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Abstract. Prediction of the sports records has received a great
deal of attention from researchers in different disciplines. This ar-
ticle reviews some of the methods developed by statisticians and
offers few improvements. Specific methods discussed include trend
analysis, tail modeling, and methods based on certain results of
the theory of records for independent and identically distributed
attempts. To make the latter theory applicable, and to account
for factors affecting the records, adjustments are made to the data
in the form of increase in participation or attempts. Models uti-
lized for this purpose include geometric increase, logistic increase,
and increase as a non-homogenous Poisson process. A method for
prediction of ultimate record is also included together with demon-
strating examples using data for men’s long jump and 400 meter

run.
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1 Introduction

The athletic ability of human beings is an issue of great interest to physiologists,
physical educators, health professionals, sport fans, and general public. Records
set in different sports shed light on human strengths and limitations and provide
data for scientific investigations and training or treatment programs. Research
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in this area can be divided into two categories; short-term prediction and long-
term (ultimate record) prediction (see Terpstra and Schauer, 2007; Solow and
Smith, 2005; Noubary, 2005; Gulati and Padgett, 2003; Bennett, 1998; Blest,
1996; Noubary, 1994; Tryfos and Blackmore, 1985, and references therein). In
what follows we present some of the statistical methods developed for prediction
of records and offer some new insights.

2 Methods Based on Trend Analysis

Sports records have improved during the years and often faster than our ex-
pectation. To analyze this a large number of investigators have utilized models
that are made up of a deterministic term Z(t,8), to account for the trend and
a stochastic component z(t) to account for the variation, that is

y(t) = Z(t,0) + 2(b). (1)

Here t represents time and 6 represents the unknown parameters. In most
cases z(t)’s are assumed to be independent and identically distributed id ran-
dom variables. For deterministic component z(¢,#) many different forms are
suggested (see Blest, 1996, for the list).

For example, Smith (1988) has considered model (1) assuming that x(¢)’s
are 7id random variables. For z(t) particular distributions considered were
normal, Gumbel, and the generalized extreme-value. For Z(t,6) the following
linear, quadratic and exponential-decay models were examined.

Z(t,0) =0y — 6:t, 61 >0

By — 01t + 0512
:%, 6, > 0

t
:(90—91)1(19702), fr >0, 0<b,<1 (2)
2
Using the maximum likelihood method and numerical procedures these
models were applied to the data for mile and marathon races (Smith, 1988).
The normal distribution was found to be the most appropriate among the
three distributions although it was noted that the choice of distribution was
not crucial for forecasting purposes. Smith also noted that the quadratic or
exponential model do not provide a significant improvement over the linear
model.
When estimating the limiting time (ultimate records) from exponential-
decay model the standard errors were so large that made the predictions mean-
ingless. It is not clear whether this problem was due to the choice of model or
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the estimation procedure. Smith has implied that the choice of model may be
insignificant and acknowledged the wide variability of estimates corresponding
to different error distributions and different portions of the series. In fact, he is
doubtful that the use of such methods, in general, and model (2) in particular,
can produce meaningful performance estimates for the distant future.

In an attempt to overcome these difficulties Noubary (1994) considered an
innovative model comprised of an envelope function and a stationary stochastic
process in multiplicative form. This model and its statistical inference are
discussed in the next section.

2.1  Multiplicative Models

Although useful, additive models of the form (1) may not appropriate for sports
data as they imply no dependency or association between variation in x(t) and
change in Z(t,0). In fact, it is reasonable to expect decrease in variability in
the latter portion of the data as performances get closer to the ultimate record
and significant improvements become less likely. Also, since most world-class
runners remain competitive for a number of years (usually between three and
six) some dependency may exist between adjacent performance measures.
Noubary (1994) has suggested use of the models of the form

logy(t) = 6y — 61t + x(t), f >0

logy(t) = 6y — 01t + 02 logt + x(t), 61 >0 (3)

where {z(t),t = 1,2,...} is a zero-mean stationary process. Note that these
models can alternatively be written in multiplicative forms as

y(t) = Oe a7 (t), 61 >0

y(t) = 05t%2e 0127 (1), 6, >0

where 6y = log 6} and z(t) = logx*(t). Here both means and variances vary
with time. That is, unlike additive model where variance of y(¢) is independent
of ¢, here it decreases as t increases. As a result compared to the additive
models, the standard errors of the future records are smaller and therefore the
likelihood of obtaining a meaningful prediction is higher.

