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Abstract. In this paper we study the relative entropy rate between a homo-
geneous Markov chain and a hidden Markov chain defined by observing the
output of a discrete stochastic channel whose input is the finite state space
homogeneous stationary Markov chain. For this purpose, we obtain the rela-
tive entropy between two finite subsequences of above mentioned chains with
the help of the definition of relative entropy between two random variables
then we define the relative entropy rate between these stochastic processes
and study the convergence of it.
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1 Introduction
Suppose {Xn}n∈N is a homogeneous stationary Markov chain with finite
state space S = {0, 1, 2, ..., N − 1} and {Yn}n∈N is a hidden Markov chain
(HMC) which is observed through a discrete stochastic channel where the
input of channel is the Markov chain. The output state space of channel
is characterized by channel’s statistical properties. From now on we study
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the channels state spaces which have been equal to the state spaces of input
chains.

LetP = {pab} be the one-step transition probability matrix of the Markov
chain such that pab = Pr{Xn = b|Xn−1 = a} for a, b ∈ S and Q = {qab} be
the noisy matrix of channel where qab = Pr{Yn = b|Xn = a} for a, b ∈ S.
Also the initial distribution of the Markov chain is denoted by the vector Π0

such that Π0(i) = Pr{X0 = i} for i ∈ S.
At the rest of this paper we try to obtain the relative entropy between

two finite subsequences X1, X2, ..., Xn and Y1, Y2, ..., Yn and to define the
relative entropy rate between a Markov chain and its corresponding hidden
Markov chain. From now on Xn

1 denotes the subsequence X1, X2, ..., Xn for
simplicity.

Relative entropy was first defined by Kullback and Leibler (1951). It is
known under a variety of names, including the Kullback-Leibler distance,
cross entropy, information divergence, and information for discrimination,
and it has been studied in detail by Csiszar (1967) and Amari (1985). The
relative entropy between two random variables is developed to two sequences
of variables and it is used for comparing two stochastic processes. Kesidis and
Walrand (1993) derived the relative entropy between two Markov transition
rate matrices. Chazottes, Giardina and Redig (2006) applied it for comparing
two Markov chains.

Hidden Markov processes (HMP)s were introduced in full generality in
1966 by Baum and Petrie (1966) who referred to them as probabilistic func-
tions of Markov chains. Indeed, the observation sequence depends probabilis-
tically on the Markov chain. During 1966-1969, Baum and Petrie studied
statistical properties of stationary ergodic finite-state space HMPs. They
developed an ergodic theorem for almost-sure convergence of the relative
entropy density of one HMP with respect to another. In 1970, Baum et al.
(1970) developed forward-backward recursions for calculating the conditional
probability of a state given an observation sequence from a general HMP.

HMPs comprise a rich family of parametric random processes. In the con-
text of information theory, we have already seen that an HMP is a Markov
chain observed through a memoryless channel. More generally, consider a
finite-state channel. The transition density of the channel depends on a in-
visible Markov chain. This channel was called a hidden Markov channel by
Ephraim and Merhav (2002) and also by other statisticians. Zuk (2006) stud-
ied the relative entropy rate between two hidden Markov processes, which is
of both theoretical and practical importance. Zuk gave new results showing
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analyticity, representation using Lyapunov exponents, and Taylor expansion
for the relative entropy rate of two discrete-time finite-stat space HMPs.

In this paper the relative entropy rate between a Markov chain and a
HMC is studied. It is possible by considering properties of channel to have
many hidden Markov chains respecting a Markov chain. So conditions of
the system whose works are based on the hidden Markov models will be
controlled by noting the relative entropy rate.

Section 2 includes some required preliminaries and definitions. In section
3 the relative entropy between two finite subsequences is obtained based on
a recurrence relation. Also a definition for the relative entropy rate between
two processes is presented. Section 4 discusses the convergence of this def-
inition. By some examples, Section 5 shows this definition has the high
convergence rate.

