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Abstract. In this paper, we propose a new method for check-
ing randomness of non-Gaussian stable data based on a charac-
terization result. This method is more sensitive with respect to
non-random data compared to the well-known non-parametric ran-
domness tests.
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1 Introduction

Let x1,..., x4 be observed values of the univariate random variables X1, ..., X4.

We say that the observations are random if the X;’s (i = 1,...,d) are indepen-

dent and identically distributed (i.i.d.) random variables. There are several

non-parametric ways for checking the randomness of a data set, i.e., testing

the following hypotheses (e.g. Brockwell and Davis, 1996; Knuth, 1981):
Hy: X,’sareii.d. (1)
H; : Negation of Hy

* Corresponding author



64 A Randomness Test for Stable Data

These randomness tests are neither powerful nor sensitive with respect to i.i.d.
assumption, usually useful for rejecting the null hypothesis and each one of
them revealing a particular type of imperfection in a data set. In the Gaussian
case, there exists some parametric tests based on characterization results (Ka-
gan et al., 1973). For stable distributions we can use characterization results
for constructing more sensitive tests with respect to non-random data. To the
authors knowledge, for the non-Gaussian stable case there is no such tests.

In this paper, we first present a new property of spectral measure of i.i.d.
stable random variables which combines two previously established properties
of spectral measure of independent and permutation-symmetric stable random
variables (Mohammadpour and Soltani, 2000). Then we propose a method for
checking randomness of univariate stable data based on this characterization
property. In the following section we recall the definition of stable random
variables and vectors. In Section 3 we present this new characterization result
for i.i.d. non-Gaussian stable random variables and its geometric interpretation
and then use this result for proposing a method for checking randomness of
univariate stable data.

2 Stable Distributions

A random variable (r.v.) X is said to be stable if there are parameters « € (0, 2],
B €[-1,1], v > 0, and 6 € R such that, its characteristic function (c.f.) has
the form

exp {—7a|t|a (1 —i3sgn(t) tan(%)) + iét} , a#l,

Pxll) = exp {—7 1t (1 +iB2sgn(t) In |t|) + iét} . a=1,

(2)

where sgn(u) = —1, 0, or 1 if u <, =, or > 0, respectively. We will denote
stable distributions by S(a, 3,7,6) and write

X ~ S(a, 3,7,6)

to indicate that X has the stable distribution with the characteristic index
(exponent) «, skewness 3, scale v, and location § (Samorodnitsky and Taqqu,
1994; Nolan, 1998). When v = 1 and 6 = 0 the distribution is called standard
stable and will be denoted by S(«, ).

A random vector (r.v.), X = (Xq,...,X,)’, is said to be stable or a-stable
(a-S), in R, if there are parameters o € (0,2], A = (é1,...,64)" € R?, positive
definite matrix A of order d, and a finite measure I on the unit sphere S; =
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{s=(s1,...,54)"|s's = 1} of R? such that

exp{ Js, |t’s|°‘(1—zsgnts)tan%)l" } 0 <o
« b

Px-alt) = exp{ fS |t’s|(1—|—z sgn(t’s)ln|t’s|) (d )} a=1,
exp {—t' At} a =2,

where t = (t1,...,tq).
When I is a discrete spectral measure with a finite number of point masses,

F() = Z ’Ykésk ()?
k=1

where 7;’s are the weights, and s, ’s are point masses (Dirac measures of

mass 1) at the points sx = (S1,...,84x) € Sa, k= 1,...,m, (3) becomes
S T . / T a#l,
exp{—2|t S| (1—zsgn(t sk)tan(T))'yk}, 0<a<2,
Ox_alt)= 1:1
exp {— Z [t s (1 + i2sgn(t'sy)In |t’sk|)'yk} , a=1
k=1
(4)

If X is symmetric around A, symmetric a-stable (SasS), then equivalently T is
symmetric on S4, and (3) reduces to exp {— de |t’s|‘1F(ds)} , a2
Samorodnitsky and Taqqu (1994) is our reference for basic properties of

stable r.v.s. Some applications of stable r.v.s and r.v.s are given by Nikias
and Shao (1995) and Nolan (2007).

3 Randomness Test

3.1 A Characterization

In this section we introduce a characterization result and use this result for
proposing a graphical method for testing randomness of data.