2.2 Statistical Inference

Suppose that an observed series {y(¢);t = 1,2,...,N} is generated by the
regression model

y(t) =D 0:Zi(t) + (1),
k=1
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where 6;’s are unknown parameters and x(¢) is a zero-mean stationary pro-
cess possessing a continuous spectrum. Let y = (y(1),y(2),...,y(N)T, 6 =
(61,602,...,0,)T and Z* be a matrix with Z;(t) as the entry in the kth row
and the tth column. Also, let & = {v(s — t);s,t = 1,2,..., N} denote the
autocovariance matrix of z(t). Then the best linear unbiased estimator of 6 is
given by

6=Z"s'2)Z2Ts Yy

In practice X is often unknown and 6 is unavailable. Even if ¥ is known its
inversion may introduce computational problems, especially for long series. To
avert these difficulties a common approach is to replace 6 by 6 the simple least
squares estimator

6= (2"2)"1z"%,
which does not involve I. Since 6 is easy to calculate, one may ask if any
precision is lost by using it. It has been shown that loss of precision depends
on the function Zx(t). In fact, it has been known for some time (Grenander,
1954) that in certain cases 6 is efficient in the sense that

{var(f)}{var(§)} ' — I, as N — oo

where var(f) and var(6) are the covariance matrices of f and 6, and I, is the unit
matrix of order p. An important specific case where the required conditions are
satisfied occurs when X0, Z,(t) is a polynomial in ¢ (Hannan, 1960, p. 122).
It is easy to show that these conditions are still satisfied if logt is added to a

polynomial. For both cases the limiting form of var(#)(var(6)) is given by
vV =2rf(0)(ZT2)7",

where f(w) denotes the spectral density function of the z(¢) process. If addi-
tionally x(t)’s satisfy a Lindeberg type condition, then asymptotically (Ander-
son, 1971, Theorem 10.2.11)

6 ~N(@6,V).

Noubary has demonstrated the application of these results using the data
from 400 and 800 meter races (Table 6). He has shown that of the models
considered, (3) provides the best fit for both events. The 400 meter data
were well fitted using only the non-random part of model (3) with residuals
being random and normal. The prediction intervals obtained embraced the
recent fastest times. The 800 meter data also fitted well by model (3) with a
moving average M A(2) process representing the random part. The residuals
were random and normal. The prediction intervals embraced the recent fastest
times too. Also compared to other models, (3) provided a smaller mean square
error and narrower prediction intervals both for 400 and 800 meter runs.
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We end this section by mentioning that Noubary and Shi (1998) have shown
the additive models can be converted to difference equations, by considering
Z(t,0)’s as their complementary solutions. They have also shown that all
suggested forms are special cases of the so-called exponential model.

3 Methods Based on Tail Modeling

In this approach the probabilities of future performances are calculated using
models for the upper (lower) tail of the distribution for performance mea-
sures. Since performance measures above a threshold carry more information
regarding the future performance this method is more appealing. Many of the
proposed methods assume that the tail belongs to a given parametric family
and carry out the inference using excesses, that is the performance measures
greater than some predetermined value yq. It is shown that the natural para-
metric family of distributions to consider for excesses is the generalized Pareto
distribution (GPD) taking the form

%
H(y;o,k)=1- <1_k_y>

[

where ¢ > 0, 00 < k < oo and the range of y is 0 < y < oo (k < 0),
0 <y <o/k (k> 0). This is motivated by the following considerations.

e The GPD arises as a class of limit distributions for the excess over a
threshold, as the threshold is increased toward the right-hand end of
the distribution, i.e., the tail.

e If Y has the distribution H(y;ck) and y' > 0, 0 — ky' > 0, then the
conditional distribution of Y —y' given Y > 4’ is H(y; o —ky', k). This
is a “threshold stability” property; if the threshold is increased by an
arbitrary amount ¥’, then the GPD form of the distribution remains
unchanged.

e If N is a Poisson random variable with mean A and Y7,Y5,...,Yy are
independent excesses with distribution function H(y; o, k), then

- *
P(max(Yl,Yg,...,YN)gy):exp{_)\<1 ky) }
o

has the generalized extreme value distribution. Thus, if N denotes
the number of excesses in, say, a year and Yi,Y5,..., Yy denote the
excesses, then the annual maximum has one of the classical extreme
value distributions.
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e The limit £k — 0 of the GPD is the exponential distribution.

In most applications the excesses are treated as independent random vari-
ables. When fitting GPD the parameters are estimated by maximizing the
likelihood function using the observations that exceed a chosen threshold yg.
Note that choice of threshold is, to a large extent, a matter of judgment de-
pending on what is considered large or small or an exceptional performance.
Like generalized extreme value distributions, GPD includes three specific forms

1. Long tail Pareto,
2. Medium tail exponential,

3. Short tail distribution with an endpoint,

and most classical distributions fall in domain of attraction of one of these
models. Note that, like most asymptotic results application of this approach is
not free of problems. Here the obvious problems are the choice of a parametric
family, determination of the threshold value, and the problem related to the
intractable likelihood equations. To avoid the latter, Pickands has introduced a
non-parametric method for inference regarding the parameters of the general-
ized Pareto distribution. Noubary (1984) applied his method to 100, 200, 400,
and 800 meter runes and obtained predictions using data from Olympic games.
Unfortunately, depending on the spacing between the most recent records, ap-
plication of this method may lead to some unacceptable predictions.

An estimate of tail without appealing to the likelihood principle has also
been proposed by Davis and Resnick (1984). Their estimate is easier to use
and is applicable to a wide class of distribution functions. This estimator of
the tail is essentially the same as the one proposed in Hill (1979) They both
assume a tail model of the form F(y) = cy=® for y > yo when yo is known.
From a random sample of size n the estimates of the parameters are obtained
using the upper m = m(n) order statistics. Here m is a sequence of integers
chosen such that m — oo and m/n — 0.

