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Abstract. In this paper we derive some unbiased estimators of the popula-
tion mean under simple inverse sampling with replacement, using the class
of Hansen-Hurwitz and Horvitz-Thompson type estimators and the post-
stratification approach. We also compare the efficiency of resulting estima-
tors together with Murthy’s estimator. We show that in despite of general
belief, the strategy consisting of inverse sampling with Murthy’s estimator
is highly less efficient when the target population is rare, whereas it can be
more efficient when subpopulation means are closed. In fact, for inverse sam-
pling to be highly efficient design one should know the population structure
and then use an appropriate estimator.
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1 Introduction
Simple inverse sampling with replacement (SISWR) introduced firstly by
Haldan (1945) to estimate the population proportion. Christman and Lan
(2001) provided an unbiased estimator of the population mean under SISWR.
Similar result is obtained by Salehi and Seber (2001) by using the Murthy’s
method (Murthy, 1957). In the context of finite sampling it is known that
the inverse sampling is more efficient design for rare populations, where the
target population partitioned into two subgroups for which one is small with
large y-values and other is large with small (near to zero) y-values.
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In this paper, in Section 2 we derive some new unbiased estimators of
the population mean under SISWR using the class of Hansen-Hurwitz and
Horvitz-Thompson type estimators and the post-stratification idea. Typi-
cally, these involved in the size of population subgroups, so should be known.
In section 3, we give a theoretical comparison of resulting estimators together
with Murthy’s estimator. As a main result, the Murthy’s estimator is highly
less efficient estimator in the rare populations and more efficient estimator
when the mean of population subgroups be very closed. In other word, for
inverse sampling to be highly efficient design for rare populations one should
know the subpopulation sizes and then use an appropriate estimator.

2 Inverse Sampling with Replacement

Suppose that a finite population U = {u1, u2, . . . , uN} of N units is divided
into two groups UC and UC̄ , with the corresponding sizes M and N −M ,
respectively. With any unit uk there is an associated value of the variable of
interest yk, for k = 1, 2, . . . , N . Let ȳUC

= 1
M

∑
UC

yk, ȳUC̄
= 1

N−M
∑

UC̄
yk,

σ2C = 1
M

∑
UC

(yk − ȳUC
)2, and σ2

C̄
= 1

N−M
∑

UC̄
(yk − ȳUC̄

)2. In SISWR the
units are selected sequentially, with replacement and with equal probabilities
until predetermined number of units, say r, possessing the attribute drown.
Let os, osC and osC̄ denote the final samples from U , UC and UC̄ , respec-
tively. Obviously, the final sample size, say nos, is a random variable which
follows the negative binomial distribution. Salehi and Seber (2001) applied
the Murthy’s estimator under SISWR and found an unbiased estimator of
the population mean as:

µ̂M =
M̂

N
ȳosC +

(
1− M̂

N

)
ȳosC̄ , (1)

where ȳosC and ȳosC̄ are sample means from osC and osC̄ , and M̂ = (r−1)N
nos−1

is an unbiased estimator of the subpopulation size M , whether it is known
or not. Christman and Lan (2001) showed that the variance of µ̂M in (1) is
given by:

Var(µ̂M ) = E

(
M̂

N

)2
σ2C
r

+ E

{
(1− M̂

N )2

nos − r

}
σ2C̄ + Var

(
M̂

N

)
(ȳUC

− ȳUC̄
)2.

(2)
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2.1 Unbiased Estimators with Known Subpopulation Sizes

In this subsection we derive the Hansen-Hurwitz and Horvitz-Thompson type
estimators for the population mean under SISWR. Furthermore, we give an
unbiased version of post-stratified estimator adjusted for probability of no
selection from UC̄ .

The Hansen-Hurwitz Type Estimator
Hansen and Hurwitz (1943) suggested a class of unbiased estimators of the
population mean which applied usually for with replacement sampling de-
signs. Let f(k) denote the number of which the kth unit selected in the final
sample, for k = 1, . . . , N . So, the Hansen-Hurwitz (HH) type estimator is
defined as:

µ̂HH =
1

N

N∑
k=1

yk
E{f(k)}

f(k). (3)

To derive µ̂HH and its variance under SISWR we need to have E{f(k)},
Var{f(k)} and Cov{f(k), f(l)} for any (k ̸= l). It is evident that a SISWR
given its size nos is equivalent to a stratified random sampling with replace-
ment with size (r, nos − r) from (UC , UC̄). Hence, for any {k1, . . . , kν} ⊆ UC
the random vector (f(k1), . . . , f(kν)) follows multinomial (Mn) distribution
with parameters (r, 1

M , . . . ,
1
M ). On the other hand, it can be shown that for

any {k1, . . . , kω} ⊆ UC̄ , the joint distribution of f(k1), . . . , f(kω) is a negative
multinomial (NMn) with density function

Pr {f(k1) = x1, . . . , f(kω) = xω} =
Γ(r + t)

Γ(r)
∏ω
i=1 xi!