Lemma 1 Let o € (0,2). A non-degenerate a-S r.v. X, with c.f. (3), has in-
dependent components if and only if the spectral measure I' of X is concentrated
on the intersection of the axes with the sphere Sq.
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66 A Randomness Test for Stable Data

Proof: See, e.g., Samorodnitsky and Taqqu (1994), p. 68.

A r.v. X is said to be permutation-symmetric (or finitely exchangeable) if
for every one of the d! permutations (71,...,7q) of (1,...,d), X and 7 X =
(Xry,-..y Xx,) have the same distribution.

Lemma 2 Let X be a d-dimensional a-S r.v., a € (0,2), with spectral measure
T and location parameter A. Then X is permutation-symmetric if and only if
A has the same components, and I'(E) = I'(xE) for every permutation © and
Borel set E C Sy, where TE = {s: 77 's € E}, and 718 = (Sy-11,...,5:-14)".
We call such a spectral measure a permutation-symmetric spectral measure.

Proof: See Mohammadpour and Soltani (2000).

Lemma 3 Leta € (0,2]. A d-dimensional o-S r.v. X, with c.f. (3), has i.i.d.
components if and only if the spectral measure X is permutation-symmetric and
concentrated on the intersection of the azes with the sphere Sy, and the location
parameter A has the same components.

Proof: Suppose r.v. X has i.i.d. components. Then

bx(t) = [[ Ox, (te) and Gy, (1) = by, (t), ki€ {l,....d},

k=1

and so, for each permutation 7 = (7y,...,7q),

ox®) =[] 6 (t) = [[ 6., (1) = 6, x(0).

b=1 b=1

Therefore, I' is concentrated on the intersection of the axes with the sphere Sy
(by Lemma 1), and T' is permutation-symmetric and the location parameter
A has the same components (by Lemma 2). By noting that a permutation-
symmetric r.v. has identical components, the converse of lemma follows by
Lemmas 1 and 2.

3.2 Proposed Method

In bivariate case we can give a geometric interpretation for the spectral measure
in Lemma 3. Without loss of generality, we assume that location parameter is
zero. Spectral measure of a bivariate stable distribution is concentrated on the
unite circle, So, and so the spectral measure of a bivariate stable distribution
with independent components is concentrated on the points in the set

{(170)l7(071)l7(_170)l7(07_1)/}' (5)
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On the other hand, by Lemma 3, spectral measure of a bivariate permutation-
symmetric stable distribution is symmetric about the line x = vy, i.e., 1 =
$o. Therefore, spectral measure of a bivariate stable distribution with i.i.d.
components is symmetric about the line x = y, and so, is concentrated on 4 or
2 points in the set (5). Figure 1 shows all possible cases for spectral measures
of a bivariate stable distributions with i.i.d. components. Each “e” shows a
point mass of spectral measure.

Ouly the first graph, (i), of the spectral measures, is symmetric with respect
to (w.r.t.) the origin, and so the spectral measure of a bivariate SaS distribution
with i.i.d. components, has one possible form. On the other hand, the graphs
(iii) and (v), of the spectral measures, can be obtained by rotation from (ii)
and (iv) respectively. Therefore, the spectral measure of a bivariate non-SaS
distribution with i.i.d. components, has two basic forms, i.e., graphs (ii) and
(iv). Based on these two properties of spectral measure of a bivariate SaS and
non-SaS distributions with i.i.d. components, we propose a method for testing
(1).

We assume that the number of data is even and propose the following
method.

1. Estimate parameters of univariate stable distribution, called &, B s Y, B ,
from the data. Under Hy, in (1), the observations are i.i.d. and there
are several ways for estimating these parameters, e.g. Nolan (2001).
Without loss of generality, we assume that 5 =01in the following steps.

2. Randomly pair the data and plot their bivariate empirical density.
3. Compute parameters of spectral measure of the bivariate stable dis-

tribution with independent components, {71, v2,7s,Va}, based on es-
timated parameters in step 1. The relations are given in Table 1.

