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Abstract. Estimation procedures for nonstationary Markov chains
appear to be relatively sparse. This work introduces empirical
Bayes estimators for the transition probability matrix of a finite
nonstationary Markov chain. The data are assumed to be of a
panel study type in which each data set consists of a sequence
of observations on N > 2 independent and identically distributed
chains recorded collectively.

Keywords. Bayes estimates; empirical Bayes estimates; natural
conjugate priors; nonstationary Markov chains.

1 Introduction

Markov chains have been with us for a long time and provided the transi-
tion probability matrix (t.p.m.) and the initial probability vector are known,
a wealth of results can be found. However, there are relatively few results
available when it comes to estimating that t.p.m.

A basic study in which maximum likelihood estimates are obtained is pro-
vided by Anderson and Goodman (1957). However, there are many situations
when the available data are ideally suited to the use of empirical Bayes proce-
dures. Typically, the "experimenter” has at his disposal (n + 1), say, sets of
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data each being a sequence of observations from a Markov chain process. These
(n 4+ 1) data sets may occur concurrently or sequentially. By using the sets of
"past” data, estimates of unknown prior parameters can be found. These in
conjunction with the "current” data set allow us to obtain the so-called empir-
ical Bayes estimates for the t.p.m.

Preston (1971) has briefly considered this problem for a stationary two-state
Markov chain. We propose here to derive some empirical Bayes estimators for
the more general case of s > 2 states and for a non-stationary Markov chain.
The related questions pertaining to the properties of such estimators are being
deferred at this time.

There are numerous situations, especially in the medical and social sciences,
where the t.p.m. is not constant over time. For example, consider a process
regarding changes in people’s behavior when a definite decision about some
issue (such as voting on a proposal or electing a candidate) must be made by a
due date. It seems more realistic that the t.p.m. of the penultimate week will
be different from those of earlier weeks.

There are examples in other areas, too. Suppose one is looking for an
object in a place (such as a document in a file), which is certain to be present
there. Assume initially that the searcher has a certain probability of finding
the object on each search, and that he continues to search until he finds it.
Now, consider a tiring search where the searcher tires as the search progresses.
The same process might serve as a model for a student trying to learn but
becoming discouraged, Howard (1971). In these cases, it seems reasonable to
assume that the t.p.m. will change over time.

A concrete example of this model is the people’s intention to vote for various
presidential candidates. If one monitors the intention of people in various
geographical regions and/or ethnic groups as the candidates’ campaign go on
then clearly one has a set of independent processes evolving which culminate
to the final election day.

Estimation for Markov Processes, specially for stationary ones, has been
treated by many authors; Billinglsley (1961), Basawa and Prakaso Rao (1980),
Bhat and Miller (2002), Billard and Meshkani (1992), Meshkani and Billard
(1995) are among the others. Works on non-stationary processes are rare,
specially from Bayesian perspective.

We treat this problem in the context of panel studies. By ”panel study”,
we mean that each data set consists of a sequence of observations on N > 2 in-
dependent and identically distributed chains recorded collectively. No specific
functional relation between the t.p.m., A(t), will be assumed. The only stipu-
lation will be that if observations are made at each time ¢t € 7 = {1,...,T},

A(t)#A forall ter,
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and that A(t), t € 7, are independently distributed.

The basic probability results are obtained in Section 2. From these, we
are able to derive the Bayes estimate for A(t), given in Section 3. For this,
the natural conjugate priors are used. Then, the empirical Bayes estimates
are derived in Section 4. Section 5 presents the optimality properties of the
estimators, providing the asymptotic distributions.

2 Theoretical Moments

2.1 Some Definitions and Assumptions

Let 7 ={1,...,T} and 79 = {0} U T. Let {X(t),t € 70} be a simple Markov
chain of states with transition probability matrix (t.p.m.) A(t) with elements
Aji(t), 5.k € Sfor S ={1,...,s}. We shall refer to the data sets i € N, for
N ={1,--- ,n} as the "past data” and the set i = n+ 1 as the ”current data”.
Let Ny ={n+1}UN.

Definition 1 The frequency count vector (f.c.v.), G(t), is the vector whose
elements, G;(t), j € S, are the number of individuals in state j at timet,t € 1g.

For reasons that will become clear later, at ¢ = 1, we need to have G # 0.
This is not a confining restriction as this is usually the case in panel studies
where N is generally large and the initial distribution 68 = (§;), j € S, is such
that Gj 75 0.

Definition 2 The frequency count matriz (f.c.m.), F(t), is the matriz whose
elements, F;i(t), j, k € S, are the number of individuals moving from state j
at time t — 1 to state k at time t.