Noubary (2007) has applied this approach to men’s long jump (Table 1 and
Figure 1) and 400 meter run. To choose m(n), let n denote the sample size
and m = m(n) the number of order statistics such that m — oo and m/n — 0.

Clearly a clever choice of m can improve the prediction. One obvious choice
is m(n) = /n, but there are “better” choices. Assume that the data contains
r records. Let T, be the time between the last and penultimate records and
t., the time the last record has held to date. Then it can be shown that the
following choice proposed by Tata (1986) satisfies the above two conditions.
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Table 1. Long jump best annual distances 1962-1999 (* values are records)

8.31% 8.30 8.34* 8.35% 8.33 8.35 8.90% 8.34 8.35 8.34 8.34 8.30
8.45 835 8.32 8.52 854 8.62 8.76 879 871 8.62 8.61 8.86
8.76 870 8.66 8.95*% 858 8.70 874 871 858 8.63 8.60 8.60

m = eI, + Vit = /2.718282T, + /%,

For long jump,
t, =1999-1991 =8, T, =1991—-1968 =23, m = v/23e+Vv8 =10.74 ~ 10

This led to the following tail model

10

P >y) = 38 (y/8.70)"'°

(4)

Using this, the values of P(Y > 8.95) and P(Y > 9.00) are 0.0155 and 0.00887
for one year and 1 — (1 — 0.01555)!0 = 0.1446 and 0.0852 for ten years respec-
tively. Also, the return period of Y to exceed 8.95 is 1/0.0155 = 64.5 years,
which may seem too long. To see whether probabilities obtained from this
model are reasonable, consider the second best performance (distance) 8.90
and its probability,

P(Y > 8.90) =0.0271

This corresponds to a return period of about 39 years. Data in Table 1 indicates
that this record was set in year 1968 exactly 39 years before 2007 and during

Q <
0.9 -

8.8 ®
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Figure 1. Long jump
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this period it was exceeded only once. This agrees with the observation and
indicates that (4) is an acceptable model. Also, the fact that the last two
records (8.95 and 8.90) are significantly greater than the third best record 8.35
indicates that medium or long tail models provide a better fit than a short tail
model.

For men’s 400 meter run the fastest times were recorded every year since
1860. The last three records, 43.80, 43.29 and 43.18 were set in years 1968,
1998, and 2000 respectively. Using this information we get m = 8 and the
following tail (lower tail) model.

8
141 (44.40/y) 700!

PY >y)

From this model, the values of P(Y < 43.10) and P(Y < 43) are 0.0038 and
0.0031 for one year, and 0.0374 and 0.03057 for 10 years respectively.

4. Methods Based on Theory of Records

This section presents methods for short-term prediction of records based on
results of theory of records. This theory has a large number of exact and
asymptotic results regarding the number of records, record times, time interval
between records (inter-record times), and record values. Some of the results are
non-parametric, and as such are easier to apply. Here we consider few relevant
results of this theory and refer the readers to Ahsanullah (1995), Arnold et al.
(1998), Glick (1978), and Gulati and Padgett (2003) for other results and their
details.

4.1 Short-Term Prediction

To address certain questions regarding the prediction of records, Noubary
(2005) has developed a method utilizing the following three results of the theory
of records for independent and identically distributed sequence of observations.

(a) If there is an initial sequence of n; observations and a batch of ngy
future observations, then the probability for this additional batch to
contain a new record is ns/(ny + n2).

(b) As sample size n — oo, the frequency of the records among observa-
tions indexed by an < ¢ < bn tends to a Poisson count with mean
In(b/a).

(¢) If F(y) =1—exp{—-y}, vy > 0, and Yx denote the record values,
and if Dy = Yy,, D, = YN, — Yy,_,, 7 > 2, then the improvements
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Dy, D>,... are independent and identically distributed random vari-
ables with common distribution function F(y).

Clearly, the results of theory of records for independent and identically dis-
tributed sequences are not directly applicable to sports since, in most cases,
sport records are more frequent than what the theory predicts. To account
for this Noubary (2005) has treated the problem as if either participation has
increased with time, or more attempts have taken place so that the probability
of setting a new record was increased. Berry (2002) used the male population
of the world as a predictor or an adjusting factor. Using the coefficient of de-
termination as a measure of fit, he found R? = 81.3% for the Olympic winning
times in the 100 meter dash. For other events he found R? values as high as
95.4%.

Now, although population as a predictor produces surprisingly good results,
one should expect even better results if it is replaced by predictors such as the
population of participants or the number of attempts as they are more precise
indicators of how many times a record is challenged. Berry used the following
exponential model for the growth of the world’s male population since 1900.

Population in Year ¢t = 1.6 exp{0.0088(¢ — 1900)}

Note that this model can be approximated by a geometric increase with annual
rate of exp{0.0088} = 1.0088388 since year 1900.

