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Abstract. Let X = (X1, X2) be a continuous random vector. Under the as-
sumption that the marginal distributions of X1 and X2 are given, we develop
models for vector X when there is partial information about the dependence
structure between X1 and X2. The models which are obtained based on well-
known Principle of Maximum Entropy are called the maximum entropy (ME)
models. Our results lead to characterization of some well-known bivariate
distributions such as Generalized Gumbel, Farlie-Gumbel-Morgenstern and
Clayton bivariate distributions. The relationship between ME models and
some well known dependence notions are studied. Conditions under which
the mixture of bivariate distributions are ME models are also investigated.

Keywords. Fréchet class of distributions; hazard gradient; dependence; to-
tal positive of order 2.
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1 Introduction
Let X = (X1, X2) be a continuous random vector with distribution function
F (x1, x2) = P (X1 6 x1, X2 6 x2), x1, x2 ∈ R. Specification of a bivariate
distribution requires full information about marginal distributions as well
as dependence structure between X1 and X2. There are many situations
in which the marginal distributions are known but the complete informa-
tion about the dependence structure between X1 and X2 is unknown. The
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30 A Note on the Bivariate Maximum Entropy Modeling

problem of interest, in such situations, is to make inference about joint distri-
bution based on constraints on some specifications of the population. A well
known approach to characterize a model for the data generating distribution
is the maximum entropy method. In this approach, insufficient knowledge
about the data generating distribution is formulated in terms of a set of in-
formation constraints. Usually the constraints are made on the moments of
the model and then the aim is to find the model that maximizes Shannon
entropy under these constraints.

In reliability engineering and survival analysis, there are several criterion
which play the central role in analyzing the lifetime data in both univariate
and multivariate cases. Among the well known measures, the hazard rate
and mean residual life function are of particular interest. The present paper
provides a solution for problem of specification of bivariate models using the
well-known Principle of Maximum Entropy; especially when partial infor-
mation about the dependence structures between X1 and X2 are available
and the constraints are made based on hazard gradient or reversed hazard
gradient. In the univariate case, when the constraints are based on hazard
rate and mean residual life function, Asadi et al. (2004) studied a concept
of maximum dynamic entropy and Asadi et al. (2005) introduced a notion
of minimum dynamic discrimination information and obtained various uni-
variate lifetime distributions as maximum dynamic entropy and minimum
dynamic discrimination models. Recently, Asadi et al. (2010) have stud-
ied a concept of bivariate dynamic ME model and derived several bivariate
distributions when partial information is available on hazard gradient.

This communication is a continuation of the work by Asadi et al. (2010).
In the first part of the paper, we develop several bivariate models based on
partial information on the hazard gradient and reversed hazard gradient.
This enables us to characterize several well-known bivariate distributions,
with given marginal distributions, as maximum entropy (ME) models when
partial information about hazard gradient or reversed hazard gradient are
formulated in some inequality constraints. In the second part of the paper,
we characterize mixture of bivariate distributions as ME models when par-
tial information is available on the hazard rate of mixing distribution. The
rest of the paper is organized as follows. Section 2 gives some preliminary
results which are useful in subsequent sections. Section 3 gives results about
ME models based on some dependence concepts such as total positivity of
order 2 (TP2) and reversed regularity of order 2 (RR2). Some well known
bivariate distributions are characterized as ME models under partial infor-
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mation about the hazard and reversed hazard gradient. In Section 4, we
discuss methods for characterizing bivariate mixtures as ME models when
partial information about the distribution function of dependence parameter
is available.

2 Preliminaries
In this section we give some definitions and preliminary results which are
used in the subsequent sections. Let M(F1, F2) be the Fréchet class of abso-
lutely continuous bivariate distribution functions (BDF) with given marginal
distribution functions F1 and F2. The Kullback-Leibler discrimination infor-
mation function between the BDF F (x1, x2) and reference BDF F0(x1, x2)
is defined by

K(F : F0) =

∫ ∫
f(x1, x2) log

f(x1, x2)

f0(x1, x2)
dx1dx2 > 0,

where F is absolutely continuous with respect to F0 and f and f0 denote the
probability density functions (PDFs) of F and F0, respectively. Note that
K(F : F0) = 0 if and only if f0(x1, x2) = f(x1, x2) with probability 1. The
joint entropy of F , denoted by H(X), is defined to be

H(X) = −
∫ ∫

f(x1, x2) log f(x1, x2)dx1dx2.

Definition 1. Let ΩF be the set of all bivariate distributions in M(F1, F2)
that satisfy some partial information (some constraints). The ME model in
ΩF is a BDF F ∗ ∈ ΩF such that

F ∗ = arg max
F∈ΩF

H(F ).