Note there will be a f.c.v. G;(¢) and f.c.m. F,(¢t), for each i € Ny. Ulti-
mately we are interested in some moments of the F;(¢). Hence, it is sufficient
to consider the properties of F,,;1(¢) = F(1).

From Anderson and Goodman (1957), it follows that the conditional distri-
bution of F(¢) for a given t.p.m. A(¢) and initial f.c.v. G(0), is

PFOIAM), G(0).1 € 7} = A{F()} 7 7 ATHY. ¢
where Foo (o)
_ _ i+ ()]
AotF(E)} = Tuer {ﬂjesmestk(t)! } ’
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with
Fi (t) = Fip(t).
() = 7 Ful)
The distribution of A(t) will be assumed to follow the natural conjugate
prior, viz., the matrix beta distribution M B[p(t)], ¢t € 7. That is,

Al?jk(t)*l
L(pj+(t))mres {MH ; (2)

H{A(t)} = mjes T(p;(t))

with

pi+(t) = Z pj(t).

keS

Throughout, we shall use independent priors for A(t), ¢ € 7. The reason
for this assumption is twofold. First, we do not have a clear idea about the
variation of A(t) in ¢ to incorporate it appropriately in the model. Secondly, it
provides mathematical tractability in this initial attempt of the subject.

2.2 Moments of F(t) and Some Functions of it
Now, from the definitions of G(t) and F(t), we can readily see that

G(t—1)=F()-1, (3)
G(t) =F'(t) - 1, (4)
1'G({#)=1F{#)1 =N, ter (5)

These relationships suggest it is more practical to establish a recursive formula
in ¢ for E{F(t)}. Let

L(t) = E{A(t)}, ter, (6)
with elements )
_ Pk .
ljk@)-m: J,kes.

let L(u,v), for u,v € 7, be a matrix with elements

(J,k)th element of tzyr L(t), u<v
Lie(u,v) = 4 1 (v), U=v (7)
6jk‘a u>v,
where 6,1, is the Kronecker’s delta.
Let
o(t) = E{F(t)|G(0)}, ter, (8)
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with elements
djk(t) = E{Fj(t)|G(0)}, k€S,

and let
¥(t) = E{G(0)}, ter, (9)
where the elements ;(t) of the vector ¥(¢) are given by
G,(0), t=1
wt =1 O,
G'(0) Zkes L-k(l)lkj(Qvt_ 1), t>2,

where L () is the kth column of L(%).
Later in the process of estimation of the hyperparameters of the prior dis-
tribution, we shall need some explicit equations for the moments of F(t).
Taking expectation of (8) leads to

#(t) = diag{y;(t = 1)}L({), teT

which is too involved to be useful in our estimation procedure. We shall use
the following simpler expressions given in Theorem (1) below.
Let us first define

M(t) = diag{F;}'(t)} - F(t), ter, (10)
with elements Foult)
Mag(t)= 222 jkes.
(0) Fji(¢)

we note that since each f.c.v. G(¢ — 1) is assumed to be non-zero, Fj4(t) # 0
for all j € S. Hence, (10) is well-defined. We also define the matrix Z;(¢) with
elements

Zin(t) = EnAEn®) =0}y e g yer (11)

{Fj+(t) — 1}

Theorem 1 Let M(t) = {M;x(t)}, t € 7, be defined as in (10). Then, for
j? k7g’ h E S}
E{Mj(t)} = (1), ter (12)

and

, _ s Di@{0erps+ () — pjn(t)} i
COV{MJk(t)’ Mgh(t)} - 6]9 p?+(t){pj+(t) ¥ 1} [1 + E{Gj (t 1)}]

(13)
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Proof. We have for j, k€ S, t € T,

E{M;x(t)} = E» {El {%H

= Ea{Ajr(t)} = L (D),

by definition (6) giving the required result. Here, the subscript 1 indicates the
expectations is for a given A(t) and 2 means the expectation is taken with
respect to the distribution of A(t).

For the conditional covariance we have,

B Fir(t) Fon(t)
covi{M;x(t), Mgn(t)} = Er {Gj(t — 1) = Aj(t) Gyt —1) = Aga(t) } -

when j = g, (14) becomes
covi{ M (1), Mjn(t)} = Aju(){6kn — Mjn ()} B{G (¢ = 1)[A(w),u <t — 1}
Thus, the result (13) for j = g follows. When j # g, (14) becomes
E\[GT (= 1)G; (¢ = DB {(Fiu(t) — Gt — 1)Aje(t))
(Fyn() = Gylt = D)A(1)]G5(t - 1> (=D}
= EA[GTH(t = 1)G (= 1) B {F(t) — Gyt = DA(1)|G;(t — 1)}

B {Fp(t) — Gylt — DAt >\G (t- 1)},

Clearly, this is zero. Also,
cova[Ey {M; (1)}, Ex{Mgn(t)}] = cova{Aji(t), Agn(t)} =0, j#g

Hence, the required result follows.

