[Home ] [Archive]    
:: Volume 16, Issue 2 (3-2020) ::
JSRI 2020, 16(2): 397-407 Back to browse issues page
Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses
Sedigheh Azimi *1, Ehsan Bahrami Samani, Mojtaba Ganjali  
1- , sazimi04@gmail.com
Abstract:   (579 Views)
We present a new joint model with random effects for the correlated count with extra zero and continuous responses. In this model, we assume a Zero-Inflated Beta-Binomial distribution for the analysis of over dispersed binomial variable and a normal distribution for the analysis of continuous response. Furthermore, a full model likelihood function approach is used to obtain maximum likelihood estimates of the model parameters. We also evaluate the proposed model using the Monte Carlo simulation method. Finally, we fit the model to real data to find effective factors on mixed responses.
Keywords: Random effects, mixed response, the EM algorithm, population survey data.
Full-Text [PDF 290 kb]   (460 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/06/9 | Accepted: 2021/01/12 | Published: 2021/09/19
References
1. Aitkin, M. (1995). NPML Estimation of the Mixing Distribution in General Statistical Models with Unobserved Random Variation. (eds.G.U.H. Seeber, B.J. Francis, R. Hatzinger, G. Steckel-Berger), Springer-Verlag, Berlin, 1-9. [DOI:10.1007/978-1-4612-0789-4_1]
2. Aitkin, M. (1996). A General Maximum Likelihood Analysis of Overdispersion in Generalized Linear Models. Statistics and Computing, 6, 251-262. [DOI:10.1007/BF00140869]
3. Casella, G., and Berger, R.L. (2001). Statistical Inference, 2nd Edition. Duxbury Press, Pacific Grove.
4. Hu, T., Gallins, P., and Zhou, Y-H. (2018). A Zero-inflated Beta-binomial Model for Microbiome Data Analysis. Stat., 7, e185. DOI:10.1002/sta4.185. [DOI:10.1002/sta4.185]
5. Kassahun, W., Neyens, T., Molenberghs, G., Faes, C., and Verbeke G. (2012). Modeling Overdispersed Longitudinal Binary Data Using a Combined Beta and Normal Random-Effects Model. Archives of Public Health, 70. DOI: 10.1186/0778-7367-70-7. [DOI:10.1186/0778-7367-70-7]
6. Kim, J., and Lee, J.H. (2015). The Validation of a Beta-binomial Model for Overdispersed Binomial Data. Communications in Statistics - Simulation and Computation, 46, 807-814. DOI: 10.1080/03610918.2014.96009. [DOI:10.1080/03610918.2014.960091]
7. Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34, 1-14. [DOI:10.2307/1269547]
8. Skellam, J.G. (1948). A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of a Success as Variable Between the Sets of Trials. Journal of the Royal Statistical Society, Series B, 10, 25-261. [DOI:10.1111/j.2517-6161.1948.tb00014.x]
9. Wang, W. (2013). Identifiability of Linear Mixed Effects Models. Electron. J. Stat., 7, 244-263. [DOI:10.1214/13-EJS770]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azimi S, Bahrami Samani E, Ganjali   M. Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses. JSRI. 2020; 16 (2) :397-407
URL: http://jsri.srtc.ac.ir/article-1-382-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 2 (3-2020) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.04 seconds with 29 queries by YEKTAWEB 4422