Number of Minimal Path Sets in a Consecutive-k-out-of-n:F System

Mohammad Khanjari Sadegh^{†,*} and Bagher Moghaddaszadeh[‡]

† University of Birjand ‡ Payame Noor University of Mashhad

Abstract. In this paper the combinatorial problem of determining the number of minimal path sets of a consecutive-k-out-of-n:F system is considered. For the cases where k=2,3 the explicit formulae are given and for $k\geqslant 4$ a recursive relation is obtained. Direct computation for determining the number of minimal path sets of a consecutive-k-out-of-n:F system for $k\geqslant 4$ remains a difficult task.

Keywords. minimal path set; consecutive-k-out-of-n:F system; generating function.

1 Introduction and Notations

Minimal path sets and minimal cut sets of a system play a crucial role in the reliability analysis of the system. A consecutive-k-out-of-n:F (con|k|n:F) system consists of n linearly ordered and interconnected components. The system fails if and only if there are at least k consecutive failed components. If components are arranged on a circle we have a circular con|k|n:F system. This system has been studied by various authors. Kontoleon (1980) presented applications in telecommunication and pipeline networks, vacuum systems in accelerators, computer networks, design of integrated circuits etc. In a survey article by Chao et al. (1995) on the reliability aspect of this system alone, more than hundred papers have been cited.

^{*} Corresponding author

A minimal set of components whose functioning (failure) causes the functioning (failure) of the system is called a minimal path(cut) set of the system. Hence, a minimal cut set of a $\operatorname{con}|k|n$:F system is of the form $\{i,i+1,\ldots,i+k-1\}, i=1,2,\ldots,n-k+1$. However, there is no such simple representation for a minimal path set of the system. For example all minimal path sets of a $\operatorname{con}|2|5$:F system are $\{1,3,5\}, \{1,3,4\}, \{2,4\}$ and $\{2,3,5\}$.

A con|k|n:F system is always more reliable than a conventional k-out-of-n:F system in which the system fails if and only if at least k components fail, since the family of minimal cut sets of the former is a subset of the family of minimal cut sets of the latter. However for k=1 and k=n both systems reduce to the usual series and parallel systems.

Using the number of path sets of a coherent system, Ramamurthy et al., (2003) developed a combinatorial approach to determine the structural matrix of the system and then obtained a number of structural measures of component importance. Seth and Sadegh (1999) obtained an expression for the number of path sets with known size in a con|k|n:F system, which is used to determine system reliability and the Barlow-Proschan measure of component importance. Seth and Sadegh (2001) have given some expressions to determine the number of minimal path sets with known size in a con|2|n:F system.

In this note the combinatorial problem of determining the number of minimal path sets of a $\operatorname{con}|k|n$:F system is considered. In sections 2 and 3 explicit formulae for determining these number in $\operatorname{con}|2|n$:F and $\operatorname{con}|3|n$:F systems are given, respectively. For a $\operatorname{con}|k|n$:F system $(k \geq 4)$ a recursive relation is obtained in section 4. It may add that direct computation to determine the number of minimal path sets of a $\operatorname{con}|k|n$:F system when $k \geq 4$ is a difficult task.

We shall use the following notations.

```
\alpha_k(n): collection of all minimal path sets of a con|k|n: System.
```

 $p_n^L(k)(p_n^C(k))$: number of minimal path sets of a linear (circular) ${\rm con}|k|n : {\rm F~system}.$

 $p_n^{r,L}(2)\;(p_n^{r,C}(2)):$ number of minimal path sets of size r in a linear (circular) con|2|n:F system.

 $\bar{r}_k(n)$ ($\bar{\bar{r}}_k(n)$): minimum (maximum) size of a minimal path set in a $\operatorname{con}|k|n$:F system.

 $p_n^i(k)$: number of minimal path sets of a $\cos|k|n$:F system that include component i.

|A|: cardinality of set A.

2 Consecutive-2-out-of-n:F System

For the sake of completeness, in this section we give the results of Seth and Sadegh (2001).

Suppose $\lfloor x \rfloor$ denotes the largest integer less than or equal to x. We assume that $\binom{m}{r} = 0$ for m < r or r < 0.

Theorem 1. For $n \ge 0$ we have

$$p_n^L(2) = \lfloor \rho^n (1+\rho)^2/(2\rho+3) + 0.5 \rfloor$$

where ρ is the unique real root of the cubic equation $x^3 - x - 1 = 0$.