3 Bayes Estimate of A

3.1 The Loss Function

As is usual, we shall assume an squared error loss function for the estima-
tion of A(t) by A(t) = {Ax(t)}, j,k € S. Following DeGroot (1970), the
corresponding loss function for the matrix A(¢) is given by

L{A®)} = Y {An(t) = An(t)}2.

J,keS
It can be shown that L{A(t),[\(t)} is minimized when each A (), j. k € S,
achieves least possible risk. Thus, the Bayes estimate for each Aj(t), j k € S,

will give us the Bayes estimate for A(t). However, the Bayes estimate of A(#)
relative to the squared error loss function is just the posterior mean of A(t).
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3.2 The Bayes Estimate

Theorem 2 Let F(t) be the f.c.m. of a collection of i.i.d. mnon-stationary
Markov chains at time t. Let A(t) have a MB{p(t)} prior distribution inde-
pendent of A(u), u # t. Then the posterior distribution of A(t) given F(t) is
a MB{F(t) + p(¢)}.

Proof. From Anderson and Goodman (1957), we have, for each t € 7,

B{p(t)} :| Fy}v(t)+py}v(t)_1(t)
B{p(t) + F(t)}] jres 7"

A(t) € Qs, F(t) € F(b),

¢ (AP0, G - 1} = |

where

C{p; +(8)}
Blp(t)} = I Lgﬁ{%}

and F(t) is the set of all matrixes F(t) satisfying (3), (4) and (5).
Since the righthand side does not depend on G(t — 1), the desired result
follows readily.

Theorem 3 Let F(t) be the f.c.m. of a collection of N i.i.d. non-stationary
Markov chains at time t € 7. Let A(t) have o MB{p(t)} prior distribution.
For an initial f.cv. G(0), the Bayes estimate of A(t) relative to the squared
error loss function is

Ap(t) = Ap{F(t),p(t)} = {ABk(t)} (15)

where
Fjr(t) + pix(t)

Aparll) = 5 i T pa )

j.k€S.

Proof. Since we only need to find the posterior mean of each Ajx(?), 7,k € S,
the result follows immediately from the properties of M B{F(¢t) + p(t)}.

Anderson and Goodman (1957) gave the maximum likelihood estimate of
Aji(t) as 11;,!;((?) J.k € S. Thus the Bayes estimate of A(t) is a convex combi-
nation of the maximum likelihood estimate and E{A(¢)}.

The posterior covariance of Aj,(t) and A (t) is obtained as

cov{As(t), Ao (B P(1)} =
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53 (0 Tyt (OFTES S (D 7,y (D 1] I=r (16)

[Py (04250 (1o (P (0 bt O (Fywe Otpyr OB+ o1 pr e g
0 j#j, kkeS

where 6, is the Kronecker’s delta.

4 Empirical Bayes Estimate of A(t)

4.1 Preliminaries

If we knew the value of p(t), then we would use (15) as the best estimate of
A(t) and incur the least possible risk relative to the squared error loss function.
Not knowing p(t), we shall estimate it from the ”past data” and substitute it
n (15). We shall use the method of moments to estimate p(t).

We recall that the availability of {F;(t) : i € N}, a set of realizations of n
i.i.d. random matrices is assumed. For each ¢ € 7, the p.m.f. of F(¢) contains
52 parameters, namely, elements of p(t). In the following subsection, we give
a procedure to estimate them from {F;(¢) :i € N}.

4.2 Method of moments estimate of p(¢)
We may rewrite (12) and (13) as
pik(t) ‘ .
Dit (t) - E{Mﬂ»(t)}v ]7k €S (17)
and
Pit (DIE{Zjirn(8)} = E{Ma(t)} - E{M;1(t)}]
= o E{M;x(t)} — E{Zjxn(t)}, JE€S. (18)

Since (17) is actually s(s — 1) independent equations, we need (18) to furnish
the remaining s equations.

We introduce the matrices I';(t) = {v;.xn(t)} and n;(t) = {n] wn(t)} where
the elements ;. (¢) and n;.en (t ) are defined for 7,k,h € S, t € T, by
Viskn(t) = E{Zjn(t)} — E{Mi(t)}. E{ M1 (1)}, (19)
Nyskn(t) = okn E{ M1 (1)} — E{Zjn (1)}, (20)
respectively.
Since
> v (t) =Y mjun(t) =0, (21)
heS heS
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['(t) and n(t) are singular. Let T';(¢) and n}(¢) denote the matrices of the first
(s — 1) rows and columns of T';(t) and n,(t), respectively.