2 Preliminaries
In probability theory, entropy is introduced by Shannon (1948). The entropy
of a random variable X by distribution P taking values from a finite set E
is defined by him as

H(X) = −EX logP (X) = −
∑
i∈E

pi log pi, (1)

with the convention 0 log 0 = 0. Consider two random variables X and Y
with joint distribution PX,Y (x, y). The entropy of these variables is

H(X,Y ) = −EX,Y logPX,Y (X,Y )

= −
∑
i∈E

∑
j∈E

PX,Y (i, j) logPX,Y (i, j). (2)

Also the conditional entropy could be defined as

H(X|Y ) = −EX,Y logPX|Y (X|Y )

= −
∑
i∈E

∑
j∈E

PX,Y (i, j) logPX,Y (i|j). (3)

In statistics, the relative entropy arises as an expected logarithm of the
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likelihood ratio of the distribution probability functions of these variables i.e.

D(PX ||PY ) = EX log
PX(X)

PY (X)

=
∑
i∈E

PX(i) log
PX(i)

PY (i)
. (4)

Although the relative entropy is a measure of the distance between two
distributions it doesn’t have all properties of a measure in a metric space.
For example it is not symmetric and doesn’t satisfy the triangle inequal-
ity. Nonetheless, it is often useful to think of relative entropy as a distance
between distributions.

Corollary 1. Two variables X and Y are identical distribution if and only
if D(PX ||PY ) = 0.

Theorem 1. For relative entropy, one can write

D(PX1,X2 ||PY1,Y2) = D(PX1 ||PY1) +D(PX2|X1
||PY2|Y1

). (5)

Proof. [Cover and Thomas (2006) p. 24-25]

This equation is known as the chain rule for relative entropy. We will use
it for obtaining the relative entropy in the next section.

3 Computing the Relative Entropy Rate
The relative entropy between two finite subsequences is evaluated in this
section. These subsequences are dependent; one of them is a stochastic
function of other. Xn

1 is the subsequence of the Markov chain and Y n
1 is the

subsequence of the HMC which is observable from a stochastic channel with
the input Xn

1 . So Y n
1 is a stochastic function of Xn

1 . For Xn
1 and Y n

1 we have

PXn
1 ,Y

n
1
(xn1 , y

n
1 ) = PX1(x1)

n∏
k=2

PXk|Xk−1
(xk|xk−1)

n∏
k=1

PYk|Xk
(yk|xk). (6)

Note that for both processes {Xn}n∈N and {Yn}n∈N the state space was
considered to be the same as S.

D(PXn
1
||PY n

1
) = D(PXn−1

1
||PY n−1

1
) +D(PXn|Xn−1

1
||PYn|Y n−1

1
). (7)
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So

D(PXn
1
||PY n

1
) = D(PXn−1

1
||PY n−1

1
)

+
∑

sn1∈Sn

PXn|Xn−1
(sn|sn−1) log

PXn|Xn−1
(sn|sn−1)

PYn|Y n−1
1

(sn|sn−1
1 )

= D(PX1 ||PY1)

+

n∑
i=2

∑
si1∈Si

PXi|Xi−1
(si|si−1) log

PXi|Xi−1
(si|si−1)

PYi|Y i−1
1

(si|si−1
1 )

, (8)

where sn1 ∈ Sn means {(s1, s2, ..., sn)|si ∈ S}. Evaluating PYn|Y n−1
1

(sn|sn−1
1 )

for 2 6 i 6 n is sufficient for computing the D(PXn
1
||PY n

1
)

PYi|Y i−1
1

(si|si−1
1 ) =

∑
xi
1∈Si

PXi
1,Y

i
1
(xi1, s

i
1)

PY i−1
1

(si−1
1 )

=

∑
xi
1∈Si

PX1(x1)
∏i

k=2 Pxk−1xk

∏i
k=1 qxksk∑

xi−1
1 ∈Si−1

PX1(x1)
∏i−1

k=2 Pxk−1xk

∏i−1
k=1 qxksk

. (9)

We succeed to obtain the relative entropy between two finite subse-
quences. Now we define the relative entropy rate between two stochastic
processes.