Theorem 2. For $n \ge 0$ we have

$$p_n^L(2) = \sum_{i=\lfloor n/3 \rfloor}^{\lfloor n/2 \rfloor} \sum_{j=n-2i-2}^{n-2i} \binom{i}{j}.$$

Lemma 1. Suppose $\bar{r}_k(n)$ and $\bar{r}_k(n)$ denote the maximum and minimum size of a minimal path set in a linear con|k|n: F system respectively. We then have

$$\bar{\bar{r}}_k(n) = \begin{cases} 2 \left\lfloor \frac{n}{k+1} \right\rfloor, & \text{if } \frac{n+1}{k+1} > \left\lfloor \frac{n+1}{k+1} \right\rfloor \\ 2 \left\lfloor \frac{n}{k+1} \right\rfloor + 1, & \text{if } \frac{n+1}{k+1} = \left\lfloor \frac{n+1}{k+1} \right\rfloor \end{cases} \text{ and } \bar{r}_k(n) = \lfloor n/k \rfloor.$$

Theorem 3. For $\bar{r}_2(n) \leqslant r \leqslant \bar{\bar{r}}_2(n)$ and $n \geqslant 2$ we have

$$p_n^{r,L}(2) = \binom{n-r+1}{2n-3r}.$$

Remark 1. Using Theorem 3 we have

$$p_n^L(2) = \sum_{r=\bar{r}_2(n)}^{\bar{\bar{r}}_2(n)} p_n^{r,L}(2) = \sum_{r=\bar{r}_2(n)}^{\bar{\bar{r}}_2(n)} \binom{n-r+1}{2n-3r}.$$

Theorem 4. For $n \ge 10$ we have

$$p_n^C(2) = |\rho^n + 0.5|$$

where ρ is defined in Theorem 1.

Theorem 5. For $n \ge 3$ we have

$$p_n^{r,C}(2) = \frac{n}{2r-n} \binom{n-r-1}{2n-3r}.$$

3 Consecutive-3-out-of-n:F System

In this section, we confine our attention to the minimal path sets of a con|3|n:F system. We show that $p_n^L(3)$, the number of minimal path sets of a linear con|3|n:F system satisfies the recursive relation $p_n^L(3) = p_{n-2}^L(3) + p_{n-3}^L(3) + p_{n-4}^L(3) - p_{n-6}^L(3)$, $n \ge 6$. We also show that the same relation holds for $p_n^C(3)$, the number of minimal path sets of a circular con|3|n:F system, but with different initial values. We give a direct formula for determination of $p_n^L(3)$.

Lemma 2. Let $\alpha_3^L(n)$ denote the collection of all minimal path sets of a linear con|3|n:F system. We then have

- (i) $\{S: S \in \alpha_3^L(n) \text{ and } n \in S\} = \{S: S = T \cup \{n-3, n\} \text{ and } T \in \alpha_3^L(n-4)\}, n \geqslant 4;$
- (ii) $\{S: S \in \alpha_3^L(n) \text{ and } n-2 \in S\} = \{S: S = T \cup \{n-2\} \text{ and } T \in \alpha_3^L(n-3)\}, n \geqslant 3;$
- (iii) $\{S: S \in \alpha_3^L(n) \text{ and } n-1 \in S\} = \{S: S = T \cup \{n-1\} \text{ where } T \in \alpha_3^L(n-2) \text{ and } n-2 \notin T\}, n \geqslant 3.$

Proof. In view of the system structure defined in section 1, the proof of the lemma is easy and omitted.

Lemma 3. In a linear con|3|n: F system we have

- (i) $|\{S: S \in \alpha_3^L(n), 1 \in S\}| = |\{S: S \in \alpha_3^L(n), n \in S\}| = p_{n-4}^L(3) \text{ for } n \geqslant 4;$
- (ii) $|\{S: S \in \alpha_3^L(n) \text{ and } 1 \in S, n \in S\}| = p_{n-8}^L(3) \text{ for } n \geqslant 8;$
- (iii) $|\{S: S \in \alpha_3^L(n) \text{ and } 1 \notin S, n \notin S\}| = p_n^L(3) 2p_{n-4}^L(3) + p_{n-8}^L(3) \text{ for } n \geqslant 8.$

Proof. Using part (i) of Lemma 2, the proof of this lemma follows.