Then,
pett) = T e 2

Now, we define the statistics, for j,k,h € S, te€ T,

Ciikn(t) = Zjpn(t) — Mjr(t) - Mjn(t),
and
djien (t) = 0xn M 1 (t) — Zjkn(t),

as (k,h)th elements of C;(¢t) and D;(¢), respectively where * has the same
meaning as in (22). The system of equations which provides the estimates of
pix(t), denoted by 7,5 (t), for each t € 7, is

ris(t) = ID; () o €S (23)
R NS0T B,

re(t) = 1 (O u(t), k€ S. (24)

and
The EB estimate of A(t) obtained by the method of moments is the matrix
Agpp(t) whose elements Agp jr(t), j. k € S, are given by

Fip(t) +rn(t)

Appyj(t) = Fip(t) + T (t)

We note Agp(t) may also be written in matrix notation as

App(t) = diag[{F}.(t) + 754 (O} H{F () + R(1)}, (25)

where R(t) has elements r;,(t), j,k € S.

4.3 Maximum Likelihood Estimate of p(¢)

The joint p.m.f. of F(¢), ¢ € 7, is derived from (1) by integrating it with respect
to the joint distribution of A(¢), t € 7.
That is,

P{F(t)|G(0),t € 7} = Ao{F(t)} Bo{p(t), F(1)}, (26)
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where

D{p;+ (1) HIkesT{p;r(t) + Fjr(t)}
H{pjt(t) + Fj+ ()} eesT{p;r(t)}
Since Ag{F'(t)} is free of p;x(t), then L[{p(t)|F(¢)}, t € 7], the likelihood

of F;(t), i € N and t € 7, is proportional to Bo{p(t), F(¢)}.
However, we can show that

LI{p(t)[F(t)},t € 7] = WjesLHpi+ (O F+ ()}, tE 7],

and that it suffices to maximize L[{p;4(¢)|F;+(t)}, t € 7] for each j € S.
Details of this maximization can be found in Meshkani (1978).

BO{P(t): F(t)} =i Iles

Let the final solution of the maximization problem be p(t). Then, we have:
The EB estimate of A(t) obtained by the method of maximum likelihood

is the matrix Agp(t) whose elements Agp.;x(t), 7,k € S, are given by

Fin(t) + py(t)
Fiy (t) + pjy (1)

The posterior variance corresponding to (16) is

AEB;jk(t) = ’ ]k € S (27)

cov{As(t), Ao (B B(1)} =

P (D45 (OFTFs £ (D015 £ (D] j=J kkes

(28)
0 i#i, kkeS

{ [(Fjk () 405 () [6xar (Fit (1) 4P+ ()= [Fjrpr (1) 4P, 5 (1))

5 Optimality Properties of the EB Estimators

The EB estimators (27) and their covariance estimate (28) are continuous
functions of the moment estimators of hyperparameters p;(t), j, k € S.

Since moment estimators are consistent, i.e. pjx(t) = pji(t) by straight-
forward arguments we can claim that ]\EBJ‘]C(t) N Ap(t). That is, the EB
estimators (27) are asymptotically optimal.

The same argument applies to (28). With regard to the distribution of EB
estimators (27), we note that, if one ab initio uses the Dirichlet prior with
hyper parameters p;;(t), then the posterior distribution of AEB(t) turns out
to be a M B{F(t) + p(t)} in the spirit of theorem 2.

However, one can appeal to the asymptotic properties of p(¢) and state the
following result.
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Here, again we are dealing with continuous functions of various sample
moments of Fj,(¢). Appealing to a generalized version of the central limit
theorem followed by the -method, Meshkani (1978, chapter 4) has shown that

Theorem 4 Let Apg(t) be an EB estimator of A(t), obtained by the method
of moments, given in (27), then, each row of Agpp(t) is asymptotically multi-
vartate normal, i.e.,

veeAlp () ~ N{veAly(t).n 'Y (1)} (29)

where

>, (1) = diag { 10 - }

(rj (0) + Fyp (8))% - 32 55(8)

and Ejj(t) is the sample covariance of jth row of M(t) = diag{qu_l(t)}teTF(t)‘

Conclusions

We have obtained Bayes and empirical Bayes estimators for the t.p.m. of a
nonstationary finite Markov chain. This is just a first step in this direction.
Properties of these estimators, as well as asymptotic properties have been con-
sidered. The asymptotic normal distribution has been derived.

It would also be of interest to consider the situation f a single chain as
distinct from the panel study considered here. A difference in the distributions
of the frequency counts F(t) necessitates that this case be considered separately.
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