That is, the ME model is the one that its PDF maximizes joint entropy
among all distributions in ΩF (Jaynes, 1957).

In the univariate case, the hazard rate of a continuous distribution
F with density f is defined as λ(t) = f(t)

F̄ (t)
, t > 0, where F̄ (t) = 1−F (t) is the

survival function. The hazard rate plays a central role in the study of lifetime
random variables. In the literature there are various extensions of hazard rate
λ(t) to the multivariate. An extension which is defined in the bivariate case
as follows is called the hazard gradient. Assume that the bivariate random
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vector X has the survival function F̄ (x1, x2) = P (X1 > x,X2 > x2). The
vector of hazard gradient of X is defined as

ΛF (x1, x2) = −
{
∂ log F̄ (x1, x2)

∂x1
,
∂ log F̄ (x1, x2)

∂x2

}
≡ {λF,1(x1, x2), λF,2(x1, x2)} .

Note that λF,i(x1, x2) can be interpreted as the conditional hazard rate of
Xi evaluated at xi, given that Xj > xj for all i, j = 1, 2, i ̸= j. That is,

λF,i(x1, x2) =
fi(xi|Xj > xj , i ̸= j)

F̄i(xi|Xj > xj , i ̸= j)

where fi(·|Xj > xj , j ̸= i) and F̄i(·|Xj > xj , j ̸= i) are, respectively, the
conditional density and survival functions of Xi, given that Xj > xj for
i, j = 1, 2, i ̸= j. The hazard gradient ΛF (x1, x2) has the property that its
relation to BDF F (x1, x2) is one-to-one; see, Johnson and Kotz (1975) and
Marshall (1975).

Another measure which is important in reliability and survival analysis
is reversed hazard rate which is defined as r(t) = f(t)

F (t) . In the bivariate case
the reversed hazard gradient of X is defined as a vector similar to the hazard
gradient. In fact, the reversed hazard gradient of X is

RF (x1, x2) =

{
∂ logF (x1, x2)

∂x1
,
∂ logF (x1, x2)

∂x2

}
≡ {rF,1(x1, x2), rF,2(x1, x2)} ,

where rF,i(x1, x2) is the reversed hazard gradient of its component.

Definition 2. Let the bivariate random vectors X and Y have survival
functions F̄ and Ḡ and distribution functions F and G, respectively.

• Suppose that F and G belong to M(F1, F2). X is said to be smaller
than Y in positive quadrant dependent order (denoted by X 6PQD Y)
if

F̄ (x1, x2) 6 Ḡ(x1, x2) for all (x1, x2).

• X is said to be smaller than Y in the weak bivariate hazard rate order
(denoted by X 6whr Y) if

Ḡ(x)

F̄ (x)
↑ for all x ∈ {x : Ḡ(x) > 0}.
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Let ΛF (x) and ΛG(x) denote the hazard gradients of X and Y, respec-
tively. Then it can be easily seen that

X 6whr Y ⇐⇒ λF,i(x) > λG,i(x), i = 1, 2, x ∈ R2;

see Shaked and Shanthikumar (2007), p. 291.
In order to give the next definition, we need the concept of supermodular.
A function ϕ : R2 → R is said to be supermodular if for any x,y ∈ R2 it
satisfies

ϕ(x) + ϕ(y) 6 ϕ(x ∧ y) + ϕ(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum,
respectively; see Shaked and Shanthikumar (2007), p. 335.

Definition 3. Let X and Y be two bivariate random vectors such that

E[ϕ(X)] 6 E[ϕ(Y)] for all supermodular functions ϕ : R2 → R,

provided the expectations exist. Then X is said to be smaller than Y in
supermodular order (denoted by X 6sm Y); see Shaked and Shanthikumar
(2007), p. 395.

In statistical literature there have been defined various notions of depen-
dency between two random variables. Two concepts of dependency which
are used in this paper are the concepts of total positivity of order 2 (TP2)
and right tail increasing (RTI). These are defined as follows.

Definition 4. (a) LetX1 andX2 have the joint density function f(x1, x2).
f(x1, x2) is said to be total positive of order 2 if

f(x1, x2)f(y1, y2) > f(x1, y2)f(y1, x2) for all (x1, x2) < (y1, y2). (1)

(b) X2 is said to be right-tail increasing in X1 (written as RTI(X2|X1)) if

P (X2 > x2|X1 > x1) is increasing in x1 for all x2. (2)

The dual of (1) and (2) are respectively called reverse regular of order
2(RR2) and right tail decreasing (RTD).
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3 ME Models with Given Marginal Distributions
In this section we study conditions under which a distribution function is
an ME model in ΩF . The conditions are based on partial information about
hazard gradient and reversed hazard gradient. Before giving the main results
we need the following Lemma.