Theorem 6. For $n \ge 6$ we have

$$p_n^L(3) = p_{n-2}^L(3) + p_{n-3}^L(3) + p_{n-4}^L(3) - p_{n-6}^L(3)$$

where

$$p_0^L(3) = p_1^L(3) = p_2^L(3) = 1, \quad p_3^L(3) = p_4^L(3) = 3 \quad and \quad p_5^L(3) = 4.$$

Proof. We know that

$$\alpha_3^L(n) = \{ S : S \in \alpha_3^L(n) \text{ and } n \in S \}$$

$$\cup \{ S : S \in \alpha_3^L(n) \text{ and } n - 1 \in S \}$$

$$\cup \{ S : S \in \alpha_3^L(n) \text{ and } n - 2 \in S \}$$

and the collections on the right hand side are disjoint. By part (i) of Lemma 2, we have $|\{S:S\in\alpha_3^L(n)\text{ and }n\in S\}|=|\alpha_3^L(n-4)|=p_{n-4}^L(3)$. Using part (ii) of Lemma 2, we have $|\{S:S\in\alpha_3^L(n)\text{ and }n-2\in S\}|=|\alpha_3^L(n-3)|=p_{n-3}^L(3)$. And in view of part (iii) and part (i) of Lemma 2, we have

$$|\{S: S \in \alpha_3^L(n) \text{ and } n-1 \in S\}| = |\alpha_3^L(n-2)| - |\alpha_3^L(n-6)| = p_{n-2}^L(3) - p_{n-6}^L(3).$$

Therefore we get the result $p_n^L(3) = |\alpha_3^L(n)| = p_{n-4}^L(3) + p_{n-3}^L(3) + p_{n-2}^L(3) - p_{n-6}^L(3)$. This completes the proof of the theorem.

Remark 2. By the similar argument given in Lemma 2 and Lemma 3 and in view of the structure of a circular con|3|n:F system it can be shown that for $n \ge 5$

$$p_n^C(3) = p_{n-2}^C(3) + p_{n-3}^C(3) + p_{n-4}^C(3) - p_{n-6}^C(3)$$

where
$$p_{-1}^C(3) = 0$$
, $p_0^C(3) = 6$, $p_1^C(3) = 0$, $p_2^C(3) = 2$, $p_3^C(3) = 3$ and $p_4^C(3) = 6$.

We now consider direct computation of $p_n^L(3)$, the number of minimal path sets of a linear con|3|n:F system. In Theorem 6, we showed that for $n \ge 6$

$$p_n^L(3) = p_{n-2}^L(3) + p_{n-3}^L(3) + p_{n-4}^L(3) - p_{n-6}^L(3)$$

where $p_0^L(3) = p_1^L(3) = p_2^L(3) = 1$, $p_3^L(3) = p_4^L(3) = 3$ and $p_5^L(3) = 4$. Let $g_L(x)$ denote the generation function of $p_n^L(3)$, that is, $g_L(x) = \sum_{n=0}^{\infty} p_n^L(3) x^n$. Then in view of Theorem 6, we have

$$g_L(x)(1-x^2-x^3-x^4+x^6)=1+x+x^3-x^5.$$

Hence, we get the result

$$g_L(x) = \frac{1 + x + x^3 - x^5}{1 - x^2 - x^3 - x^4 + x^6}.$$

To obtain partial fraction expansion of $g_L(x)$, we need to find the roots of the equation $1-x^2-x^3-x^4+x^6=0$. We know that this equation has two positive real roots and four complex roots. Also note that if x is a root of this equation then 1/x is also another root. Hence, we denote x_1 and $1/x_1$ as the real roots and $x_2, 1/x_2, x_3$ and $1/x_3$ as the complex roots.

We have $1-x^2-x^3-x^4+x^6=(x-x_1)(x-\frac{1}{x_1})(x-x_2)(x-\frac{1}{x_2})(x-x_3)(x-\frac{1}{x_3}).$ It implies that

$$\begin{cases} \left(x_3 + \frac{1}{x_3}\right) + \left(x_2 + \frac{1}{x_2} + x_1 + \frac{1}{x_1}\right) = 0, \\ 3 + \left(x_1 + \frac{1}{x_1} + x_2 + \frac{1}{x_2}\right) \left(x_3 + \frac{1}{x_3}\right) + \left(x_1 + \frac{1}{x_1}\right) \left(x_2 + \frac{1}{x_2}\right) = -1, \\ -\left(x_1 + \frac{1}{x_1} + x_2 + \frac{1}{x_2}\right) - \left[2 + \left(x_1 + \frac{1}{x_1}\right) \left(x_2 + \frac{1}{x_2}\right)\right] \\ \times \left(x_3 + \frac{1}{x_3}\right) - \left(x_1 + \frac{1}{x_1} + x_2 + \frac{1}{x_2}\right) = -1. \end{cases}$$