Now, consider a situation where data representing the number of partici-
pants is available. For example, Table 5 displays the number of participants of
the Boston Marathon for the period 1970-2003. The year 1970 is selected as
the starting point because during this year a qualifying time was introduced.
As can be seen participation has steadily increased during the years. Using re-
gression, one finds the following quadratic model for the number of participants
with R? = 0.938.

Number of Participants in Year ¢t = —1294 + 1088 t — 57.5 t2 + 1.25 ¢3

When fitting this model, we replaced the data for the year 1996 with by the
average of the two neighboring values since 1996 was the 100th anniversary of
the Boston marathon and more than 38,000 runners were allowed to participate.
For this situation, one simple approach would be to model the increase and
use that together with result (a) above for prediction. We think that this is
reasonable as it will make up for factors that increase the probability of setting
new records. To clarify, suppose that in a certain year the best record for men’s
100 meter run was s seconds and the probability of setting a new record was
p. Suppose further that few decades later the population has tripled. If we
divide this population to three subpopulations, then each subpopulation could
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32 Some Statistical Methods for Prediction of Athletic Records

set a new record with probability p. Thus the probability that at least one
subpopulation sets a new record is 1 — (1 — p)®. As an example, for p = 0.05,
this probability is 0.143. We can also look at this as if in a major competition
the runners who have potential to break the record get three tries instead of
one.

To demonstrate the application of the results (a), (b), and (¢) consider,
once more, the data for long jump in Table 1. For this event 5 records have
been set in the 38 year period (1962-1999). For Independent and identically
distributed sequence of length n, the expected number of records is equal to
2?21 1/j. This is because the first observation is always a record. The second
observation is a record with probability 1/2 and the jth observation is a record
with probability 1/j. Using this, we see that approximately 83 attempts are
needed to produce 5 records as

1+1+ +1 =5
2 83

Since we have 38 years of data, the extra 45 = 83 — 38 attempts need to
be distributed over the 38 years of observations and in an increasing format.
The problem that remains is to decide about the nature of such distribution.
One possibility is to assume that the number of participants or attempts is
proportional to the population size at time ¢. But, as pointed out earlier this
approach does not use information from the sports itself and the way records
were set. In other words, it is the same for all sports regardless.

As noted, the exponential model for the growth of the world’s male popu-
lation mentioned above can be approximated by a geometric increase. Thus,
this seems a reasonable choice. Suppose, for example that i is the geometric
rate of increase in participation, or in number of attempts. This means that
the number of attempts in any year is ¢ times the number of attempts in the
year before. For long jump data the value of i can be found by solving the
equation

L4+i+d®+ - +4°7 =83

This gives ¢ = 1.04, which means a 4% rate of improvement or equivalently 4%
more attempts per year.

To find the probability of a new record during the future 1 and 10 years
(in this case year 2000 and the period 2000-2009) we use result (a) and replace
ny = 83 and ny = (1.04)%® = 4.44 for 1 year, and n; = 83 and ny = (1.04)3® +
- 4+ (1.04)*" = 53.24 for 10 years respectively. The resulting probability
estimates are 0.051 and 0.391 respectively.

We can also apply result (b) assuming a geometric increase. According to
this result the frequency of the records among observations 84 to 137(84 + 53)
has approximately a Poisson distribution with mean of A = In(137/84) = 0.489.

© 2006, SRTC Iran



G. R. Dargahi-Noubary 33

Using this, the probabilities of no record and one record during the period
2000 — 2009 are 0.613 and 0.300 respectively. Also, 1 — 0.613 = 0.387 is an
estimate for the probability of at least one record in 10 years period 2000-2009.

Finally let us demonstrate application of the result (¢). First, note that for
the long jump data, assuming an exponential distribution for distances beyond
for example, 8.25 is reasonable in view of the threshold theory described in
Section 3 (Pickands, 1975; Smith, 1987). Recall that according to the threshold
theory, the tail of most classical distributions (values beyond a large threshold)
takes only one of three possible forms known as generalized Pareto distribution.
These forms include the long-tail Pareto, medium-tail exponential and short-
tail distribution with an end-point. For performance measures above a high
threshold the exponential distribution is either the best model, or because it
represents the medium tail is a good approximation for the other two tail
behaviors. Here subtracting 8.30 from all distances and dividing the resulting
values by 0.195 (standard deviation) provides a sample from the density f(y) =
exp{—y}, vy = 0. The probability of occurrence of a record larger than mg in
the next no years can then be calculated using the following relation obtained
by combining results (a) and (b).

—(mg — 8.95) }

n2
P L
(m >mo) = ==~ exp { 0.195

Note that here 8.95 is the value of the last (5th) record. As an example for
mg = 9, the probability estimates are respectively 0.0329 and 0.3024 for the
future 1 and 10 years, assuming a geometric increase.