Definition 1. The relative entropy rate between two stochastic processes
{Xn}n∈N and {Yn}n∈N, is

D(X||Y) := lim
n→∞

1

Nn
D(PXn

1
||PY n

1
), (10)

where S = {0, 1, 2, ..., N − 1}.

Consider there are many channels with a known Markov chain as input.
By using (10) one can compare the output of channels as the hidden Markov
chains with the Markov chain. So for achieving the known purpose of a
system whose works are based on the hidden Markov models, one can use
(10) and chooses the optimum cases from channels.
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4 Convergence of the Relative Entropy Rate

The relative entropy rate that is defined in Definition 1 should be well-
defined. Note that

P̄Yn|Y n−1
1

=
1

|S|n
∑
sn−1
1

∑
sn

PYn|Y n−1
1

(sn|sn−1
1 )

=
1

|S|n
∑
sn−1
1

1 =
|S|n−1

|S|n
= |S|−1. (11)

where |S| is the cardinality of state space S and P̄Yn|Y n−1
1

is the mean of
PYn|Y n−1

1
(sn|sn−1

1 ) over all of possible amount sn1 . If all of the entries of
matrix Q are equal, the amount of the D(X||Y) get the maximum amount
for every arbitrary matrix P.
We replace PYn|Y n−1

1
in (7) by P̄Yn|Y n−1

1
, so we can obtain D̄(PXn

1
||PY n

1
) as

the maximum of D(PXn
1
||PY n

1
),

D̄(PXn
1
||PY n

1
) = D̄(PXn−1

1
||PY n−1

1
)

+
∑

sn1∈Sn

PXn|Xn−1
(sn|sn−1) log

PXn|Xn−1
(sn|sn−1)

P̄Yn|Y n−1
1

= D̄(PXn−1
1

||PY n−1
1

) +
∑

sn1∈Sn

PXn|Xn−1
(sn|sn−1) log |S|

+
∑

sn1∈Sn

PXn|Xn−1
(sn|sn−1) logPXn|Xn−1

(sn|sn−1)

= D̄(PXn−1
1

||PY n−1
1

) + |S|n−1 log |S|

+ |S|n−2
∑
s21∈S2

PX2|X1
(s2|s1) logPX2|X1

(s2|s1). (12)
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Let α = |S| log |S|+
∑
s21∈S2

PX2|X1
(s2|s1) logPX2|X1

(s2|s1) for simplicity. So

D̄(PXn
1
||PY n

1
) = D̄(PXn−1

1
||PY n−1

1
) + |S|n−2α

= D̄(PXn−2
1

||PY n−2
1

) + (|S|n−2 + |S|n−3)α

...

= D̄(X1||Y1) +
n∑

i=2

|S|n−iα

= D̄(X1||Y1) +
|S|n−1 − 1

|S| − 1
α. (13)

By noting the definition of the relative entropy rate in (10), we can write

1

|S|n
D̄(PXn

1
||PY n

1
) =

1

|S|n
D̄(X1||Y1) +

|S|n−1 − 1

|S|n(|S| − 1)
α. (14)

We know 1

|S|n
D̄(PXn

1
||PY n

1
) is increasing with respect to n, for every arbi-

trary matrices P and Q. Also for every arbitrary matrix P, the relation
1

|S|n
D(PXn

1
||PY n

1
) is maximum for matrix Q with entries qx,y = |S|−1. The

amount of this maximum is 1

|S|n
D̄(PXn

1
||PY n

1
) in (14). So D(X||Y) is well

defined. α is depend on matrix P so we can get

sup
Q

{D(X||Y)} = D̄(X||Y), (15)

where

D̄(X||Y) = lim
n→∞

1

|S|n
D̄(PXn

1
||PY n

1
)