From the first equation, we get $x_1 + \frac{1}{x_1} + x_2 + \frac{1}{x_2} = -(x_3 + \frac{1}{x_3})$. Using this and the second and third equations, we get

$$\begin{cases} 3 + \left(x_2 + \frac{1}{x_2}\right) \left(x_3 + \frac{1}{x_3}\right) - \left(x_1 + \frac{1}{x_1}\right)^2 = -1, \\ -\left(x_1 + \frac{1}{x_1}\right) \left(x_2 + \frac{1}{x_2}\right) \left(x_3 + \frac{1}{x_3}\right) = -1. \end{cases}$$

$$\Longrightarrow \begin{cases} 3 + \left(x_2 + \frac{1}{x_2}\right) \left(x_3 + \frac{1}{x_3}\right) - \left(x_1 + \frac{1}{x_1}\right)^2 = -1, \\ \left(x_2 + \frac{1}{x_2}\right) \left(x_3 + \frac{1}{x_3}\right) = \frac{1}{x_1 + \frac{1}{x_1}}. \end{cases}$$

It implies that $3 + \frac{1}{x_1 + \frac{1}{x_1}} - (x_1 + \frac{1}{x_1})^2 = -1$. Therefore

$$\left(x_1 + \frac{1}{x_1}\right)^3 - 4\left(x_1 + \frac{1}{x_1}\right) - 1 = 0.$$

Similarly we can obtain

$$\left(x_2 + \frac{1}{x_2}\right)^3 - 4\left(x_2 + \frac{1}{x_2}\right) - 1 = 0,$$

$$\left(x_3 + \frac{1}{x_3}\right)^3 - 4\left(x_3 + \frac{1}{x_3}\right) - 1 = 0.$$

Let $s = x + \frac{1}{x}$ where x is a root of equation $1 - x^2 - x^3 - x^4 + x^6 = 0$. From the last three equations we have $s^3 - 4s - 1 = 0$. Note that the cubic equation $s^3 - 4s - 1 = 0$ has three real roots.

Using Cardan formula we have $s_1 \simeq 2.114907542$, $s_2 \simeq -1.86080585$, and $s_3 \simeq -0.25410168$. We note that $s_1 = x_1 + \frac{1}{x_1}$, $s_2 = x_2 + \frac{1}{x_2}$, and $s_3 = x_3 + \frac{1}{x_3}$. For $s = s_1$, x_1 , and $\frac{1}{x_1}$ can then be obtained from the quadratic equation $x^2 - s_1 x + 1 = 0$, as follows:

$$x_1 = \frac{s_1 + \sqrt{s_1^2 - 4}}{2} \simeq 0.713639174$$

and

$$x_2 = \frac{1}{x_1} = \frac{s_1 + \sqrt{s_1^2 - 4}}{2} \simeq 1.401268368.$$

For $s = s_2$ we have $x^2 - s_2 x + 1 = 0$. This equation has two complex roots, x_3 and $x_4 = \frac{1}{x_3}$, on the unit circle as follows:

$$x_3 = \frac{s_2 + \sqrt{s_2^2 - 4}}{2} = \frac{s_2 + i\sqrt{4 - s_2^2}}{2} \simeq 0.93040292 + i\ 0.36653897,$$

where $i^2 = -1$ and $x_4 = \frac{1}{x_3} = \bar{x}_3$ (conjugate of x_3).

Suppose $x_3 = \operatorname{cis}(\theta_3) = \cos \theta_3 + i \sin \theta_3$, where $\theta_3 = \operatorname{Arctg}\left(\frac{I(x_3)}{R(x_3)}\right) + \pi \simeq 158^\circ, 49'$.

It implies that $x_4 = \bar{x}_3 = \operatorname{cis}(\theta_4)$, where

$$\theta_4 = \text{Arctg}\left(\frac{I(x_4)}{R(x_4)}\right) + \pi = -\text{Arctg}\left(\frac{I(x_3)}{R(x_3)}\right) + \pi = 2\pi - \theta_3 \simeq 201^\circ, 51'.$$

Similarly for $s = s_3$, we have $x^2 - s_3x + 1 = 0$ which implies that $x_5 \simeq -0.127050844 + i$ 20.991896206, and $x_6 = \frac{1}{x_5} = \bar{x}_5$. Suppose $x_5 = \text{cis}(\theta_5)$, where $\theta_5 = \text{Arctg}\left(\frac{I(x_5)}{R(x_5)}\right) + \pi \simeq 97^{\circ}$, 29'. And $x_6 = \text{cis}(\theta_6)$ with $\theta_6 = 2\pi - \theta_5 \simeq 262^{\circ}$, 71'.