OO00C

(ii) (iii) (iv) v)

Figure 1. Spectral measures of bivariate stable distributions with i.i.d. components
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68 A Randomness Test for Stable Data

Table 1. Relation between the estimated parameters of i.i.d. stable r.v. and
the spectral measure of a bivariate distribution with i.i.d. components. These
relations are obtained using the c.f.s (2) and (4) and the uniqueness of the
spectral measure

I'=mé@,0y +726(00,1) +136(~1,0 +V146(0,—1)

Spectral Measures Types

(in Figure 1) Based on B Estimated Weights Based on &, 3, ¥

B=0— (i) Y1 =72 =73 =74 = §%/2
B >0 — (i) i =72 =451+ B)/2, 73 =71 =5%(1— B)/2
B <0 — (i) Ti =92 =451+ B)/2, 3 =71 =4%(1—B)/2
B=1— (iv) T =72 =4% fs=71=0
B=-1—(v) i =72=0, 73 =71 =4%

4. Calculate and plot the theoretical bivariate stable density with i.i.d.
components using the spectral measure obtained in step 3. We can
use the method in Nolan (1997).

5. Compare the produced density in steps 2 and 4 either visually or using
one of the goodness of fit criteria such as Pearson’s x? test statistic
(Bishop et al., 1975) or Kullback-Leibler divergence (Kullback and
Leibler, 1951).

6. Reject Hy if two densities have not the same structures or if one of the
selected criteria is larger than a threshold.

3.3 Numerical Experiments

Figure 2-left shows the contours of bivariate stable densities with independent
components for a = 0.7,1,1.3, and A = 0. The first row shows bivariate SaS
with i.i.d. components (spectral measure (i) in Figure 1), and the two other
rows show non-SaS with i.i.d. components with 4 and 2 point masses (with
spectral measures (ii) and (iv) in Figure 1) respectively. Figure 2-right shows
a set of empirical density contours of non i.i.d. bivariate stable distributions
for « = 1.3 and A = 0. The number of point masses is 4 for the first column,
3 for the second column, and 2 for the last column. The first line shows the
graphs of independent non-identically distributed (i.ni.d.) components, the
second row shows non-independent i.d. (ni.i.d.) components, and the last row
shows ni.ni.d. components. Each graph is generated by simulating 10% bivariate
stable r.v. with the same parameters. The location of point masses in degrees
and their corresponding weights are denoted under each graph.
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One can distinguish bivariate stable distribution with ni. and/or ni.d. com-
ponents in Figure 2-right from stable distribution with i.i.d. components (last
column of Figure 2-left). From these graphs we can see that, except the case of
the two last graphs in the first row of Figure 2, it is easy to visually compare
the empirical and theoretical graphs to make a decision for rejecting Hy. In
the cases that we do not have a large set of data and/or it is difficult to reject
Hjy by comparing these graphs visually, we can use an appropriate test statistic
for testing (1). To make our point clear we give the following example.

Example 1. Let X; = (1 — 7)Z; + 720; Zo,Z; ~ S(1,0) (standard S1S
distribution), ¢ = 1,...,600 and 7 € [0,1). It can be shown that X;’s are
identically distributed, and (X;, X;), ¢ # j, has a spectral measure plotted in
Figure 3.

To test the sensitivity of the proposed method, we generate different sets
of data from this distribution with different values of 7.

When 7 = 0.1 and the number of data is 600 we cannot use the proposed
graphical method. Instead of plotting the empirical and theoretical densi-
ties in steps 2 and 4 in the proposed method, we construct a 2-dimensional

$0.78 S18 $1.38 ni.i.d. niid. niid.

SRS

2 4 0 1 2 2 1 0 1 2 2 4 0 1 2 2 a0 1 2 2 0 12 2 a0 1 2

y
2 4 0 1 2

10.:25/90..25/180, 25[270,25] 10,25190,251180, 25[270,.25] 0.25190,.251180,.26[270,25] 45.25/135,261225, 25/315,.25) 0.333190,:3331225,333] 15,5(75,51

0.7-S 1-S 1.3-S i.nid. i.nid. i.nid.
- - =] /\\ - -
= BI = o - e | - o = o
= & o
ol N 3l | == [\
(0.4190.41180,11270,1) 10.4190,41160,11270,1] 0.4190,4160..11270,1) (0.4190.11180,41270,1) 10.399190,3%3180,339] (50,50180.5)
0.7-S 1.3-S ni.ni.d. ni.ni.d. ni.ni.d.