Lemma 1. Consider bivariate random vectors X and Y with distribution
functions F and G and hazard gradients ΛF (x) = (λF,1(x), λF,2(x)) and
ΛG(x) = (λG,1(x), λG,2(x)), respectively. Assume that F,G ∈ M(F1, F2). If
for all x, λF,i(x) > λG,i(x), i = 1, 2 then X 6PQD Y.

Proof. Let X and Y have survival functions F̄ (x) and Ḡ(x), respectively.
The condition that λF,i(x) > λG,i(x), i = 1, 2 is equivalent to Ḡ(x)

F̄ (x)
is in-

creasing in x. Hence Ḡ(x) > F̄ (x) for all x. Using this and the assumption
that F,G ∈ M(F1, F2), we have X 6PQD Y.

Remark 1. One can show that the result of Lemma 1 is valid if the reversed
hazard gradients are ordered. That is, under the condition that F,G ∈
M(F1, F2), if rF,i(x) > rG,i(x), i = 1, 2, then X 6PQD Y.

Now, we are ready to prove the following theorem.

Theorem 1. Let ΩF = {F (x1, x2) ∈ M(F1, F2) : ΛF (x1, x2) 6 (>)Q(x1, x2)}
be a set of distributions in M(F1, F2) having hazard gradient ΛF . Suppose
that there exists a distribution F ∗ ∈ ΩF with PDF f∗ such that ΛF ∗(x1, x2) =
Q(x1, x2). Then

(a) F ∗ is ME in ΩF with ΛF (x1, x2) 6 Q(x1, x2) if f∗(x1, x2) is TP2.

(b) F ∗ is ME in ΩF with ΛF (x1, x2) > Q(x1, x2) if f∗(x1, x2) is RR2.

Proof. We prove part (a) of the theorem. Part (b) can be proved similarly.
LetX andY denote two bivariate random vectors with distribution functions
F ∗ and F in M(F1, F2). Since ΛF (x1, x2) 6 ΛF ∗(x1, x2) for all x and F ∗ and
F are in M(F1, F2), from Lemma 1, we have X 6PQD Y which is equivalent
to say that X 6sm Y (see Shaked and Shanthikumar, 2007, p. 395). Also
it is easily seen that if f∗(x1, x2) is TP2 then log f∗(x1, x2) is supermodular.
Thus

E[log f∗(X)] 6 E[log f∗(Y)]. (3)
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On the other hand

K(F : F ∗) = −H(Y)− E[log f∗(Y)] > 0.

Using this and (3) we obtain H(X) > H(Y). This completes the proof of the
theorem.

Remark 2. One way to check that a bivariate density f∗(x1, x2) is TP2 or
RR2 is to use a result of Holland and Wang (1987). They showed that if
f∗(x1, x2) has second partial derivative, then it is TP2 (RR2) if and only if

∂2

∂x1x2
log f∗(x1, x2) > (6)0.

Remark 3. Let f1 and f2 be marginal PDFs of distributions in M(F1, F2).
Assume that f0(x1, x2) = f1(x1)f2(x2) is a reference distribution. Using
Theorem 1 it can be proved that the ME model in ΩF is a distribution that
minimizes Kullback-Leibler discrimination information function with respect
to reference distribution f0(x1, x2). A criterion which is used in information
literature to measure the dependency between F1 and F2 is mutual infor-
mation. If M(X1, X2) denotes the mutual information between X1 and X2,
then we have

M(X1, X2) = H(X1)−H(X1|X2)

= K(F : F1F2),

where H(X1|X2) denotes the entropy of conditional density of X1 given X2.
Using this, we conclude that the ME model in ΩF is a distribution which
has the minimum dependency. Also it worth to note that if there is not
available any partial information about dependency of X1 and X2 i.e. ΩF =
M(F1, F2), then the independent model F (x1, x2) = F1(x1)F2(x2) is ME.
This is so, because for all F ∈ ΩF we have

K(F : F1F2) = −H(F ) +H(F1F2) > 0

and equality occurs if and only if F = F1F2.