Recall that, $g_L(x) = \sum_{n=0}^{\infty} p_n^L(3) x^n = \frac{1+x+x^3-x^5}{1-x^2-x^3-x^4+x^6} = \frac{U(x)}{V(x)}$. It is known that

$$p_n^L(3) = \frac{\rho_1}{x_1^{n+1}} + \frac{\rho_2}{x_2^{n+1}} + \dots + \frac{\rho_6}{x_6^{n+1}},$$

where $\rho_i = \frac{-U(x_i)}{V'(x_i)}$, i = 1, 2, ..., 6. We also note that $\rho_4 = \bar{\rho}_3$ and $\rho_6 = \bar{\rho}_5$. Now suppose $\rho_3 = a_3 + ib_3$, $\rho_5 = a_5 + ib_5$, $e_{n,3} = \frac{\rho_3}{x_3^{n+1}} + \frac{\rho_4}{x_4^{n+1}}$ and $e_{n,5} = \frac{\rho_5}{x_5^{n+1}} + \frac{\rho_6}{x_5^{n+1}}$.

We have $e_{n,3} = \frac{\rho_3}{x_3^{n+1}} + \frac{\bar{\rho}_3}{\bar{x}_3^{n+1}}$ and $e_{n,5} = \frac{\rho_5}{x_5^{n+1}} + \frac{\bar{\rho}_5}{\bar{x}_5^{n+1}}$. Therefore

$$e_{n,3} = (a_3 + ib_3)[\operatorname{cis}(-n-1)\theta_3] + (a_3 - ib_3)[\operatorname{cis}(n+1)\theta_3]$$

= $2[a_3 \cos(n+1)\theta_3 + b_3 \sin(n+1)\theta_3].$

Similarly $e_{n,5} = 2[a_5 \cos(n+1)\theta_5 + b_5 \sin(n+1)\theta_5].$

Theorem 7. For $n \ge 0$ we have

$$|e_{n,3} + \frac{\rho_2}{{x_2}^{n+1}}| < 1 \ \ and \ \ |e_{n,5} + \frac{\rho_2}{{x_2}^{n+1}}| < 1.$$

Hence

$$p_n^L(3) = \left[\frac{\rho_1}{x_1^{n+1}} + e_{n,3} + 0.5\right] = \left[\frac{\rho_1}{x_1^{n+1}} + e_{n,5} + 0.5\right],$$

where $\lfloor x \rfloor$ is the largest integer less than or equal to x, and |x| is the absolute value of x.

Proof. Using values x_3 and x_5 we can compute $\rho_3 = \frac{-U(x_3)}{V'(x_3)}$ and $\rho_5 = \frac{-U(x_5)}{V'(x_5)}$ and then show that

$$\left| e_{n,3} + \frac{\rho_2}{x_2^{n+1}} \right| = \left| 2[a_3 \cos(n+1)\theta_3 + b_3 \sin(n+1)\theta_3] + \frac{\rho_2}{x_2^{n+1}} \right|$$

is less than or equal to $2(|a_3| + |b_3|) + \frac{\rho_2}{x_2} \le 0.39 + 0.014 < 1$, where $\rho_3 = a_3 + i \ b_3$ and $\rho_2 = \frac{-U(x_2)}{V'(x_2)}$. Similarly we have

$$\left| e_{n,5} + \frac{\rho_2}{x_2^{n+1}} \right| = \left| 2[a_5 \cos(n+1)\theta_5 + b_5 \sin(n+1)\theta_5] + \frac{\rho_2}{x_2^{n+1}} \right|$$

$$\leq 2(|a_5| + |b_5|) + \frac{\rho_2}{x_2} \leq 0.73 + 0.014 < 1.$$

Therefore, we get the result

$$p_n^L(3) = \left| \frac{\rho_1}{{x_1}^{n+1}} + \frac{\rho_3}{{x_3}^{n+1}} + \frac{\rho_4}{{x_4}^{n+1}} + 0.5 \right| = \left| \frac{\rho_1}{{x_1}^{n+1}} + \frac{\rho_5}{{x_5}^{n+1}} + \frac{\rho_6}{{x_6}^{n+1}} + 0.5 \right|.$$

That is

$$p_n^L(3) = \left[\frac{\rho_1}{x_1^{n+1}} + e_{n,3} + 0.5\right] = \left[\frac{\rho_1}{x_1^{n+1}} + e_{n,5} + 0.5\right].$$

This completes the proof of the theorem.

Remark 3. Using the approach described and in view of Remark 2, we can obtain an expression for $p_n^C(3)$, the number of minimal path sets of a circular $\operatorname{con}|3|n$:F system. This approach becomes cumbersome for $k \geq 4$ and leads to introduction of a general recursive relation for determination of the number of minimal path sets of a $\operatorname{con}|k|n$:F system, which is considered in the next section.