(
M

M + ω

)r ( 1

M + ω

)t
,

(4)
where xi > 0, and t =

∑ω
i=1 xi (see Appendix A). Therefore, f(k) is a

negative binomial random variable with parameters (r, M
M+1). Hence, for

any k ∈ U :

E{f(k)} =
r

M
. (5)

Also, we have

Var{f(k)} =

{
r(M−1)
M2 if k ∈ UC ,

r(M+1)
M2 if k ∈ UC̄ ,

(6)
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and for any k ̸= l

Cov{f(k), f(l)} =


− r
M2 if (k&l) ∈ UC ,

0 if k ∈ UC&l ∈ UC̄ ,
r
M2 if (k&l) ∈ UC̄ .

(7)

Imputing equation (5) in (3) results the HH type estimator of ȳU as:

µ̂HH =
M

Nr

∑
os

yk. (8)

Using equations (6) and (7), it can be shown that (see Appendix B) the
variance of HH estimator in (8) is given by:

Var(µ̂HH) =
1

N2r

{
M2σ2C +M(N −M)σ2C̄ +N(N −M)ȳ2UC̄

}
. (9)

The Horvitz-Thompson Type Estimator
Horvitz and Thompson (1952) defined an alternative class of unbiased es-
timators for the population mean which is constructed based on inclusion
probabilities. Let s denote the sample set of selected distinct units and
πk = Pr(k ∈ s) be inclusion probability for kth element. Hence, the Horvitz-
Thompson (HT) type estimator for the population mean is:

µ̂HT =
1

N

∑
k∈s

yk
πk
. (10)

The variance of µ̂HT is

Var(µ̂HT ) =
1

N2

N∑
k=1

N∑
l=1

(πkl − πkπl)
ykyl
πkπl

, (11)

where πkl is the joint inclusion probability of the kth and the lth units, with
πkk = πk. Using the relation between f(k) and πk, we have:

πk = 1− Pr{f(k) = 0} =

{
1− φM,1 if k ∈ UC ,

1− φ(M+1),1 if k ∈ UC̄ ,
(12)
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and

πkl − πkπl = Pr {f(k) = f(l) = 0} − Pr{f(k) = 0}Pr{f(l) = 0}

=


φM,2 − φ2

M,1 if (k, l) ∈ UC

0 if k ∈ UC , l ∈ UC̄
φ(M+2),2 − φ2

(M+1),1 if (k, l) ∈ UC̄ ,

(13)

where φs,t = (1−t/s)r. Imputing (12) and (13) in (10) and (11), respectively,
the HT estimator of ȳU is found as:

µ̂HT =
1

N

 1

1− φM,1

∑
sC

yk +
1

1− φ(M+1),1

∑
sC̄

yk


with variance

Var(µ̂HT ) =
1

N2

[
(φM,1 − φM,2)

∑
UC

y2k − (φ2
M,1 − φM,2)T

2
C

(1− φM,1)2

+

{
φ(M+1),1 − φ(M+2),2

}∑
UC̄

y2k −
{
φ2
(M+1),1 − φ(M+2),2

}
T 2
C̄

{1− φ(M+1),1}2

]
,

(14)

where TC =
∑

UC
yk and TC̄ =

∑
UC̄

yk.

The post-stratified Estimator
As another well-known technique, we may use the post-stratification strat-
egy. Since ȳU = M

N ȳUC
+ (1 − M

N )ȳUC̄
, an unbiased estimator of the pop-

ulation mean can be achieved by constructing unbiased estimators of the
sub-population means ȳUC

and ȳUC̄
. It can be easily shown that ȳosC and

1
1−(M

N
)r
ỹosC̄ are unbiased estimators of ȳUC

and ȳUC̄
, respectively, where

ỹosC̄ = 1
nos−r

∑
osC̄

yk if nos > r, and 0 if nos = r. Hence, the post-stratified
estimator of the population mean is defined as:

µ̂p.st =
M

N
ȳosC +

(
1− M

N

)
1

1− (MN )r
ỹosC̄

The variance of µ̂p.st is

Var(µ̂p.st) =
(
M

N

)2 σ2C
r

+ δpstσ
2
C̄ + (1− M

N
)2

(MN )r

1− (MN )r
ȳ2UC̄

, (15)
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where

δpst =
1

{1− (MN )r}2

∞∑
x=r+1

(
x− 1

r − 1

)
1

x− r

(
M

N

)r (
1− M

N

)x−r+2

. (16)

