:: Volume 16, Issue 2 (3-2020) ::
JSRI 2020, 16(2): 447-464 Back to browse issues page
A New Control Chart Based on a Bivariate Beta Distribution
Shohreh Enami1, Hamzeh Torabi *2, Taghi Akhavan Niaki3
1- Yazd University
2- Yazd University , hamzeh.torabi@gmail.com
3- Sharif University of Technology
Abstract:   (602 Views)
Abstract. In many practical situations, the quality of a product can be measured based on some quality characteristics in terms of the sum of the percentage of these characteristics utilities. In these cases, control charts based on multivariate beta distribution can be used to monitor the process. This study aims to introduce a new control chart for monitoring the quality of products when two quality characteristics follow a bivariate Beta distribution. The efficacy of the proposed control chart is evaluated using the average run length criterion using a simulation study. In the case that the parameters of this distribution are unknown, the maximum likelihood method is applied. Then, using a simulation study, the performance of the proposed charts, in two cases known and unknown parameters are compared.
 
Keywords:  Bivariate beta distribution, maximum likelihood method, average run length.
Full-Text [PDF 182 kb]   (454 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/10/15 | Accepted: 2021/07/28 | Published: 2021/09/19
References
1. Adamski, K., Human, S., and Bekker, A. (2012). A Generalized Multivariate Beta Distribution: Control Charting When the Measurements are from an Exponential Distribution. Statistical Papers, 53, 1045-1064. [DOI:10.1007/s00362-011-0407-0]
2. Alt, F.B. (1985). Multivariate Quality Control. John Wiley and Sons, 110-122.
3. Bayer, F., Tondolo, C., and Müller, F. (2018). Beta Regression Control Chart for Monitoring Fractions and Proportions. Computers and Industrial Engineering, 119, 416-426. [DOI:10.1016/j.cie.2018.04.006]
4. Ghosh, I. (2019). On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey. Stochastics and Quality Control, 34, 115-121. [DOI:10.1515/eqc-2018-0029]
5. Jolevska-Tuneska, B., and Jolevski, I. (2013). Some Results on the Digamma Function. Applied Mathematics and Information Sciences, 7, 167-170. [DOI:10.12785/amis/070120]
6. Lee Ho, L., and Bourguignon, M. (2018). Control Charts to Monitor Rates and Proportions. Quality and Reliability Engineering International, 35, 1-10. [DOI:10.1002/qre.2381]
7. Libby, D., and Novick, M. (1982). Multivariate Generalized Beta Distributions with Applications to Utility Assessment. Educational Statistics, 7, 271-294. [DOI:10.3102/10769986007004271]
8. Montgomery, D.C. (2013). Design and Analysis of Experiments, John Wiley and Sons, 110-122.
9. Nadarajah, S. (2007). A New Bivariate Beta Distribution with Application to Drought Data. Metron. LXV (2), 153-174. [DOI:10.1007/BF02832312]
10. Nadarajah, S. (2007). The Bivariate F2 Beta Distribution. American Journal of Mathematical and Management Sciences. 27, 351-368. [DOI:10.1080/01966324.2007.10737705]
11. Nadarajah, S., Hsing Shih, S., and Nagar, D. (2017). A New Bivariate Beta Distribution. Statistics, 51, 455-474. [DOI:10.1080/02331888.2016.1240681]
12. Nadarajah, S., and Kotz, S. (2005). Some Bivariate Beta Distributions. Statistics, 39, 457-466. [DOI:10.1080/02331880500286902]
13. Olkin, I., and Liu, R. (2003). A Bivariate Beta Distribution. Statistics and Probability Letters, 62, 407-412. [DOI:10.1016/S0167-7152(03)00048-8]
14. Orozco-Castaneda, J., Nagar, D., and Gupta, A. (2012). Generalized Bivariate Beta Distributions Involving Appell's Hypergeometric Function of the Second Kind. Computers and Mathematics with Applications, 64, 2507-2519. [DOI:10.1016/j.camwa.2012.06.006]
15. Sant'Anna, A., and Ten Caten, C. (2012). Beta Control Charts for Monitoring Fraction Data. Expert Systems with Applications, 39, 10236-10243. [DOI:10.1016/j.eswa.2012.02.146]
16. Saleh, N.A., Mahmoud, M.A., Keefe, M.J., and Woodall, W.H.(2015). The Difficulty in Designing Shewhart X and $bar{X}$ Control Charts with Estimated Parameters. Journal of Quality Technology, 47, 127-138. [DOI:10.1080/00224065.2015.11918120]
17. Sarabia, M., Prieto, F., and Jordá, V. (2014). Bivariate Beta-Generated Distributions with Applications to Well-being Data. Statistical Distributions and Applications, 1, 1-26. [DOI:10.1186/2195-5832-1-15]
18. World Health Organization (2002). Hepatitis C. Retrieved from: http://www.who.int/csr/disease/hepatitis/Hepc.pdf.
19. Wright, S. (1937). The Distribution of Gene Frequencies in Populations. Proceedings of the National Academy of Sciences, 23, 307-320. [DOI:10.1073/pnas.23.6.307]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 2 (3-2020) Back to browse issues page