In the following we characterize some bivariate distributions as ME mod-
els where the constraints are based on hazard gradient. The key function
on constructing the constraints is the ratio of ith element of hazard gradient
Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) over the hazard rate of marginal distribu-
tion functions Fi, i = 1, 2. That is, to characterize the ME model we assume
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that partial information is available on ηi(x1, x2), where

ηi(x1, x2) =
λi(x1, x2)

λi(xi)
, i = 1, 2. (4)

The function ηi(x1, x2) is closely related to well known concepts of depen-
dency. In other words, assume that (X1, X2) has bivariate survival func-
tion F̄ . Then it is known that F̄ is both RTI(X1|X2) and RTI(X2|X1)
(RTD(X1|X2) and RTD(X2|X1)) if and only if, for all x1, x2

ηi(x1, x2) 6 (>)1, i = 1, 2. (5)

Also it can be shown that if F̄ is TP2 (RR2) then (5) holds (see, Khaledi
and Kochar, 2005). This discussion leads to the following theorem.

Theorem 2. Let ΩF = {F (x1, x2) ∈ M(F1, F2) : ΛF (x1, x2) 6 (>)Q(x1, x2)}.
Assume that there exists a F ∗ ∈ ΩF such that ΛF ∗(x1, x2) = Q(x1, x2) and
f∗ is TP2(RR2). Then any F ∈ ΩF is both RTI(X1|X2) and RTI(X2|X1)
(RTD(X1|X2) and RTD(X2|X1)). That is ηi(x1, x2) 6 (>)1, i = 1, 2.

Proof. Let ΛF (x) = (λF,1(x), λF,2(x)) be hazard gradient of a distribution
F in ΩF . First assume that f∗ is TP2. Then it can be shown that F̄ ∗ is also
TP2. This implies that λF ∗,i(x1, x2) 6 λi(xi) i = 1, 2. Thus the assumption
that λF,i(x1, x2) 6 λF ∗,i(x1, x2) gives λF,i(x1, x2) 6 λi(xi). Hence we have
that F is both RTI(X1|X2) and RTI(X2|X1). When f∗ is RR2, the same
arguments show that any F ∈ Ω is RTD(X1|X2) and RTD(X2|X1). This
completes the proof.

The following theorem explores the relationship between the covariance
of the elements of ME model and the covariance of the elements of any other
distribution in ΩF .

Theorem 3. Let (X1, X2) and (Y1, Y2) be two bivariate vectors with PDF
f∗(x) and f(x) and hazard gradients ΛF ∗(x) = (λF ∗,1(x), λF ∗,2(x)) and
ΛF (x) = (λF,1(x), λF,2(x)), respectively.

(a) If f∗(x) is TP2 and ΛF ∗(x) > ΛF (x) then 0 6 cov(X1, X2) 6 cov(Y1, Y2).

(b) If f∗(x) is RR2 and ΛF ∗(x) 6 ΛF (x) then cov(Y1, Y2) 6 cov(X1, X2) 6
0.
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Proof. We prove part (a). The proof of part (b) is similar. It is known that
when f∗(x) is TP2 then cov(X1, X2) > 0 (see Lai and Xie, 2006, p. 267).
Also from Lemma 1, if ΛF ∗(x) > ΛF (x) then (X1, X2) 6PQD (Y1, Y2) which
implies cov(X1, X2) 6 cov(Y1, Y2). This completes the proof.

The result of this theorem shows that when cov(X1, X2) and cov(Y1, Y2)
are covariances between the elements of ME model and elements of any other
distribution in ΩF , respectively, if f∗(x) is ME in ΩF = {F (x) ∈ M(F1, F2) :
ΛF (x) 6 (>)ΛF ∗(x)} then |cov(X1, X2)| 6 |cov(Y1, Y2)|. This means that
X1 and X2, the elements of ME model, have the minimum absolute value of
the linear dependency in the class.

In the sequel, we give some examples.
Example 1. Let ΩF be a subset of M(F1, F2) consisting of all bivariate
distributions with hazard gradient Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) that
satisfies the following inequalities

ηi(x1, x2) > (1− δ log F̄j(xj)), 0 6 δ 6 1, i, j = 1, 2, i ̸= j,

where ηi(x1, x2) is defined as (4). Then, the ME model in ΩF is Generalized
Gumbel distribution with PDF

f∗(x1, x2) = f1(x1)f2(x2)[{1− δ log F̄1(x1)}{1− δ log F̄2(x2)} − δ]

× exp{−δ log F̄1(x1) log F̄2(x2)},

in which 0 6 δ 6 1 and f1, f2 are marginal PDFs of distributions inM(F1, F2)
and F̄1, F̄2 are survival functions associated to f1, f2, respectively. The va-
lidity of this result follows from part (b) of Theorem 1. To see this, one can
easily show that

∂2

∂x1∂x2
log f∗(x1, x2) 6 0

which is equivalent to say that f∗ is RR2. Also it is easy to see that λi(xi)(1−
δ log F̄j(xj)) is the ith element of hazard gradient of f∗(x1, x2).
Example 2. Sarmanov (1966) introduced a family of bivariate densities of
the form

f∗(x1, x2) = f1(x1)f2(x2){1 + ωϕ1(x1)ϕ2(x2)}, x1, x2 ∈ R (6)

where ω(∈ R), ϕ1 and ϕ2 satisfy the following conditions∫ ∞

−∞
ϕi(u)fi(u)du = 0, i = 1, 2 and 1 + ωϕ1(x1)ϕ2(x2) > 0 for all x1, x2. (7)
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It can be easily shown that f∗(x1, x2) is TP2(RR2) if

ωϕ′1(x1)ϕ
′
2(x2) > (6)0 for all x1, x2.