We end this section by noting that, rather than geometric increase, we can
following a general approach for modeling population increase, consider models
such as Logistic or Gompertz or more generally a model of the form

Ynt1 = Yn = H(yn) =77 f(yn)(1 — g(yn))-

Here g, denote the number of participants or number of attempts at year n
(generation n). One of the simplest and frequently used models that contain a
formulation that avoids indefinite growth and represent effects of overcrowding
is when 7 is a linear function of the last year’s participation. This choice of r
leads to a model of type

Ynt1l —Yn =T Yn ( 7 ) = H(yn)

known as Logistic equation. Here, r* represents the rate of growth and h repre-
sents the carrying capacity. For long jump h may be the maximum number of
individuals who qualify to participate in an event such as the Olympics. Models
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of this type are reasonable for sports where usually rapid initial improvements
are followed by much slower advances.

Noubary (2005) has considered the following simpler model instead that
exhibits the same behavior as the Logistic equation

Ynt1 = Ynexp {T* (1 _hy") } : (5)

Applying (5) to the long jump, the number of attempts in future 1 and 10 years
period are respectively 4.12 and 48.76 for yo = 1, r* = 0.04, and h = 50. The
corresponding numbers using the logistic equation are 4.02 and 47.42. We note
that the probability estimates obtained from these models are smaller than
that for the geometric increase.

4.2 Prediction Based on Maximum Likelihood Estimate
of Number of Attempts

When applying results (a), (b), and (¢) we estimated n; based on the expected
number of records. Instead we can base our estimate on probability of occur-
rence of r records in a series of length n. This allows us to apply maximum
likelihood method and obtain a statistically better estimate for ny , the number
of attempts.

Let P, denote the probability that a series of length n contains exactly r
records. It is easy to see that P, = 1/n and P,, = 1/n!. Moreover noting
that the nth observation is either a record or not, the remaining probabilities
can be calculated recursively as

n—1 1
Pr,n = —Pr,nfl + _Prfl,nfl (6)
n n
Pi=1,
P.o=0, r<n

Note that (6) can also be written as

1 n—1
}ﬁm::;; E: fﬁ—Lj

j=r—1
For example
n—1 n—1
1 1 1 1
P = - jEZI P ;= - ; 7 ~ E{ln(n -1)+~}
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Table 2. Maximum likelihood values of n

T n Max. Prob.
1 1 1.0
2 2 0.5
3 8 0.325694
4 25 0.253788
5 73 0.214182
6 204 0.188597
7 565 0.170410
8 1557 0.156648
9 4275 0.145767
10 11710 0.136886
11 32022 0.129456
12 87464 0.123122

Also using the properties of the Stirling numbers it is shown (Andel, 2001) that
asn — oo

P ! !n{ln(n)+7}’“*1 (7)

(r—1)

To demonstrate the application, consider the long jump data for the period
1962-2006. The observed number of records is still » = 5. For this data
application of maximum likelihood yields 73 attempts with P., = 0.214182
(see Table 2). This leads to

L+i+d®+- +i* =73

and ¢ = 1.0206. The values of ns for the future 1 and 10 years (in this case
year 2007 and the period 2007-2016) are respectively 2.503 and 27.485. The
probabilities of a new record during the year 2007 and before 2017 are then
0.033 and 0.274 respectively.

Table 2 provides maximum likelihood estimate of n for r = 1,2...,12 to-
gether with the maximum value of the P, ,. As can be seen the value of n
increases rapidly. For r-values greater than 12 one could apply the following
observation. Noting that 2/1 = 2, 8/2 = 4, 25/8 = 3.125, 73/25 = 2.92,
204/73 = 2.795, 565/204 = 2.77, 1557/565 = 2.756, 4275/1557 = 2.746,
11710/4275 = 2.739, 32022/11710 = 2.735, 87464/32022 = 2.731, we con-
jecture that the ratio is tending to e = 2.718. This is also evident from (7) as
for larger n the maximizing value of n is exp{r — 1 — v}. Thus, for example,
an approximation for n when r = 13 is (87464)(2.718) = 237727.

Next, we apply result (b) assuming a geometric increase. Recall that the
frequency of the records among observations 74 and 101 (sum of 74 and 27)
has approximately a Poisson distribution with mean A = In(101/74) = 0.311.
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Table 3. Medians of waiting times between successive records and their ratios

Record Number 2 3 4 5 6 7 8
Median(W,) 4 10 26 69 183 490 1316
Med(W,)/ Med(W,_1) 2.50 2.60 2.65 2.65 2.68 2.69

Using this, the probabilities of zero and one record in the 10 years period (2007-
2016) are respectively 0.733 and 0.229. Again 1 —0.733 = 0.267 is an estimate
for probability of at least one record in a 10 years period.

If rather than geometric increase we consider a slower arithmetic increase
the resulting probabilities will be smaller. We think that the geometric increase
is suitable for sports with a large number of records whereas the arithmetic
increase is suitable for sports with only a few records.

4.3 Waiting Time Analysis

Let W, denote the waiting time between the (r—1)th and rth records. Although
the expected waiting time to even the second record is infinite, both the median
and the mode of the waiting times are finite. In fact, the following approximate
relationship exists between successive waiting time medians.

Median(W, 1)
— e =2.718
Median(W,.) ¢

Table 3 shows the exact values of the medians and their approximate values.

