:: Volume 15, Issue 2 (3-2019) ::
JSRI 2019, 15(2): 301-316 Back to browse issues page
Shrinkage and Bayesian Shrinkage Estimation of the Expected Length of a M/M/1 Queue System
Azadeh Kiapour *1, Mehran Naghizadeh Qomi2
1- Babol branch, Islamic Azad University , Kiapour@baboliau.ac.ir
2- University of Mazandaran
Abstract:   (265 Views)

In this paper, shrinkage and Bayesian shrinkage

estimation of the expected length (l) in a M/M/1 queue system

is considered. A shrinkage estimator of l is considered when a

priori about l as l_0 is available. The bias and the risk of

shrinkage estimators are derived under a scale-invariant squared

error loss (SISEL) function. A class of Bayes shrinkage estimators

for $l$ is proposed which is a generalization of Bayes shrinkage

estimator and a relative performance of proposed estimators and the

maximum likelihood estimator (MLE) is performed. A simulated data is

given to illustrate the proposed results. Finally, we conclude with

a summary of our contributions.

Keywords: Bayes shrinkage estimator, expected length, M/M/1 queue, scale-invariant squared error loss function.
Full-Text [PDF 2761 kb]   (158 Downloads)    
Type of Study: Research | Subject: General
Received: 2019/02/2 | Accepted: 2019/11/19 | Published: 2019/12/12
1. Arabi Belaghi, A.R., Arashi, M. and Tabatabaey, S.M.M. (2014). Improved Confidence Intervals for the Scale Parameter of Burr XII Model Based on Record Values. Computational Statistics, 29, 1153-1173. [DOI:10.1007/s00180-014-0484-3]
2. Arabi Belaghi, A.R., Arashi, M. and Tabatabaey, S.M.M. (2015a). On the Construction of Preliminary Test Estimator Based on Record Values for the Burr XII model. Communications in Statistics-Theory and Methods, 44, 1-23. [DOI:10.1080/03610926.2012.733473]
3. Arabi Belaghi, A.R., Arashi, M. and Tabatabaey, S.M.M. (2015b). Improved Estimators of the Distribution Function Based on Lower Record Values. Statistical papers, 56(2), 453-477. [DOI:10.1007/s00362-014-0591-9]
4. Armero, C. and Bayarri, M.J. (1994). Bayesian Prediction in M/M/1Queues. Queing Syst. 15, 401-417. [DOI:10.1007/BF01189248]
5. Clarke, A.B. (1957). Maximum Likelihood Estimates in a Simple Queue. Ann Math Stat., 28, 1036-1040. [DOI:10.1214/aoms/1177706808]
6. Dey (2008). A Note On Bayesian Estimation of the Trafic Intensity in M/M/1 Queue and Queue Chaacteristics Quadratic Loss Function. Data Science Journal, 7, 148-154. [DOI:10.2481/dsj.7.148]
7. Kiapour, A. and Naghizadeh Qomi, M. (2016). Shrinkage Preliminary Test Estimation Under a Precautionary Loss Function with Applications on Records and Censored Data, Journal of the Iranian Statistical Society, 15, 73-85. [DOI:10.18869/acadpub.jirss.15.2.73]
8. Lehmann, E.L. (1951). A General Concept of Unbiasedness. Annals of Mathematical Statistica, 22, 587-592. [DOI:10.1214/aoms/1177729549]
9. Mukherjee, S.P. and Chowdhury, S. (2005). Bayesian Estimation of Traffic Intensity. IAPQR Transactions. 30, 89-100.
10. Naghizadeh Qomi, M. (2017). Bayesian Shrinkage Estimation based on Rayleigh Type-II Censored Data. Communications in Statistics-Theory and Methods, 46(19), 9859-9868. [DOI:10.1080/03610926.2016.1222440]
11. Naghizadeh Qomi, M. and Barmoodeh, L. (2015). Shrinkage Testimation in Exponential Distribution based on Records under Asymmetric Squared Log Error Loss. Journal of Statistical Research of Iran, 12, 225-238. [DOI:10.18869/acadpub.jsri.12.2.225]
12. Ren, H. and Wang, G. (2012). Bayes Estimation of Traffic Intensity in M/M/1 Queue under a Precautionary Loss Function. Procedia Engineering, 29, 3646-3650. [DOI:10.1016/j.proeng.2012.01.546]
13. Ehsanes Saleh, A.K.Md. (2006). Theory of Preliminary Test and Stein-type Estimation with Applications, John Wiley, New Jersey. [DOI:10.1002/0471773751]
14. Sharma, K.K. and Kumar, V. (1999). Inference on M/M/1:($infty$:FIFO) queue systems. Opsearch, 36, 26-34. [DOI:10.1007/BF03398559]
15. Srinivas, V., Rao, S.S. and Kale, B.K. (2011). Estimation of Measures in M/M/1 Queue. [DOI:10.1080/03610926.2010.498653]
16. Communications in Statistics-Theory and Methods, 40, 3327-3336.
17. Thompson, J.R. (1968). Some Shrunken Techniques for Estimating the Mean. Journal of the American Statistical Association, 63, 113-122. [DOI:10.1080/01621459.1968.11009226]

XML   Persian Abstract   Print

Volume 15, Issue 2 (3-2019) Back to browse issues page