Let ΩF be a set of bivariate distributions with marginal PDFs f1 and f2
whose hazard gradients Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) satisfy the fol-
lowing inequalities

ηi(x1, x2) 6 (>)
1 + ωϕi(xi)ψj(xj)

1 + ωψ1(x1)ψ2(x2)
, i, j = 1, 2, i ̸= j, (8)

where
ψi(x) = E{ϕi(Xi)|Xi > x}, i = 1, 2,

and ω, ϕ1, ϕ2 satisfy (7) and ωϕ′1(x1)ϕ′2(x2) > (6)0. Using Theorem 1, f∗ is
ME in ΩF since the ith element of hazard gradient of f∗ is equal to

λi(x)
1 + ωϕi(xi)ψj(xj)

1 + ωψ1(x1)ψ2(x2)
, i, j = 1, 2, i ̸= j

where λi(x), i = 1, 2 is hazard function with respect to fi(x).
There are members of family (6) for which the condition ωϕ′1(x1)ϕ′2(x2) >

(6)0 holds. We give two examples here.

(a) The Farlie-Gumbel-Morgenstern (FGM) bivariate distribution with PDF

f∗(x1, x2) = f1(x1)f2(x2)[1 + α{1− 2F1(x1)}{1− 2F2(x2)}],
−1 6 α 6 1,

is a well known family of distributions with applications in various
branches of statistics. For FGM model it can be shown that

∂2

∂x1∂x2
log f∗(x1, x2) > 0 (6 0) if 0 6 α 6 1 (−1 6 α 6 0).

In other words, f∗ is TP2(RR2) if 0 6 α 6 1(−1 6 α 6 0). Let ΩF

be a set of bivariate distributions with marginal PDFs f1(x) and f2(x)
and hazard gradient Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) that satisfies
the following inequalities

ηi(x1, x2) 6 (>)[1 + αFj(xj)(2Fi(xi)− 1)][1 + αF1(x1)F2(x2)]
−1,

0 6 α 6 1(−1 6 α 6 0), i ̸= j, i, j = 1, 2.

Under this constraint and the fact that f∗(x1, x2) is TP2(RR2) we get,
from Theorem 1, that f∗(x1, x2) is ME in ΩF .
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(b) Lee (1996) derived a bivariate exponential distribution with PDF

f(x1, x2) = λ1λ2e
−(λ1x1+λ2x2)

[
1 + ω(e−x1 − λ1

1 + λ1
)(e−x2 − λ2

1 + λ2
)

]
where

−(1 + λ1)(1 + λ2)

max(λ1λ2, 1)
6 ω 6 (1 + λ1)(1 + λ2)

max(λ1, λ2)

and ϕi(xi) = e−xi − λi
1+λi

, i = 1, 2. Therefore

ωϕ′1(x1)ϕ
′
2(x2) =

 > 0 0 6 ω 6 (1+λ1)(1+λ2)
max(λ1,λ2)

6 0 −(1+λ1)(1+λ2)
max(λ1λ2,1)

6 ω 6 0,

From this we get

 f(x1, x2) is TP2 if 0 6 ω 6 (1+λ1)(1+λ2)
max(λ1,λ2)

f(x1, x2) is RR2 if −(1+λ1)(1+λ2)
max(λ1λ2,1)

6 ω 6 0.

For some distributions, constraints based on reversed hazard gradient are
more simple than hazard gradient. The following theorem gives ME models
in M(F1, F2), in which the constraints are made on reversed hazard gradient.
The proof of the theorem, which is similar to the proof of Theorem 1, is based
on Remark 1 and hence is omitted.

Theorem 4. Let ΩF = {F (x1, x2) ∈ M(F1, F2) : RF (x1, x2) > (6)R(x1, x2)}
be a set of distributions in M(F1, F2) having reversed hazard gradient RF .
Suppose that there exists a distribution F ∗ ∈ ΩF with PDF f∗such that
RF ∗(x1, x2) = R(x1, x2). Then

(a) F ∗ is ME in ΩF with RF (x1, x2) 6 R(x1, x2) if f∗(x1, x2) is TP2.