=
1

|S|(|S| − 1)
α. (16)
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5 Some Numerical Examples

In Section 3 we derived the relative entropy between a finite subsequence of
Markov chain and the subsequence of its corresponding HMC, then we de-
fined the relative entropy rate between a Markov chain and its corresponding
HMC. Now that we have the relative entropy rate, and the maximum amount
of it, we want to calculate the relative entropy rate for some different tran-
sition probability matrices P and noisy matrices Q. For this aim we need to
define

Dn(X||Y) :=
1

Nn
D(Xn

1 ||Y n
1 ). (17)

Example 1. Let S = {0, 1} and Π0 = {0.50, 0.50} and consider transition
probability matrix P and noisy matrix Q be

P =

[
0.80 0.20
0.40 0.60

]
, Q =

[
0.60 0.40
0.30 0.70

]
. (18)

For these matrices Dn(X||Y) for n = 2, 3, ..., 15 are shown in Table 1,
also we calculate for this matrix P the D̄n(X||Y) as the maximum amount
of D(X||Y).

D̄n(X||Y) = 0.1064401,

Table 1. Dn(X||Y) for n=2,3,...,15

n Dn(X||Y) n Dn(X||Y)

2 0.0514965 9 0.0940740
3 0.0738772 10 0.0942187
4 0.0844481 11 0.0942906
5 0.0895235 12 0.0943264
6 0.0919861 13 0.0943442
7 0.0931899 14 0.0943531
8 0.0937818 15 0.0943575

One can see Dn(X||Y) is increasing with respect to n and the maximum
amount of them is D̄n(X||Y).
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Example 2. Let S = {0, 1, 2}, Π0 = {0.33, 0.34, 0.33} and

P =

 0.10 0.10 0.80
0.20 0.30 0.50
0.40 0.50 0.10

 , Q =

 0.10 0.40 0.50
0.40 0.30 0.30
0.40 0.20 0.40

 . (19)

For the matrices P and Q, the Table 2 illustrates Dn(X||Y) for n =
2, 3, ..., 10. Also for this matrix P, D̄n(X||Y) = 0.1139672.

Table 2. Dn(X||Y) for n=2,3,...,10

n Dn(X||Y) n Dn(X||Y)

2 0.0719127 7 0.1046867
3 0.0934287 8 0.1048056
4 0.1012677 9 0.1048056
5 0.1035354 10 0.1048395
6 0.1044656

Example 3. Consider S, Π0, P and Q be

S = {0, 1, 2, 3}, Π0 = [0.25, 0.25, 0.25, 0.25], (20)

P =


0.25 0.20 0.25 0.30
0.20 0.30 0.10 0.40
0.35 0.15 0.10 0.40
0.30 0.40 0.20 0.10

 , Q =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 .
(21)

For the matrices P and Q, the Table 3 illustrates Dn(X||Y) for n =
2, 3, ..., 8. Also for this matrix P, D̄n(X||Y) = 0.0300384.

Table 3. Dn(X||Y) for n=2,3,...,8

n Dn(X||Y) n Dn(X||Y)

2 0.0225288 6 0.0300091
3 0.0281611 7 0.0300311
4 0.0295691 8 0.0300366
5 0.0299211
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Example 4. Let

S = {0, 1, 2, 3, 4}, Π0 = [0.20, 0.20, 0.20, 0.20, 0.20], (22)

P =


0.20 0.20 0.25 0.20 0.15
0.05 0.30 0.10 0.25 0.30
0.40 0.10 0.10 0.10 0.30
0.20 0.10 0.40 0.20 0.10
0.45 0.10 0.10 0.15 0.20

 ,

Q =


0.20 0.20 0.20 0.20 0.20
0.20 0.20 0.20 0.20 0.20
0.20 0.20 0.20 0.20 0.20
0.20 0.20 0.20 0.20 0.20
0.20 0.20 0.20 0.20 0.20

 . (23)

For the matrices P and Q, the Table 4 illustrates Dn(X||Y) for n =
2, 3, ..., 8. Also for this matrix P, D̄n(X||Y) = 0.0342894.