4 Consecutive-k-out-of-n:F System

In this section we provide a recursive relation to determine the number of minimal path sets of a linear $\operatorname{con}|k|n$:F system. For some special cases we give closed form formulae. We may add that direct computation of the number of minimal path sets of a $\operatorname{con}|k|n$:F system is still a difficult task.

Let $\alpha_k(n)$ denote the collection of all minimal path sets of a $\operatorname{con}|k|n$:F system and suppose $P \in \alpha_k(n)$ is a minimal path set of the system. We note that $|P \cap \{1, 2, \dots, k\}| = 1$. Therefore we can partition $\alpha_k(n)$ into k disjoint subcollections, that is $\alpha_k(n) = \bigcup_{i=1}^k \alpha_k^i(n)$, where $\alpha_k^i(n)$ is the collection of all minimal path sets of a $\operatorname{con}|k|n$:F system that contain component $i, i = 1, 2, \dots, k$.

Suppose $p_n(k) = |\alpha_k(n)|$ and $p_n^i(k) = |\alpha_k^i(n)|$. We then have $p_n(k) = \sum_{i=1}^k p_n^i(k)$.

The following lemmas are required in the sequel.

Lemma 4.
$$p_n^i(k) = p_n^{n-i+1}(k)$$
 for all $i = 1, 2, ..., \lfloor \frac{n+1}{2} \rfloor$.

Proof. Consider another con|k|n:F system in which the components are numbered in the reverse order. Hence the proof follows.

Component n - i + 1 is called the mirror image of component i.

Remark 4. We note that for $1 \le n < k$, a con|k|n:F system is always working, irrespective of the states of the components. In this case $\alpha_k(n) = \{\emptyset\}$. Hence we assume that $p_n(k) = 1$ for n = 1, 2, ..., k - 1. We also assume that $p_0(k) = 1$.

Lemma 5. For $1 \leq i \leq k$, we have

$$\{S:\ S\in\alpha^i_k(n)\}=\{S:\ S=\{i\}\cup T\}$$

where T is a minimal path set of a con|k|n-i:F subsystem that consists of last n-i components of the original system, such that, $T \cap \{i+1,i+2,\ldots,k\} = \emptyset$. We assume that $\{i+1,i+2,\ldots,k\} = \emptyset$ if i=k.

Proof. The proof follows from the definition of a minimal path set of a con|k|n:F system.

Theorem 8. For $1 \leq i \leq k$, we have

$$p_n^i(k) = p_{n-i}(k) - \sum_{x=1}^{k-i} p_{n-i}^x(k) = \sum_{x=k-i+1}^k p_{n-i}^x(k).$$

We assume that $\sum_{x=1}^{k-i} p_{n-i}^x(k) = 0$ if i = k.

Proof. Note that $p_{n-i}(k) = |\alpha_k(n-i)| = \left| \bigcup_{x=1}^k \alpha_k^x(n-i) \right| = \sum_{x=1}^k |\alpha_k^x(n-i)|$. Hence, we have

$$|\{T: T \in \alpha_k(n-i), T \cap \{1, 2, \dots, k-i\} = \emptyset\}| = \sum_{x=k-i+1}^k |\alpha_k^x(n-i)|$$
$$= p_{n-i}(k) - \sum_{x=1}^{k-i} |\alpha_k^x(n-i)|.$$

On the other hand in view of Lemma 5, we have

$$|\{T: T \in \alpha_k(n-i), T \cap \{1, 2, \dots, k-i\} = \emptyset\}| = \sum_{x=k-i+1}^k p_{n-i}^x(k).$$

Therefore we get the result

$$p_n^i(k) = p_{n-i}(k) - \sum_{x=1}^{k-i} |\alpha_k^x(n-i)| = p_{n-i}(k) - \sum_{x=1}^{k-i} p_{n-i}^x(k) = \sum_{x=k-i+1}^k p_{n-i}^x(k).$$

This completes the proof of the theorem.

Remark 5. We note that to get $p_n^i(k)$ for $i=1,2,\ldots,k$, in view of Theorem 8 we first compute $p_n^k(k)=p_{n-k}(k)$. Using this, compute $p_n^1(k)=p_{n-1}^k(k)=p_{n-k-1}(k)$ and then $p_n^{k-1}(k)=p_{n-k+1}(k)-p_{n-k+1}^1(k)=p_{n-k+1}(k)-p_{n-2k}(k)$ and $p_n^2(k)$ and so on. We note that the last term is $p_n^{\bar{r}}(k)$ where $\bar{r}=\lfloor (k+1)/2 \rfloor$.