(b) F ∗ is ME in ΩF with RF (x1, x2) > R(x1, x2) if f∗(x1, x2) is RR2.

Example 3. Consider the Clayton’s bivariate distribution with PDF

f∗(x1, x2) =
(θ + 1)f1(x1)f2(x2){F1(x1)F2(x2)}−θ−1

[{F1(x1)}−θ + {F2(x2)}−θ − 1]
1
θ
+2

, θ > 0,
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in which f1 and f2 are marginal densities with distribution functions F1 and
F2, respectively. For this distribution it can be shown that for all x1, x2, θ > 0

∂2

∂x1∂x2
log f∗(x1, x2) > 0.

Consider ΩF as a set of bivariate distributions with marginal distribution
functions F1 and F2 and reversed hazard gradient R(x1, x2) = (r1(x1, x2),
r2(x1, x2)) satisfying the following inequalities

βi(x1, x2) 6
{Fi(xi)}−θ

[{F1(x1)}−θ + {F2(x2)}−θ − 1]
, θ > 0, i = 1, 2,

where βi(x1, x2) = ri(x1,x2)
ri(xi)

, i = 1, 2 and ri(x), i = 1, 2 is reversed hazard
function of Fi(x). Clayton’s bivariate distribution is ME in ΩF . The result
follows from part (a) of Theorem 4 because ri(xi){Fi(xi)}−θ[{F1(x1)}−θ +
{F2(x2)}−θ − 1]−1 is ith element of reversed hazard gradient of Clayton’s
bivariate distribution.
Example 4. Consider Gumbel-Hougaard distribution with PDF

f∗(x1, x2) =
f1(x1)f2(x2)

F1(x1)F2(x2)
{− lnF1(x1)}θ−1{− lnF2(x2)}θ−1{κ(x1, x2)}

1
θ
−2

× [{κ(x1, x2)}
1
θ + θ − 1] exp

[
−{κ(x1, x2)}

1
θ

]
, θ > 1

in which κ(x1, x2) = [{− lnF1(x1)}θ+{− lnF2(x2)}θ] and f1 and f2 are PDFs
of distribution functions F1 and F2, respectively. It can be shown that

∂2

∂x1∂x2
log f∗(x1, x2) > 0.

Let ΩF be a set of bivariate distributions with marginal distribution functions
F1 and F2 and reversed hazard gradient R(x1, x2) = (r1(x1, x2), r2(x1, x2))
satisfying the following inequalities

βi(x1, x2) 6 {− lnFi(xi)}θ−1{κ(x1, x2)}
1
θ
−1, θ > 1, i = 1, 2,

where βi(x1, x2) = ri(x1,x2)
ri(xi)

, i = 1, 2 and ri(xi) is reversed hazard function
of Fi(xi), i = 1, 2. The Gumbel-Hougaard distribution is ME in ΩF . The
validity of this result follows from part (a) of Theorem 4 because ri(xi){− ln

Fi(xi)}θ−1{κ(x1, x2)}
1
θ
−1 is ith element of reversed hazard gradient of Gumbel-

Hougaard distribution.
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4 ME Models for Mixtures
Let G = {Gθ(x1, x2) ∈ M(G1, G2), θ ∈ χ} be a family of bivariate distri-
bution functions, where χ is a subset of the real line and θ is dependence
parameter between G1 and G2. In the Bayesian context the parameter θ is
assumed to be the realization of a random variable Θ with support in χ. In
the following we assume that Θ has distribution function H. The distribu-
tion H is known as the prior distribution. The mixture of G with respect
to prior distribution H, which is also known as the predictive distribution
function, is defined as

F (x1, x2) =

∫
χ
Gθ(x1, x2)dH(θ), (x1, x2) ∈ R2. (9)

In this section we study the ME models in class of predictive models in bi-
variate setup for which the constraints are made on hazard rate (reversed
hazard rate) of prior distribution H(θ). The key result is given in the fol-
lowing theorem.

Theorem 5. Let ΩH = {H : λH(θ) 6 (>)q(θ)} be the set of proper prior
distributions with support in χ and hazard function λH(θ). Consider ΩF as
a set of predictive distributions of the form (9) in which H(θ) ∈ ΩH and
Gθ(x1, x2) ∈ G is given. Suppose that there exists a prior distribution H∗ ∈
ΩH such that λH∗(θ) = q(θ) and let F ∗ with PDF f∗ is predictive distribution
with respect to H∗. If elements of hazard gradient Gθ are decreasing in θ
then

(a) F ∗ is ME in ΩF relative to ΩH with λH(θ) 6 q(θ) if f∗(x1, x2) is TP2.

