1. Baghfalaki, T. (2019). Bayesian Sample Size Determination for Longitudinal Studies with Continuous Response based on Different Scientific Questions of Interest. Journal of Biopharmaceutical Statistics, 29, 244270. [ DOI:10.1080/10543406.2018.1535501] 2. Baghfalaki, T. and Ganjali, M. (2015). A Bayesian Approach for Joint Modeling of Skewnormal Longitudinal Measurements and Time to Event Data. REVSTATStatistical Journal, 13, 169191. 3. Baghfalaki, T., Ganjali, M. and Berridge, D. (2013). Robust Joint Modeling of Longitudinal Measurements and Time to Event Data using Normal/independent Distributions: a Bayesian Approach. Biometrical Journal, 55, 844865. [ DOI:10.1002/bimj.201200272] 4. Baghfalaki, T., Ganjali, M. and Berridge, D. (2014a). Joint Modeling of Multivariate Longitudinal Mixed Measurements and Time to Event Data using a Bayesian Approach. Journal of Applied Statistics, 41, 19341955. [ DOI:10.1080/02664763.2014.898132] 5. Baghfalaki, T., Ganjali, M. and Hashemi, R. (2014b). Bayesian Joint Modeling of Longitudinal Measurements and Timetoevent Data using Robust Distributions. Journal of biopharmaceutical statistics, 24, 834855. [ DOI:10.1080/10543406.2014.903657] 6. Baghfalaki, T., Ganjali, M. and Verbeke, G. (2017). A Shared Parameter Model of Longitudinal Measurements and Survival Time with Heterogeneous Randomeffects Distribution. Journal of Applied Statistics, 44, 28132836. [ DOI:10.1080/02664763.2016.1266309] 7. Breth, M. (1978). Bayesian Confidence Bands for a Distribution Function. The Annals of Statistics, 649657. [ DOI:10.1214/aos/1176344209] 8. Brutti, P., De Santis, F. and Gubbiotti, S. (2008). Robust Bayesian Sample Size Determination in Clinical Trials. Statistics in Medicine, 27, 22902306. [ DOI:10.1002/sim.3175] 9. Chen, L.M., Ibrahim, J.G. and Chu, H. (2011). Sample Size and Power Determination in Joint Modeling of Longitudinal and Survival Data. Statistics in medicine, 30, 22952309. [ DOI:10.1002/sim.4263] 10. Cheng, D., Branscum, A.J. and Stamey, J.D. (2010a). A Bayesian Approach to Sample Size Determination for Studies Designed to Evaluate Continuous Medical Tests. Computational Statistics and Data Analysis, 54, 298307. [ DOI:10.1016/j.csda.2009.09.024] 11. Cheng, J., Edwards, L.J., Maldonado, Molina, M.M., Komro, K.A. and Muller, K.E. (2010b). Real Longitudinal Data Nnalysis for Real People: Building a Good Enough Mixed Model. Statistics in Medicine, 29, 504520. [ DOI:10.1002/sim.3775] 12. Christensen, R., Johnson, W., Branscum, A. and Hanson, T. (2012). Bayesian Ideas and Data Analysis, CHAPMAN and HALL/CRC, Boca Raton. 13. Dendukuri, N., Belisle, P. and Joseph, L. (2010). Bayesian Sample Size for Diagnostic Test Studies in the Absence of a Gold Standard: Comparing Identifiable with Nonidentifiable Models. Statistics in Medicine, 29, 26882697. [ DOI:10.1002/sim.4037] 14. Dendukuri, N., Rahme, E., Bélisle, P. and Joseph, L. (2004). Bayesian Sample Size Determination for Prevalence and Diagnostic Test Studies in the Absence of a Gold Standard Test. Biometrics, 60, 388397. [ DOI:10.1111/j.0006341X.2004.00183.x] 15. Gamalo, M.A., Tiwari, R.C. and LaVange, L.M. (2014). Bayesian Approach to the Design and Analysis of Noninferiority Trials for Antiinfective Products. Pharmaceutical Statistics, 13, 2540. [ DOI:10.1002/pst.1588] 16. Gelman, A., Rubin, D.B. (1992). Inference from Iterative Simulation using Multiple Sequences. Statistical Science, 7, 457511. [ DOI:10.1214/ss/1177011136] 17. Guo, X, and Carlin, B.P. (2004). Separate and Joint Modeling of Longitudinal and Event Time Data using Standard Computer Packages. The American Statistician, 58, 1624. [ DOI:10.1198/0003130042854] 18. Hedeker, D., Gibbons, R.D. and Waternaux, C. (1999). Sample Size Estimation for Longitudinal Designs with Attrition: Comparing Timerelated Contrasts between Two Groups. Journal of Educational and Behavioral Statistics, 24, 7093. [ DOI:10.3102/10769986024001070] 19. Hintze, J.L. (2000). Power Analysis and Sample Size (PASS) for Windows User's Guide. Kaysville, Utah, NCSS. 20. Johnson, J.L., Muller, K.E., Slaughter, J.C., Gurka, M.J., Gribbin, M.J. and Simpson, S.L. (2009). POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models. Journal of Statistical Software, 30. [ DOI:10.18637/jss.v030.i05] 21. Joseph, L. and Belisle, P. (1997). Bayesian Sample Size Determination for Normal Means and Differences between Normal Means. Journal of the Royal Statistical Society: Series D (The Statistician), 46, 209226. [ DOI:10.1111/14679884.00077] 22. Landau, S., and Stahl, D. (2013). Sample Size and power Calculations for Medical Studies by Simulation when Closed form Expressions are not Available. Statistical Methods in Medical Research, 22, 324345. [ DOI:10.1177/0962280212439578] 23. Pezeshk, H. (2003). Bayesian Techniques for Sample Size Determination in Clinical Trials: a Short Review. Statistical Methods in Medical Research, 12, 489504. [ DOI:10.1191/0962280203sm345oa] 24. Raudenbush, S.W. (1997). Statistical Analysis and Optimal Design for Cluster Randomized Trials. Psychological Methods, 2, 173. [ DOI:10.1037/1082989X.2.2.173] 25. Shalloway, D. (2014). The Evidentiary Credible Region. Bayesian Analysis, 9, 909922. [ DOI:10.1214/14BA883] 26. Spiegelhalter, D.J., Thomas, A., Best, N. and Lunn, D. (2003). WinBUGS Examples, MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public Health, Imperial College School of Medicine, UK. 27. Tsiatis, A.A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Timetoevent Data: an Overview. Statistica Sinica, 809834. 28. Turkkan, N. and PhamGia, T. (1997). Algorithm AS 308: Highest Posterior Density Credible Region and Minimum Area Confidence Region: the Bivariate Case. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46, 131140. [ DOI:10.1111/14679876.00053] 29. Wang, F. and Gelfand, A.E. (2002). A Simulationbased Approach to Bayesian Sample Size Determination for Performance under a Given Model and for Separating Models. Statistical Science, 193208. [ DOI:10.1214/ss/1030550861] 30. Wienke, A. (2011). Frailty Models in Survival Analysis. Boca Raton, FL: Chapman & Hall/CRC. [ DOI:10.1201/9781420073911] 31. Williams, M.S., Ebel, E.D. and Wagner, B.A. (2007). Monte Carlo Approaches for Determining Power and Sample Size in Lowprevalence Applications. Preventive Veterinary Medicine, 82, 151158. [ DOI:10.1016/j.prevetmed.2007.05.015]