As can be seen the approximations are good even for r =4,5,6,7,8.
For example, after seeing the second record, the median wait time to the third
record is 10 observations (attempts). Other results regarding W, include a
law of large numbers, log(W, /r) — 1, and a result indicating that log W, is
approximately equivalent to the arrival time sequence of a Poisson process.
Since sports records are more frequent than records generated by independent
and identically distributed sequences, it is possible to model log W, as a non-
homogeneous Poisson process (see Section 4.4).

Now recall that for long jump the 5th record was set in 1991. Using the
maximum likelihood 73 attempts is needed to produce 5 records and these
should have occurred during the period 1962-1991 (30 years). This leads to
geometric increase with rate ¢ = 1.055. Noting that the waiting time to the 6th
record is 183 attempts, it takes (in median sense) 49 years for a new record to
be set. This means waiting till the year 2040. Recall that the return period of
the present record (8.95) was found to be 64.5 years based on the tail model
obtained in Section 3.
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Table 4. Data for pole vault

Improvement Number

(feet) of years
14 to 15 13
15 to 16 22
16 to 17 1.5
17 to 18 7
18 to 19 10
19 to 20 10

We end this part by noting that, rather than records and waiting times

between them, one could consider improvements of equal size and analyze the
corresponding waiting times. This seems a reasonable approach since as records
improve, increase in number of attempts could offset the decrease in number
of record breaking performances. For example, consider the rise in Pole Vault
records and their waiting times shown in Table 4.
Here one can consider smaller improvements and apply some of the classical
statistical methods. In the case of Pole Vault, for example, the goal of such
analysis should be to predict the number of years it would take to go from 20
to 21.

4.4 Attempts as Non-homogeneous Poisson Process

Rather than geometric increase, it is also possible to assume that the number of
attempts to break a record is governed by a non-homogeneous Poisson process.
Survival of sport records under this assumption is investigated in Noubary and
Noubary (2004) where explicit formula is derived for a practical case. The
following is a brief description of this approach.

Let R > 0 and S > 0 be two random variables with respective distribution
functions Fr(-) and Fs(-). Suppose R, the record in a given sport, is subject
to set of attempts S occurring according to a point process P. Then the record
breaks if the value of S exceeds R. The value of S is a function of the type
of sport, number of participants, prize, training, environmental factors such as
temperature, altitude, etc., and factors important to the athletes and the pub-
lic. The value of R depends on similar factors such as the type and popularity
of the sport, amount of rewards or prizes, number of formal competitions, etc.
The probability of breaking a record in a single attempt, denoted by p is then

P(S>R)=p=1- /000 Fs(z) dFp(x)
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When applying this model, one is frequently interested in the probability
of breaking a record in a specified interval, say (0,t], where 0 represents the
beginning of the period. Assume that T is the length of time a record is (or
will be) held, then the probability of record being broken in the time interval
(0,¢t], denoted by Fp(t), is

Fr() =P(T <t)=1-P(T >t) =1~ Ly(t)

where Lp(t) = P(T > t), L7(0) = 1 is the survival function. If R is a record

subject to a sequence of attempts S,Ss,...,5,, then
Ly(t) =Y P(N(t) =r)P(r) (8)
r=0

where {N(t),t > 0} is a general counting process of attempts and P(r) =
P(max(S;, Ss,...,5,) < R), r =1,2,...,n, with P(0) = 1. Note that P(r)
presents the probability of surviving the first r attempts. For attempts gov-
erned by a homogenous Poisson process with rate A, we have from (8)

Lo(t) = i exp(—At)(At)" P(r)

r!
r=0

If we further assume that the attempts are independent and identically dis-
tributed random variables, we get

exp(—At)(At)"
Lr(t) = 3 SRS (1 ) = exp(-p)
Thus, given the mean rate of attempts and a time period of interest then Lp(t)
can be calculated for any p. Hence for this situation the main problem is that

of estimating the p, i.e. the probability of breaking a record in a single attempt.

4.4.1 Record Survival

Suppose P is Poisson with time-dependent rate A\(¢) > 0 and

At) = /Ot AMu) du

Since (T > t) if and only if max(Sy, Ss,...,S,) < R, the survival probability
P(T > t) is given by

P(T >t) = /0 h > e*AW%(Fs(m))”dFR(x) (9)
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Note that (Fg(-))™ is the distribution function of max(Sy,Ss,...,S,). The
expression (9) can also be written as

P(T > 1) = / T exp{—A0)(1 — Fs(x)} dFa(x) (10)

If R = Ry is given (e.g. Ry is the present record), then
P(T > t| R = Ro) = exp{—A(t)(1 - Fs(Ro))}

Now, it is clear that for the general case (10) requires knowledge of both
Fr(-) and Fs(-). Fortunately, there is an important case discussed below where
calculations can be carried out with less information and more ease. This case
is based on the viewpoint that the strength or importance of a record in a given
sport is measured by the number of attempts required to break it.