T Tl -
. ' N@&@Y

2 4 0 1 2 2 1 0 1 2 2 a4 0 1 2 2 a0 1 2 2 1 0 1 2 2 1 0 1 2

C
~—~
<

0.51%0,5] 10.5190.5] 0.5/90,5] 145.4[15,41225,.11315,.1] 45.3391135,393/225,333] 45,5/135,5]

Figure 2. Left: Density contour of bivariate a-S distributions, with i.i.d. compo-
nents. Right: Empirical density contour of bivariate 1.3-S distributions, with ni.i.d.,

i.ni.d., and ni.ni.d. components
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F(S) = 1%{6(1’0)1(3) + 6(071)/(3) + 6(_170)/(3) + 6(0’_1)/(3)}+
02232y (8) + 032, y32y (8)}

Figure 3. Spectral measure of the exchangeable stable random variables in Example 1

Table 2. Left: 2-dimensional frequency table for 300 pairs of observations in Example 1
for 7 = 0.1; Right: corresponding expected values

Number of observed values Number of expected values
(-2,-11  (-1,0]  (0,1] (1,2] (-2,-11  (-1,0]  (0,1] (1,2]
(-2,-1] 8 19 11 4 (-2,-1] 3.09 7.75 7.75 3.09
(-1,0] 11 25 13 3 (-1,0]  7.87 2101 21.01 7.87
(0,1] 8 31 10 5 (0,1 775  19.47 1947 1.75
(1,2] 1 6 6 3 (1,2] 309 775 775  3.00

Total = 164 Total = 152.23

frequency or contingency table (empirical density) for observations (Table 2-
left) and calculate the expected number for each cell based on estimated dis-
tribution function corresponding to the estimated parameters in steps 1 and
3 (Table 2-right). The statistic x? = 48.40 for this data and we reject Hy at
the significance level 0.05 (95th percentile of y? distribution with 9 degrees of
freedom is X3 59 = 21.67). On the other hand the Z statistic of the runs test
(test of randomness, e.g., Gibbons, 1971), is |z| = 0.41 and we cannot reject
Hy at significance level 0.05, (29.975 = 1.96).

In Figure 4 we plot the empirical mean of In(x?) and 3.5|z| w.r.t. 7 € [0,1).

—— Proposed method: In(X2) statistic
R I Runs test: 3.5/Z| statistic

Test statistic value

0.0 0.2 0.4 0.6 0.8 1.0

tau

Figure 4. Sensitiveness of proposed method and runs test w.r.t. ni.i.d. data
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We see that, the proposed method is more sensitive with increasing 7. This is
likely a general result: the test is likely to be more sensitive when the spectral
measure is far away from the independent case.

Example 2. In this example we consider a network data set which have been
introduced in Leland et al. (1994). The data set contains a million packet

arrivals.

It has been measured in external Ethernet traffic. Xiaohu et al.

(2004) show that some subsets of this data set have stable distribution. We
would like to test the following hypotheses.

Hy : Observations are i.i.d. stable
H; : Negation of Hy

We test the hypotheses in the following steps.

1.
2.
3.

y
0
|

Take a random sample of size 1,000,000 from the data set;
Subtract the median of random sample from each observation;

Paired observations ¢ and ¢ + 500000, ¢ = 1,...,500000, and plot bi-
variate empirical density;

Calculate maximum likelihood estimator of parameters under Hy, gen-
erate a random sample of size 1,000,000 with these parameters, paired
the generated data, and plot bivariate empirical density.

Network Data Generated Data under H zero

J 172
B =
9=

20000
1
0 20000
|

20000
I
20000
I

N

20000 0 20000 20000 0 20000

Figure 5. Contours of empirical density of network data and its corresponding

generated empirical density based on Hg
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72 A Randomness Test for Stable Data

Contours of empirical density of network data and its corresponding gener-
ated empirical density based on Hj are plotted in Figure 5. It is easy to see
that they are not similar and we can reject Hy.

4 Conclusion

In this work, we first presented a new property of spectral measure of i.i.d.
stable r.v.s, which combines two previously established properties of spectral
measure of independent and permutation-symmetric stable r.v.s. Then we pre-
sented a randomness test for univariate stable data, which is based on this
particular property. The main test process is to compare the empirical distri-
bution of pairwised data to the theoretical bivariate stable distribution with
i.i.d. components. This comparison is made either visually just by comparing
the structures of these two distributions or by computing a goodness of fit cri-
terion between them. We showed the performance of this new test via some
graphs of i.i.d. and non i.i.d. bivariate densities and an example of simulated
univariate data which compares the sensitiveness of the proposed test to the
classical non-parametric runs test. Finally we used the suggested method for
testing randomness of ethernet traffic data, and rejected this hypothesis.
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