Example.

- (a) If k=2, we have $p_n^2(2)=p_{n-2}(2)$ and $p_n^1(2)=p_{n-1}^2(2)=p_{(n-1)-2}(2)=p_{n-3}(2)$. We get $p_n(2)=p_n^1(2)+p_n^2(2)=p_{n-2}(2)+p_{n-3}(2)$, as given in section 2.
- (b) If k=3, we have $p_n^3(3)=p_{n-3}(3)$, $p_n^1(3)=p_{n-1}^3(3)=p_{n-4}(3)$, and $p_n^2(3)=p_{n-2}(3)-p_{n-2}^1(3)=p_{n-2}(3)-p_{n-6}(3)$. Hence, we get $p_n(3)=p_n^1(3)+p_n^2(3)+p_n^3(3)=p_{n-2}(3)+p_{n-3}(3)+p_{n-4}(3)-p_{n-6}(3)$, as given in section 3.
- (c) If k=4, we have $p_n^4(4)=p_{n-4}(4)$, $p_n^1(4)=p_{n-5}(4)$, $p_n^3(4)=p_{n-3}(4)-p_{n-8}(4)$, and $p_n^2(4)=p_{n-5}(4)-p_{n-10}(4)+p_{n-6}(4)$. Using these, we have $p_n(4)=\sum_{x=1}^4 p_n^x(4)=p_{n-3}(4)+p_{n-4}(4)+2p_{n-5}(4)+p_{n-6}(4)-p_{n-8}(4)-p_{n-10}(4)$.

(d) For k = 5, 6 and 7 we have the following recursive relations.

$$\begin{split} p_n(5) &= p_{n-3}(5) + p_{n-4}(5) + p_{n-5}(5) + 2p_{n-6}(5) + p_{n-7}(5) - 2p_{n-9}(5) \\ &- 2p_{n-10}(5) - p_{n-12}(5) + p_{n-15}(5). \\ p_n(6) &= p_{n-4}(6) + p_{n-5}(6) + p_{n-6}(6) + 3p_{n-7}(6) + 2p_{n-8}(6) + p_{n-9}(6) \\ &- 2p_{n-11}(6) - 2p_{n-12}(6) - 3p_{n-14}(6) - 2p_{n-15}(6) + p_{n-18}(6) \\ &+ p_{n-21}(6). \\ p_n(7) &= p_{n-4}(7) + p_{n-5}(7) + p_{n-6}(7) + p_{n-7}(7) + 3p_{n-8}(7) + 2p_{n-9}(7) \\ &+ p_{n-10}(7) - 3p_{n-12}(7) - 4p_{n-13}(7) - 3p_{n-14}(7) - 3p_{n-16}(7) \end{split}$$

Using Theorem 8, similar expressions can be for $p_n(k)$ when $k \ge 8$.

 $-2p_{n-17}(7) + 3p_{n-20}(7) + 3p_{n-21}(7) + p_{n-24}(7) - p_{n-28}(7).$

Remark 6. Regarding Theorem 8 and Remark 5, $p_n^i(k)$ is of the form $\sum_{x=1}^{d_i} c_i(x)$ $p_{n-n_i(x)}(k)$ where d_i , $c_i(x)$'s, and $n_i(x)$'s are integers such that $0 < n_i(1) < n_i(2) < \cdots < n_i(d_i) = \bar{n}_i$ and $d_i > 0$. We note that this expression holds if $n \ge \bar{n}_i$. For example we have $p_n^k(k) = p_{n-k}(k)$ if $n \ge k$, $p_n^1(k) = p_{n-k-1}(k)$ if $n \ge k+1$, $p_n^{k-1}(k) = p_{n-k+1}(k) - p_{n-2k}(k)$ if $n \ge 2k$ and $p_n^2(k) = p_{n-k-1}(k) + p_{n-k-2}(k) - p_{n-2k-2}(k)$ if $n \ge 2k+2$. We get $\bar{n}_k = k$, $\bar{n}_1 = k+1$, $\bar{n}_{k-1} = 2k$, and $\bar{n}_2 = 2k+2$. Using Remark 5, it is easy to verify that $\bar{n}_k < \bar{n}_1 < \bar{n}_{k-1} < \bar{n}_2 < \cdots < \bar{n}_{\bar{r}}$ where $\bar{r} = \lfloor (k+1)/2 \rfloor$. Therefore the recursive relation $p_n(k) = \sum_{i=1}^k p_n^i(k)$ holds if $n \ge \bar{n}_{\bar{r}}$.

