:: Volume 14, Issue 2 (3-2018) ::
JSRI 2018, 14(2): 189-217 Back to browse issues page
Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
Mina Azizpour * , Akbar Asgharzadeh
and Akbar Asgharzadeh , minaazizpoor@gmail.com
Abstract:   (574 Views)
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood estimators (AMLEs) by appropriately approximating the likelihood equations. Asymptotic confidence intervals based on MLEs and AMLEs and one bootstrap confidence interval are proposed.
Estimation of the shape parameter is also discussed. Monte Carlo simulations are performed to compare the performances of the different methods and two real data sets have been analyzed for illustrative purposes.
 
Keywords: Maximum likelihood estimation, progressively Type-II hybrid censoring, Type-II generalized logistic distribution.
Full-Text [PDF 237 kb]   (71 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/08/31 | Accepted: 2017/09/13 | Published: 2018/03/17
References
1. Asgharzadeh, A. (2006). Point and Interval Estimation for a Generalized Logistic Distribution under Progressive Type-II Censoring. Communications in Statistics-Theory and Methods., 35, 1685-1702. [DOI:10.1080/03610920600683713]
2. Asgharzadeh, A., Kazemi, M. and Kundu, D. (2017). Estimation of P(X>Y) for Weibull Distribution based on Hybrid Censored Samples. International Journal of System Assurance Engineering and Management., 8, 489-498. DOI: 10.1007/s13198-015-0390-2. [DOI:10.1007/s13198-015-0390-2]
3. Asgharzadeh, A., Valiollahi, R. and Kundu, D. (2015). Prediction for Future Failures in Weibull Distribution under Hybrid Censoring. Journal of Statistical Computation and Simulation, 85, 824-838. [DOI:10.1080/00949655.2013.848451]
4. Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications; Boston: Birkhauser. [DOI:10.1007/978-1-4612-1334-5]
5. Balakrishnan, N. and Hossain, A. (2007). Inference for the Type-II Generalized Logistic Distribution under Progressive Type-II Censoring. Journal of Statistical Computation and Simulation.; 77, 1013-1031. [DOI:10.1080/10629360600879876]
6. Balakrishnan, N. and Kannan, N. (2000). Point and Interval Estimation for the Parameters of the Logistic Distribution based on Progressively Type-II Censored Samples. In Handbook of Statistics-Vol. 20, (Eds., N. Balakrishnan and C. R. Rao), 456-431.
7. Balakrishnan, N. and Leung, M.Y. (1988). Order Statistics from the Type-I Generalized Logistic Distribution. Communications in Statistics-Simulation and Computatio, 17, 25-50. [DOI:10.1080/03610918808812648]
8. Balakrishnan, N. and Sandhu, R.A. (1995). A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples. Amer. Statist., 49, 229-230.
9. Bayat Mokhtari, E., Habibi Rad, A. and Yousefzadeh, F. (2011). Inference for Weibull Distribution based on Progressively Type-II Hybrid Censored Data. Journal of Statistical Planning and Inference, 141, 2824-2838. [DOI:10.1016/j.jspi.2011.03.007]
10. Chen, S. and Bhattachacharya, G.K. (1988). Exact Confidence Bounds for an Exponential Parameter under Hybrid Censoring. Communications in Statistics-Theory and Methods, 17, 1870-1857. [DOI:10.1080/03610928808829718]
11. Draper, N. and Guttman, I. (1987). Bayesian Analysis of Hybrid Life Tests with Exponential Failure Times. Annals of the Institute of Statistical Mathematics, 39, 219-225. [DOI:10.1007/BF02491461]
12. Ferguson, T.S. (1996). A Course in Large Sample Theory; London: Chapman and Hall. [DOI:10.1007/978-1-4899-4549-5]
13. Efron, B. (1982). The Jacknife, the Bootstrap and Other Resampling Plans; CBMSNSF Regional Confrence Series in Applied Mathematics, 38, SIAM, Philadelphia, PA.
14. Efron, B. (1979). Bootstrap Methods, Another Look at the Jackknife. The Annals of Statistics, 7, 1-26. [DOI:10.1214/aos/1176344552]
15. Epstein, B. (1954). Truncated Life Tests in the Exponentioal Case. Annals os Statistics, 25, 555-564. [DOI:10.1214/aoms/1177728723]
16. Fairbanks, K., Madson, R. and Dykstra, R. (1982). A Confidence Interval for an Exponential Parameter from a Hybrid Life Test. Journalof the American Statistical Association, 77, 137-140. [DOI:10.1080/01621459.1982.10477776]
17. Gurunlu Alma, O. and Arabi Belaghi, R. (2016). On the Estimation of the Extreme Value and Normal Distribution Parameters based on Progressive Type-II Hybrid-censored Data. Journal of Statistical Computation and Simulation, 86, 569-596. [DOI:10.1080/00949655.2015.1025785]
18. Gupta, R.D. and Kundu, D. (1998). Hybrid Censoring Schemes with Exponential Failure Distribution. Communications in Statistics-Theory and Methods, 27, 3065-3083. [DOI:10.1080/03610929808832273]
19. Hemmati, F. and Khorram, E. (2013). Statistical Analysis of the Log-normal Distribution under Type-II Progressive Hybrid Censoring Schemes. Communications in Statistics-Theory and Methods, 42, 52–75. [DOI:10.1080/03610918.2011.633195]
20. Joarder, A., Krishna, H. and Kundu, D. (2009). On Type-II Progressively Hybrid Censoring. Journal of Modern Applied Statistical Methods, 8(2), 534-546. [DOI:10.22237/jmasm/1257034620]
21. Kayal, T., Tripathi, Y.M., Rastogi, M.K. and Asgharzadeh, A. (2017). Inference for Burr XII Distribution under Type-I Progressive Hybrid Censoring. Communications in Statistics-Simulation and Computation, 46, 7447-7465, DOI: /10.1080/03610918.2016.1241405.
22. Kundu, D. and Joarder, A. (2006) Analysis of Type-II Progressively Hybrid Censored Data. Computational Statistics and Data Analysis, 50, 2509-2528. [DOI:10.1016/j.csda.2005.05.002]
23. Kundu D. (2007). On Hybrid Censored Weibull Distribution. Journal of Statistical Planning and Inference, 137, 2127-2142. [DOI:10.1016/j.jspi.2006.06.043]
24. Lin, C.T., Ng, H.K.T. and Chan, P.S. (2009). Statistical Inference of Type-II Progressively Hybrid Censored Data with Weibull Lifetimes. Communications in Statistics—Theory and Methods, 38, 1729-1710. [DOI:10.1080/03610920902850069]
25. Nelson, W. (1982). Applied Life Data Analysis; New York: John Wiley and Sons. [DOI:10.1002/0471725234]
26. Tiku, M.L. and Akkaya, A.D. (2004). Robust Estimation and Hypothesis Testing, New Age International Limited Publishers. New Delhi.
27. Valiollahi, R., Asgharzadeh, A. and Kundu, D. (2017). Prediction of Future Failures for Generalized Exponential Distribution under Type-I or Type-II Hybrid Censoring. Brazilian Journal of Probability and Statistics. 31, 41-61. [DOI:10.1214/15-BJPS302]
28. Viveros, R. and Balakrishnan, N. (1994). Interval Estimation of Parameters of Life Progressively Censored Data. Technometrics, 36, 84–91. [DOI:10.1080/00401706.1994.10485403]



XML   Persian Abstract   Print



Volume 14, Issue 2 (3-2018) Back to browse issues page