Suppose that P has been observed throughout the time interval (—7,0],
where 0 represent the present time. Suppose also that the largest performance
value (records) in this interval is used as a reference for determining further
records. Then

Fr(z)=P(R<2x)= Z P(max(S1, S2,...,5,) < z|N(1) =n))P(N(t) =n)

n=0

A (A"
:Ze A ( (/!

n

(Fs(2))" = exp{=A(1)(1 = Fs(x))}

n=0

and application of (10) yields

A(T)[L = exp{=(A(r) + A}
A(T) + A(t) (11)

P(T >t)=

With confidence given by the right-hand side of (11), there will be no value in
(0,t] greater than the maximum value in (—7,0]. This implies that, for this
situation the survival probability depends only on the rate of attempts.
4.4.2 Examples
Recall the following exponential model for the growth of the world’s male pop-
ulation suggested in Berry (2002).

Population in Year ¢t = 1.6 exp{0.0088(¢ — 1900)}

Let us assume that the number of attempts in year ¢ is proportional to the
population size at that year. Then using (11) we have the following results.
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(a) The best record of a 100 years period has 80% chance of surviving an
additional 10 years.

(b) The best record of a 50 years period has 65% chance of surviving an
additional 10 years.

(¢) The best record of a 10 years period has 24% chance of surviving an
additional 10 years.

Suppose now that attempts are made randomly throughout (—7,¢]. If ny at-
tempts are made in the interval (—7,0] and ny attempts are made in the interval
(0,t] then the probability of no new record in (0, ¢] is

n

P(maX(Sl, 527 ey Snl) = maX(Sl, 527 ~-~Sn1+n2)) = o1 + T2
Thus, corresponding to (a), (b), and (c¢) above, the 10 years survival probabili-
ties are respectively 100/110 = 91%, 50/60 = 83%, and 10/20 = 50%. However
if we assume attempts with a geometric increase of rate 1.0088388, then, for
example, corresponding to (a) we have 86% which is closer to 80%. Note that
the record of the last 10 years may or may not be the same as the record of
the last 20 years. This is one reason for the reduction in survival probability.
As mentioned earlier, rather than the general population it is more realistic
to consider a model for the population of participants or even the population
of participants who have the potential to break records. Recall the regression
model for the participation in Boston Marathon (Table 5)

Number of Participants in Year t = —1294 + 1088t — 57.5t% 4+ 1.25¢3

Using this model the survival probabilities for 5 years period (2003-2008) and
10 years period (2003-2013) are respectively

P(T >5)=0.632 and P(T > 10) = 0.422

Moreover
P(T > 10| T > 5) =0.667

We end this section by making a remark regarding the limit of human
abilities as it relates to the idea of a possible ultimate record. The problem
of estimating the ultimate record is discussed in the next section. In terms of
what is discussed here, the ultimate record is the one that will survive forever,
i.e. its survival probability is 1. Since it is generally believed that every record
will eventually be broken, it is probably more practical to think of a survival
probabilities larger than, say 90%, or survival times greater than 50 or 100
years.
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Table 5. Data for Boston Marathon 1970-2003

Year  Winner Time (\inutes) Participants
1970 Ron Hill 2:10:30 130.50 1174
1971 Alvaro Mejia 2:18:45 138.75 1067
1972 Olavi Suomalainen  2:15:39 135.65 1219
1973 Jon Anderson 2:16:03 136.05 1574
1974 Neil Cusack 2:13:39 133.65 1951
1975 Bill Rodgers 2:09:55 129.92 2395
1976 Jack Fultz 2:20:19 140.32 2188
1977 Jerome Drayton 2:14:46 134.77 3040
1978 Bill Rodgers 2:10:13 130.22 4764
1979 Bill Rodgers 2:09:27 129.45 7927
1980 Bill Rodgers 2:12:11 132.18 5471
1981 Toshihiko Seko 2:09:26 129.43 6881
1982 Alberto Salazar 2:08:52 128.87 7647
1983 Greg Meyer 2:09:00 129.00 6674
1984 Geoff Smith 2:10:34 130.57 6924
1985 Geoff Smith 2:14:05 134.08 5595
1986 Rob de Castella 2:07:51 127.85 4904
1987 Toshihiko Seko 2:11:50 131.83 6399
1988 Ibrahim Hussein 2:08:43 128.72 6758
1989 Abebe Mekonnen 2:09:06 129.10 6458
1990 Gelinda Bordin 2:08:09 128.15 9412
1991 Ibrahim Hussein 2:11:06 131.10 8686
1992 Ibrahim Hussein 2:08:14 128.23 9629
1993 Cosmas Ndeti 2:09:33 129.55 8930
1994 Cosmas Ndeti 2:07:15 127.25 9059
1995 Cosmas Ndeti 2:09:22 129.37 9416
1996 Moses Tanui 2:09:15 129.25 38708
1997 Lameck Aguta 2:10:34 130.57 10471
1998 Moses Tanui 2:07:34 127.57 11499
1999 Joseph Chebet 2:09:52 129.87 12797
2000 Elijah Lagat 2:09:47 129.78 17813
2001 Lee Bong-Ju 2:09:43 129.72 15606
2002 Rodgers Rop 2:09:02 129.03 16936
2003 R. Cheruiyot 2:10:11 130.18 17567
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5 Long-Term Prediction

Prediction of ultimate record can be carried out using models such as exponential-
decay model discussed in Section 2. Some authors have tried models such as

b+t a+ bt + ct?

