1. Aitkin, M. (1995). NPML Estimation of the Mixing Distribution in General Statistical Models with Unobserved Random Variation. (eds.G.U.H. Seeber, B.J. Francis, R. Hatzinger, G. SteckelBerger), SpringerVerlag, Berlin, 19. [ DOI:10.1007/9781461207894_1] 2. Aitkin, M. (1996). A General Maximum Likelihood Analysis of Overdispersion in Generalized Linear Models. Statistics and Computing, 6, 251262. [ DOI:10.1007/BF00140869] 3. Casella, G., and Berger, R.L. (2001). Statistical Inference, 2nd Edition. Duxbury Press, Pacific Grove. 4. Hu, T., Gallins, P., and Zhou, YH. (2018). A Zeroinflated Betabinomial Model for Microbiome Data Analysis. Stat., 7, e185. DOI:10.1002/sta4.185. [ DOI:10.1002/sta4.185] 5. Kassahun, W., Neyens, T., Molenberghs, G., Faes, C., and Verbeke G. (2012). Modeling Overdispersed Longitudinal Binary Data Using a Combined Beta and Normal RandomEffects Model. Archives of Public Health, 70. DOI: 10.1186/07787367707. [ DOI:10.1186/07787367707] 6. Kim, J., and Lee, J.H. (2015). The Validation of a Betabinomial Model for Overdispersed Binomial Data. Communications in Statistics  Simulation and Computation, 46, 807814. DOI: 10.1080/03610918.2014.96009. [ DOI:10.1080/03610918.2014.960091] 7. Lambert, D. (1992). ZeroInflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34, 114. [ DOI:10.2307/1269547] 8. Skellam, J.G. (1948). A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of a Success as Variable Between the Sets of Trials. Journal of the Royal Statistical Society, Series B, 10, 25261. [ DOI:10.1111/j.25176161.1948.tb00014.x] 9. Wang, W. (2013). Identifiability of Linear Mixed Effects Models. Electron. J. Stat., 7, 244263. [ DOI:10.1214/13EJS770]
