0.003 0.027 0.026 0.025 0.019 0.014

s = 3 Bias 0.003 0.034 0.030 0.019 0.015 0.047 0.040 0.034 0.033 0.026
MSRE 0.014 0.010 0.008 0.009 0.007 0.033 0.032 0.029 0.026 0.019

n = 20 s = 4 Bias 0.003 0.017 0.017 0.034 0.029 0.056 0.036 0.036 0.029 0.024
MSRE 0.017 0.016 0.010 0.010 0.009 0.043 0.040 0.038 0.034 0.027

r = 7 s = 5 Bias 0.031 0.024 0.029 0.047 0.035 0.031 0.025 0.029 0.025 0.020
MSRE 0.020 0.018 0.013 0.012 0.010 0.050 0.044 0.039 0.037 0.032

s = 6 Bias 0.054 0.018 0.029 0.055 0.043 0.054 0.018 0.028 0.021 0.013
MSRE 0.028 0.026 0.034 0.022 0.016 0.062 0.058 0.043 0.040 0.037

s = 7 Bias 0.090 0.018 0.034 0.069 0.060 0.090 0.018 0.034 0.023 0.016
MSRE 0.030 0.025 0.021 0.019 0.017 0.079 0.069 0.051 0.046 0.041

J. Statist. Res. Iran 14 (2017): 31–51



48 Reconstruction of Weibull Past Failure Times

Table 3. Average confidence/credible length and coverage percentage for θ = 1 and different
λ.

λ = 0.75 λ = 2

Pivot. Meth. HCD Bay. Meth. Pivot. Meth. HCD Bay. Meth.
Prior 1 Prior 2 Prior 1 Prior 2

n = 5 s = 1 CL 0.527 — 0.461 0.444 0.552 — 0.501 0.488
CP 0.875 — 0.892 0.903 0.905 — 0.914 0.920

r = 2 s = 2 CL 0.540 — 0.502 0.485 0.589 — 0.562 0.553
CP 0.918 — 0.925 0.929 0.923 — 0.929 0.933

s = 1 CL 0.319 — 0.281 0.263 0.492 — 0.474 0.463
CP 0.842 — 0.862 0.877 0.892 — 0.911 0.918

n = 10 s = 2 CL 0.390 0.282 0.348 0.327 0.549 0.471 0.527 0.503
CP 0.861 0.849 0.894 0.906 0.907 0.885 0.918 0.926

r = 4 s = 3 CL 0.432 0.406 0.425 0.413 0.562 0.504 0.548 0.530
CP 0.910 0.893 0.919 0.924 0.918 0.902 0.927 0.935

s = 4 CL 0.493 — 0.451 0.440 0.628 — 0.614 0.601
CP 0.918 — 0.924 0.930 0.928 — 0.935 0.942

s = 1 CL 0.198 — 0.166 0.148 0.486 — 0.465 0.448
CP 0.904 — 0.911 0.921 0.902 — 0.917 0.924

s = 2 CL 0.209 0.158 0.186 0.173 0.507 0.471 0.493 0.484
CP 0.921 0.905 0.925 0.932 0.911 0.891 0.920 0.929

s = 3 CL 0.222 0.186 0.213 0.202 0.538 0.497 0.526 0.515
CP 0.936 0.917 0.937 0.939 0.916 0.905 0.926 0.930

n = 20 s = 4 CL 0.250 0.210 0.238 0.227 0.604 0.544 0.590 0.578
CP 0.938 0.924 0.931 0.928 0.925 0.919 0.935 0.941

r = 7 s = 5 CL 0.265 0.227 0.253 0.245 0.655 0.607 0.643 0.632
CP 0.940 0.927 0.940 0.942 0.938 0.924 0.940 0.943

s = 6 CL 0.290 0.238 0.274 0.258 0.680 0.638 0.661 0.648
CP 0.946 0.939 0.947 0.952 0.946 0.940 0.950 0.951

s = 7 CL 0.319 — 0.296 0.282 0.709 — 0.685 0.672
CP 0.955 — 0.956 0.956 0.947 — 0.954 0.955
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3. Comparing the two Bayesian reconstructors based on two priors I and
II, as anticipated, Bayesian reconstructors based on informative prior II
perform better than Bayesian reconstructors based on improper prior
I in terms of both biases and MSPEs.

4. We also observe that Bayesian reconstructors based on informative
prior II are better than all the non-Bayesian reconstructors.

5. From Table 2, it is also observed that for fixed r and n, as s increases
the MSREs decrease as expected.

We also computed 95% RIs for Y = Xs(s ⩽ r) by using the results given
in Section 4. In Table 3, the means and coverage probabilities of the lengths
of 95% the RIs are reported. As shown in Table 3:

1. The HCD RIs are the shortest RIs.

2. It is also observed that the RIs based on informative prior II perform
better than the RIs based on improper prior I, and the RIs provided by
pivotal method, in terms of both average lengths and coverage proba-
bilities.

3. It is evident that the RIs based on the informative prior II provide the
highest coverage probabilities.
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