3 Comparison of Efficiencies
The variance of derived estimators as well as the variance of Murthy’s es-
timator in (2) are typically as functions of the subpopulation means and
variances. The variance of µ̂HT given in (14) is more complicated to com-
pare it with others. However, our simulation on the numerous populations
show that µ̂HT is dominated by µ̂HH and/or µ̂p.st, so we remove it from our
comparison. In continue we give a theoretical comparison between µ̂M , µ̂HH
and µ̂p.st with respect to subpopulation variances and means.

Subgroup Variance σ2C
As the multiplier of σ2C , the first part of the variance of both µ̂HH and µ̂p.st
are similar, and is smaller than those for µ̂M , since E(M̂N )2 > (MN )2. This
means that as the subpopulation variance σ2C increased, the efficiencies of
µ̂HH and µ̂p.st relative to µ̂M are increased.

Subgroup Variance σ2
C̄

The second factor of the variances of µ̂M , µ̂HH and µ̂p.st are multipliers

of σ2
C̄

, say δM = E

{
(1− M̂

N
)2

nos−r

}
, δHH = M(N−M)

N2r
and δpst which defined in

(16), respectively. We give the values of these quantities in Table 1 for
M
N = 0.05, 0.1, 0.2. As it seen, the δHH is the smallest for any situation, in
favor of µ̂HH . Using the inequality due to Prasad (1982), it can be shown
that (see Appendix C) δM > δHH . On the other hand, in any case we have
δpst > δHH , however, as r increases the coefficients δM , δHH and δpst are
closed to each other.

Subgroup Means
The third factor in the variance of mentioned estimators is in the basis of
subpopulation means. A serious drawback of µ̂HH and µ̂p.st is that these
have’nt location scale property with resect to the y-values in UC̄ , so those
variances may be affected by the variation of mean in UC̄ , with minor effect
for µ̂p.st. Define α as the difference of ȳ2UC̄

multipliers in equations (9) and
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(15), i.e α = N−M
Nr − (1− M

N )2
(M
N

)r

1−(M
N

)r
. It can be shown easily that

α =

(
1− M

N

) ∑r−1
i=0

{
(MN )i − (MN )r

}
r
∑r−1

i=0 (
M
N )i

,

so always α > 0 (in favor of µ̂p.st). However, as is shown in Figure 1, the
difference value α will be negligible, as r increased. So, µ̂HH is suggested
only if the mean of y-values be near to zero or r is chosen very large.
On the other hand, for the variables with near to zero values in UC̄ and large
values in UC , the µ̂M has highly less efficiency in comparison with µ̂HH and
µ̂p.st. This means that for inverse sampling to be an efficient design for the
rare populations we need to know subpopulation size M and use µ̂HH or
µ̂p.st, appropriately.

Figure 1. The difference values α against some values of r.
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It is surprising that for un-rare populations with near and large values
of ȳUC

and ȳUC̄
, the Murthy’s estimator may be even more efficient than

µ̂p.st, special for small r-values. In this case, it is dangerous to use µ̂HH , so
we compare only µ̂M and µ̂p.st. To see the behavior of µ̂M and µ̂p.st with
respect to the ȳUC̄

, we give a small simulation. Define following model for
the population:

FC = N(100, 10); FC̄ = N(ȳUC̄
, 10),

where F (·) denotes the underlying distribution for generating population y-
values. The population size is N = 100 with M = 10, and the r is chosen as
r = 3. The variance of µ̂M and µ̂p.st are plotted versus of ȳUC̄

in the Figure 2.
When ȳUC̄

is small, µ̂p.st is more efficient. However, as ȳUC̄
increases from

70 to 100, the µ̂M is more efficient than µ̂p.st.

Figure 2. The variance of m̂uM and µ̂p.st versus the values of subpopulation mean ȳUC̄
.
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Table 1. The values of variance coefficients, δM , δHH ,
and δpst for the σ2

C̄ for the unbiased estimators under
SISWR design.