Table 4. Dn(X||Y) for n=2,3,...,7

n Dn(X||Y) n Dn(X||Y)

2 0.0274315 5 0.0342346
3 0.0329179 6 0.0342785
4 0.0332894 7 0.0342872

One can see the convergence rate of the Definition 1 by noting these ex-
amples is very high. Although we brought just four examples for computing
Dn, we have computed Dn n = 2, 3, ... for a lot of different matrices P and
Q and have concluded the same result.

Example 5. In this example we consider S = {0, 1}, Π0 = [0.5, 0.5] and
p01 = p10 = 0.25. Also we let ϵ = q01, δ = q10, and compute D15 for different
amount of ϵ and δ. The results are brought in Table 5. For this matrix P
we have D̄n(X||Y) = 0.1308041.
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Table 5. D15 for fixed matrix P and given matrix Q

ϵ δ D15 ϵ δ D15

0.05 0.05 0.0087476 0.95 0.05 0.9611443
0.15 0.15 0.0430963 0.85 0.15 0.4674660
0.25 0.25 0.0794319 0.75 0.25 0.2746407
0.35 0.35 0.1100564 0.65 0.35 0.1779580
0.45 0.45 0.1283287 0.55 0.45 0.1358291
0.50 0.50 0.1308041 0.50 0.50 0.1308041
0.55 0.55 0.1283287 0.45 0.55 0.1358291
0.65 0.65 0.1100564 0.35 0.65 0.1779580
0.75 0.75 0.0794319 0.25 0.75 0.2746407
0.85 0.85 0.0430963 0.15 0.85 0.4674660
0.95 0.95 0.0087476 0.05 0.95 0.9611443

Example 6. We consider S = {0, 1}, Π0 = [0.5, 0.5] and q01 = q10 = 0.5.
Also we let p = p01, q = p10, and compute D15 for different amount of p and
q. The results are brought in Table 6.

Table 6. D15 and D̄n(X||Y) for fixed matrix Q and given matrix P

p q D15 D̄n(X||Y)

0.95 0.05 0.4946017 0.4946319
0.85 0.15 0.2704216 0.2704381
0.75 0.25 0.1308041 0.1308120
0.65 0.35 0.0456978 0.0457005
0.55 0.45 0.0050081 0.0050083
0.45 0.55 0.0050081 0.0050083
0.35 0.65 0.0456978 0.0457005
0.25 0.75 0.1308041 0.1308120
0.15 0.85 0.2704216 0.2704381
0.05 0.95 0.4946017 0.4946319

The Example 5 illustrates that ordered changes of ϵ or δ follow the ordered
changes of the relative entropy for a known matrix P . Also the Example 6
shows for a known noisy matrix of channel the ordered changes of the relative
entropy rate are corresponded the ordered changes of the one-step transition
probability matrix of the Markov chain.

Note that the calculations in this section is done with Matlab software.
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Conclusions
In this paper we studied the relative entropy rate between a homogeneous
stationary Markov chain and its corresponding hidden Markov chain defined
by observing the output of a discrete stochastic channel whose input is the
finite state space stationary Markov chain. Then we obtained the relative
entropy between two subsequences of above mentioned chains with the help
of the definition of the relative entropy between two random variables and
defined the relative entropy rate between these stochastic processes. then we
studied the convergence of the relative entropy rate between a Markov chain
and its corresponding hidden Markov chain by the properties of its definition.
We showed the convergence rate of this definition by some examples. We will
try to continue these works by studing the convergence rate of this definition
analytically.
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