(b) F ∗ is ME in ΩF relative to ΩH with λH(θ) > q(θ) if f∗(x1, x2) is RR2.

Proof. We prove part (a). The proof of (b) is similar. Let F (x1, x2) and
F ∗(x1, x2) be of the form (9) in which prior distributions have hazard func-
tions λH(θ) and λH∗(θ), respectively. If λH(θ) 6 λH∗(θ) and elements of
hazard gradient Gθ are decreasing in θ then from Theorem 6.D.5 of Shaked
and Shanthikumar (2007),

ΛF (x1, x2) 6 ΛF ∗(x1, x2), for all (x1, x2),

where ΛF (x1, x2) and ΛF ∗(x1, x2) are hazard gradient of F and F ∗, respec-
tively. Now we show that F (x1, x2) ∈ M(G1, G2). Let f1(x) and f2(x) be
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marginal PDFs of F (x1, x2) and gi(x) be PDF of Gi(x), i = 1, 2. Then using
Fubini’s Theorem, we have

fi(xi) ≡
∫ ∫

gθ(x1, x2)dH(θ)dxj

=

∫ ∫
gθ(x1, x2)dxjdH(θ)

= gi(xi), i ̸= j, i, j = 1, 2.

If f∗(x1, x2) is TP2 then using part (a) of Theorem 1 the proof is complete.

An application of Theorem 5 is given in the following example.

Example 5.

(a) Let ΩH be the set of prior distributions with support in (0, 1) having
hazard function λH(θ) such that

λH(θ) 6 1

1− θ
, θ ∈ (0, 1).

Consider FGM bivariate distribution with α = θ and 0 < α < 1. Let
ΩF be the class of mixtures of the family of FGM bivariate distributions
with respect to prior distributions H(θ) ∈ ΩH . Uniform mixture of
FGM bivariate distribution, which is FGM bivariate distribution with
α = 1

2 is ME in ΩF . This result is obtained by noting that 1
1−θ is

the hazard function of uniform distribution on (0, 1). Also it can be
easily seen that elements of hazard gradient of FGM distribution are
decreasing in α and PDF of FGM distribution is TP2 for α = 1

2 . Thus,
part (a) of Theorem 5 gives the result.

(b) Using the same arguments used to prove part (a) and based on part
(b) of Theorem 5, if ΩH = {H(θ) : λH(θ) > 1

1−θ , θ ∈ (−1, 0)} then
FGM distribution with α = −1

2 is ME in ΩF .

There are bivariate distributions that their hazard gradients are increas-
ing in dependence parameter. To characterize the mixture of these distribu-
tions, in the following we present some results. Before giving the main result
we need the following Lemma.
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Lemma 2. Let {Gθ, θ ∈ χ} be a family of bivariate distribution functions.
Suppose Θ1 and Θ2 as two random variables with supports in χ and distri-
bution functions H1 and H2, respectively. Let Y1 and Y2 be two bivariate
random vectors such that Yi =st X(Θi), i = 1, 2. That is, suppose that the
survival function of Yi is given by

F̄i(x) =

∫
χ
Ḡθ(x)dHi(θ), x ∈ R2, i = 1, 2.

If

X(θ) >whr X(θ′) whenever θ 6 θ′ (10)

and if

Θ1 6rh Θ2, (11)

then
Y1 >whr Y2.

Proof. Assumption (10) means that for i = 1, 2, Ḡθ(x1, x2), as a function of
θ ∈ χ and xi ∈ R is RR2. Assumption (11) means that Hi(θ), as a function
of i ∈ {1, 2} and θ is TP2. Also from (10), Ḡθ(y) is decreasing in θ. Therefore
using Remark of Theorem 2.1 of Joag-Dev et al. (1995), F̄i(x1, x2) is RR2

in i ∈ {1, 2} and in xi, i = 1, 2. That is

F̄1(x1, x2)

F̄2(x1, x2)
is increasing in (x1, x2)

which implies Y1 >whr Y2. This completes the proof of the Lemma.

The same as Theorem 5, using Lemma 2, we have the following result in
which rH(θ) is reversed hazard function of any distribution in ΩH and r(θ)
is reversed hazard function of H∗.

Theorem 6. Let elements of hazard gradient Gθ be increasing in θ.

(a) If f∗(x1, x2) is TP2 then F ∗ is ME in ΩF relative to ΩH = {H :
rH(θ) 6 r(θ)}.