1+t VT Tt
and have used the fact that as t — oo, ¥y — c¢. However as pointed out
earlier, application of such models usually results in predictions with large
standard errors which are not useful or even acceptable (Smith, 1988). Section
5.1 describes a method based on tail modeling. This is a better approach, as
it avoids the above mentioned problem and provides a confidence interval for
the ultimate record and uses information related to more recent records.

5.1 Estimation of Ultimate Record

Let Y7,Y5,...,Y,, be the order statistics corresponding to the data, that is,
i<Ya<-- <Y,

Let u denote the minimum value of the Y (ultimate record). Assuming that
the distribution function F'(y) has a lower endpoint and the following condition
is satisfied

1— F(ty + u) &

oy 1—- Fly+u) 7
for all y > 0 and some k < 0, it is shown (De Haan, 1981) that the statistics

Inm(n)
I { (Ymn) — ¥3)/(y3 —y2)}

converge to k as n — oco. Here m(n) is an integer depending on n such that
m(n) — oo and m(n)/n — 0 as n — oco. Under these conditions a level (1 — p)
confidence interval for u is (see De Haan (1981) for details)

Y1 — (Y2 —Y7)
— YV 12
((1—17)‘k—1’1 (12)
When estimation of the maximum value of Y is of interest, the confidence
interval takes the form
v, i+ —-Ys)
[ e
(1-pF-1

Since k is unknown, for large n, we may estimate the confidence interval by
using in place of k the value of the converging statistics given by (12).
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To demonstrate, suppose we wish to estimate the ultimate record for an
event such as men’s 400 meter run. For this event the best times for each year
is available since 1860. Here we have a relatively large sample and thus can
apply the above mentioned asymptotic result. The only problem we need to
address relates to selection of m(n). When n is not very large, we may use the
following discussed earlier

m(n) = \eT, + Vi, = \/2.718282T, + \/1,.

where T, denotes the time between the last and penultimate records and t,,
the time the last record has held to date. For the long jump

m(n) = vV23e +v8 =10.74 ~ 10

and Yip = 8.70. Using this and the last three records, Y7 = 8.95, Y5 = 8.90,
and Y3 = 8.86 we get k = 1n(10)/1n(4) = 1.66 and

i+ (1 —-Ys) 0.05
- = =8954+ ————— =8.954+0.56
(1-p)—*+-1 + (0.95)—1:66 — 1 +

Thus, based on data for 1962-1999, a 95% confidence interval for the ultimate
distance is

(8.95,9.51).

For 400 meter run (Table 6) the last three records are 43.18, 43.29, and 43.80
and were set in years 2000, 1998, and 1968, respectively. Using this information
we get m(n) = 8 and k = 1.8187 resulting in a 95% confidence interval

(42.77,43.18).
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Appendix

Table 6. Data for 400m run (time is in seconds): 1860-1988

year time year time year time year time year time
1860  53.7 1861 50.2 1862  53.2 1863  51.7 1864  51.7
1865  50.2 1866  52.5 1867 514 1868  50.0 1869  51.9
1870  50.7 1871  50.2 1872  49.5 1873  50.3 1874  50.2
1875  50.5 1876  50.5 1877  50.1 1878  51.3 1879  48.9
1880  49.3 1881  48.3 1882 49.9 1883  49.0 1884  48.9
1885  48.5 1886  49.5 1887  49.9 1888  49.7 1889  48.2
1890  48.7 1891  49.1 1892  49.2 1893  48.9 1894  48.7
1895  48.2 1896  48.5 1897  48.7 1898  48.5 1899  49.1
1900 47.5 1901 49.3 1902  49.3 1903  48.7 1904  48.9
1905  48.2 1906  48.5 1907  48.5 1908  47.9 1909 48.3
1910 485 1911  48.5 1912 47.7 1913 46.9 1914  48.1
1915 47.7 1916  47.1 1917  48.7 1918 47.3 1919 489
1920 48.1 1921 477 1922 47.7 1923  47.9 1924 474
1925  47.6 1926  48.3 1927 475 1928  47.0 1929 474
1930 47.6 1931  47.1 1932 46.1 1933 46.6 1934  46.5
1935  46.8 1936  46.1 1937  46.6 1938  46.3 1939  46.0
1940 464 1941  46.0 1942  46.6 1943  47.5 1944  47.5
1945  46.7 1946  45.9 1947  45.9 1948  45.7 1949  46.2
1950 45.8 1951  46.0 1952 459 1953  45.9 1954  46.1
1955 454 1956  45.2 1957  46.0 1958 45.4 1959 45.8
1960 449 1961  45.7 1962  45.5 1963  44.6 1964 449
1965  45.5 1966  44.7 1967  44.5 1968  43.8 1969 44.4
1970  44.9 1971 44.2 1972 45.0 1973 45.2 1974  45.2
1975  44.93 1976  44.26 1977  45.36 1978  45.47 1979  44.00
1980  44.60 1981  45.12 1982  45.00 1983  45.44 1984  44.27
1985  44.96 1986  44.45 1987  44.32 1988  43.29
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