M
N

r δM δHH δpst

0.05 2 0.0422 0.0237 0.0499
3 0.0228 0.0158 0.0250
4 0.0154 0.0119 0.0163
5 0.0117 0.0095 0.0121
6 0.0094 0.0079 0.0096
8 0.0067 0.0059 0.0068
10 0.0052 0.0047 0.0053
12 0.0043 0.0040 0.0043

0.10 2 0.0745 0.0450 0.0934
3 0.0417 0.0300 0.0493
5 0.0218 0.0180 0.0234
8 0.0127 0.0112 0.0131
10 0.0099 0.0090 0.0101
12 0.0081 0.0075 0.0083
15 0.0064 0.0060 0.0065
18 0.0053 0.0050 0.0053

0.20 2 0.1196 0.0800 0.1558
3 0.0701 0.0533 0.0916
6 0.0306 0.0267 0.0344
10 0.0173 0.0160 0.0184
15 0.0113 0.0107 0.0117
20 0.0083 0.0080 0.0085
25 0.0066 0.0064 0.0067
30 0.0055 0.0053 0.0056
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Appendix A
Joint distribution of observed frequencies in UC̄ under SISWR
Consider the subset {k1, . . . , kω} ⊆ UC̄ . Since f(k1), . . . , f(kω) given the
sample size nos follows multinomial distribution with parameters (nos −
r, 1
N−M , . . . ,

1
N−M ), we have:

Pr{f(k1) = x1, . . . , f(kω) = xω}

=

∞∑
nos=r+t

Pr{f(k1) = x1, . . . , f(kω) = xω
∣∣nos}Pr(nos)

=
∞∑

nos=r+t

{(
nos − r

x1, . . . , xω

)(
1

N −M

)t(
1− ω

N −M

)nos−r−t
(
nos − 1

r − 1

)

×
(
M

N

)r (
1− M

N

)nos−r
}

=
Γ(r + t)

Γ(r)
∏ω
i=1 xi!

(
1

N −M

)t(M
N

)r (
1− M

N

)t
×

∞∑
nos=r+t

(
nos − 1

r + t− 1

)(
1− M + ω

N

)nos−r−t

=
Γ(r + t)

Γ(r)
∏ω
i=1 xi!

(
M

M + ω

)r ( 1

M + ω

)t
, (t =

ω∑
i=1

xi, xi > 0)
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which is a negative multinomial (NMn) distribution with parameters (r,M).

Appendix B

Deriving the variance of µ̂HH

Using the probability function (4), we have Var(f(k)) = r(M+1)
M2 and Cov{f(k),

f(l)} = r
M2 (for k ̸= l ∈ UC̄). On the other hand, we may rewritten µ̂HH as

M
Nr

∑N
k=1 f(k)yk. Hence,

Var(µ̂HH) =
(
M

Nr

)2
 N∑
k=1

y2kVar{f(k)}+
∑
k ̸=l

∑
ykylCov{f(k), f(l)}


=

(
M

Nr

)2{ ∑
k∈UC

r(M − 1)

M2
y2k +

∑
k∈UC̄

r(M + 1)

M2
y2k

+
∑
(k ̸=l)

∑
∈UC

(
−r
M2

)
ykyl +

∑
(k ̸=l)

∑
∈UC̄

( r

M2

)
ykyl

}

=
1

N2r

{
(M − 1)

∑
k∈UC

y2k −
∑
(k ̸=l)

∑
∈UC

ykyl + (M + 1)
∑
k∈UC̄

y2k

+
∑
(k ̸=l)

∑
∈UC̄

ykyl

}

=
1

N2r

{
M
∑
k∈UC

y2k −M2ȳ2UC
+M

∑
k∈UC̄

y2k + (N −M)2ȳ2UC̄

}
.

By some simplifications we get the variance of µ̂HH as:

Var(µ̂HH) =
1

N2r

{
M2σ2C +M(N −M)σ2C̄ +N(N −M)ȳ2UC̄

}
.
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Appendix C

Proof of δM > δHH

Prasad (1982) found a sharper upper bound for the variance of r−1
nos−1 (as the

unbiased estimator of the population proportion M
N ) under SISWR as

Var
(
r − 1

nos − 1

)
6

(r − 2)(MN )2(1− M
N )

(r − 1)2MN + (r − 2)2(1− M
N )

On the other hand we have δM = E

(
(1− M̂

N
)2

nos−r

)
= M

N(r−1) − (r− 1)E( 1
nos−1)

2.
Using the above inequality we have:

δM > M

N(r − 1)
−

(MN )2 +
(r−2)(M

N
)2(1−M

N
)

(r−1)2 M
N

+(r−2)2(1−M
N

)

r − 1

Since δHH = M(N−M)
rN2 , by some simplifications we have:

δM − δHH > M(N −M)

N2

[
(r − 2)2 − (r − 1)(r − 3)MN

r(r − 1)
{
(r − 1)2MN + (r − 2)2(1− M

N )
}]

It is evident that the numerator of biggest bracket in above inequality is
positive, so δM > δHH .
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