(b) If f∗(x1, x2) is RR2 then F ∗ is ME in ΩF relative to ΩH = {H :
rH(θ) > r(θ)}.
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Example 6. Consider the survival function of uniform mixture of General-
ized Gumbel distribution as follows

F̄ ∗(x1, x2) =

∫ 1

0
F̄1(x1)F̄2(x2)e

−δ ln F̄1(x1) ln F̄2(x2)dδ

=
F̄1(x1)F̄2(x2){1− e− ln F̄1(x1) ln F̄2(x2)}

ln F̄1(x1) ln F̄2(x2)
.

It is easy to see that elements of hazard gradient of Generalized Gumbel
distribution are increasing in δ. Also it can be shown that the PDF of
F ∗(x1, x2) is RR2. Let ΩH be the set of prior distributions with reversed
hazard functions rH that satisfy

rH(θ) > θ−1.

Suppose that ΩF is the set of mixtures of Generalized Gumbel distribution
with respect to priors in ΩH . Then uniform mixture of Generalized Gumbel
distribution is ME in ΩF . The validity of this result follows from part (b) of
Theorem 6 because θ−1 is reversed hazard function of uniform distribution
on (0,1).
Example 7. Lee (1996) considered Sarmanov distribution as follows

f∗(x1, x2) = f1(x1)f2(x2){1 + θ(x1 − µ1)(x2 − µ2)} (12)

where µ1 = E(X1), µ2 = E(X2) such that X1, X2 are random variables with
respect to PDFs f1, f2. In this case the range of θ is

max

{
−1

µ1µ2
,

−1

(1− µ1)(1− µ2)

}
6 θ 6 min

{
1

µ1(1− µ2)
,

1

µ2(1− µ1)

}
.

Also the right-hand side of inequality (8) is

1 + θ(xi − µi) {µj(xj)− µj}
1 + θ{µ1(x1)− µ1}{µ2(x2)− µ2}

, j = 1, 2

in which µj(x) = E(Xj |Xj > x), j = 1, 2. It can be easily seen that f∗(x1, x2)
is TP2 if

µ1 > 1, µ2 < 0 or µ2 > 1, µ1 < 0.
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Also f∗(x1, x2) is RR2 if

µ1, µ2 > 1 or µ1, µ2 < 0.

The elements of hazard gradient of Sarmanov distribution with PDF (12)
are decreasing if

{µi(xi)− µi}{µj(xj)− xj} > 0, i ̸= j, i, j = 1, 2 for all xi, xj

and are increasing if

{µi(xi)− µi}{µj(xj)− xj} < 0, i ̸= j, i, j = 1, 2 for all xi, xj ,

in which µi(x) − x = E(Xi − x|Xi > x), i = 1, 2 is mean residual life-
time function of Xi. It is easy to see that µi(xi) − xi > 0. Then elements
of hazard gradient of Sarmanov distribution are decreasing (increasing) if
{µi(xi) − µi} > (<)0, i = 1, 2. Let ΩH be the set of prior distributions
H(θ) whose hazard functions λH(θ) or reversed hazard functions rH(θ) sat-
isfy some constraints. Also let H(θ) have support in {a(µ1, µ2), b(µ1, µ2)}
where

a(µ1, µ2) = max

{
−1

µ1µ2
,

−1

(1− µ1)(1− µ2)

}
and

b(µ1, µ2) = min

{
1

µ1(1− µ2)
,

1

µ2(1− µ1)

}
.

Let ΩF be class of mixtures of (12) with respect to prior distributionH ∈ ΩH .

(a) Suppose that

λH(θ) > 1

{b(µ1, µ2)− θ}
, a(µ1, µ2) < θ < b(µ1, µ2) (13)

in which µ1, µ2 > 1. Uniform mixture of Sarmanov distribution, in
which {µi(xi)− µi} > 0, i = 1, 2 and µ1, µ2 > 1, with PDF

f∗(x1, x2) = f1(x1)f2(x2)
{
1 +

a(µ1, µ2) + b(µ1, µ2)

2

× (x1 − µ1)(x2 − µ2)
}

(14)

is ME in ΩF . This result is obtained from part (b) of Theorem 5. To
see this it can be shown that right-hand side of (13) is hazard function
of uniform distribution on {a(µ1, µ2), b(µ1, µ2)}.
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(b) Suppose that

rH(θ) > 1

{θ − a(µ1, µ2)}
, a(µ1, µ2) < θ < b(µ1, µ2) (15)

in which µ1, µ2 < 0. Uniform mixture of Sarmanov distribution with
PDF (14), in which {µi(xi) − µi} < 0, i = 1, 2, is ME in ΩF . This
result is obtained from part (b) of Theorem 6 because right-hand
side of (15) is reversed hazard function of uniform distribution on
{a(µ1, µ2), b(µ1, µ2)}.
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