Lemma 6. $\bar{n}_{\bar{r}} = \binom{k+1}{2}$.

Proof. If k = 2s + 1, for some integer $s, 0 \le s \le \lfloor k/2 \rfloor$, we then have $\bar{r} = \lfloor (k+1)/2 \rfloor = s+1$. On the other hand, we have $\bar{n}_k = k, \bar{n}_1 = k+1, \bar{n}_{k-1} = 2k, \bar{n}_2 = 2k+2, \bar{n}_{k-2} = 3k, \bar{n}_3 = 3k+3, \ldots, \bar{n}_{k-(s-1)} = sk, \bar{n}_s = sk+s, \text{ and } \bar{n}_{k-s} = (s+1)k$. Note that $\bar{n}_{k-s} = \bar{n}_{s+1} = \bar{n}_{\bar{r}} = (s+1)k = (k+1)k/2 = \binom{k+1}{2}$. If k = 2s, we have $\bar{n}_{k-(s-1)} = sk, \bar{n}_s = sk+s$. In this case $\bar{r} = \lfloor (k+1)/2 \rfloor = s$. Hence, $\bar{n}_{\bar{r}} = \bar{n}_s = sk+s = s(k+1) = k(k+1)/2 = \binom{k+1}{2}$. This completes the proof of the lemma.

Remark 7. We have $p_n(k) = 1$ for $0 \le n \le k-1$ and $p_k(k) = k$. We note that we first need to find $p_n(k)$ for $k < n < {k+1 \choose 2}$. We then can use the recursive equation $p_n(k) = \sum_{i=1}^k p_n^i(k)$ to find $p_n(k)$ for $n \ge {k+1 \choose 2}$, where $p_n^i(k)$ can be obtained using Theorem 8.

In the remainder of this section we consider some special cases.

Lemma 7. If
$$k \le n \le 2k$$
 then $p_n(k) = 2k - n + \frac{(n-k)(n-k+1)}{2}$.

Proof. Suppose n = k + t for some integer t, $0 \le t \le k$. In view of Lemma 1, we have $\bar{r}_k(n) \ge 1$ and $\bar{r}_k(n) \le 2$. If t < k then minimal path sets of size 1 are given by $\{k\}, \{k-1\}, \ldots, \{t+1\}$. If t > 0, then minimal path sets of size 2 are given by

$$\{1, k+1\}$$

 $\{2, k+2\}, \{2, k+1\}$
 \vdots
 $\{t, k+t\}, \{t, k+t-1\}, \dots, \{t, k+1\}.$

Therefore the number of minimal path sets of size 1 equals to k-t and the number of minimal path sets of size 2 is $1+2+\cdots+t=t(t+1)/2$. Hence, $p_n(k)=k-t+\frac{t(t+1)}{2}$, where t=n-k. This completes the proof of the lemma.

Theorem 9. If $2k \le n \le 3k+1$ then $p_n(k)$ is given by

$$\frac{(3k-n)(3k-n+1)}{2} + \frac{(n-2k)\left[3k(k+1)-2\left((n-2k)^2-1\right)\right]}{6} + \frac{(n-2k)^2\left[(n-2k)^2-1\right]}{12}.$$

Proof. If $2k+1 \le n \le 3k+1$, then regarding Lemma 1, we have $\bar{r}_k(n) \ge 2$ and $\bar{r}_k(n) \le 4$.

Using a simple enumeration process, it can be shown that the number of minimal path sets of size 2 is

$$1 + 2 + 3 + \dots + 3k - n = \frac{(3k - n)(3k - n + 1)}{2}.$$

The number of minimal path sets of size 3 is given by

$$\sum_{t=1}^{s} \left[t(k-t+1) + (k-t) + (k-t-1) + \dots + (n-2k-t+1) \right]$$
$$= \frac{s \left[3k(k+1) - 2(s^2 - 1) \right]}{6},$$

where s = n - 2k.

And finally the number of minimal path sets of size 4 is given by

$$\sum_{j=2}^{s} \left[1 + 2^2 + 3^2 + \dots + (j-1)^2 \right] = \sum_{j=2}^{s} \sum_{i=1}^{j-1} i^2 = \frac{s^2(s^2 - 1)}{12}.$$

Now using the last three equations the proof follows.

Remark 8. If $3k \le n \le 4k+1$, we note that $\bar{r}_k(n) \ge 3$ and $\bar{r}_k(n) \le 6$. It can be verified that in this case, the number of minimal path sets of size 3, is given by

$$\sum_{j=1}^{k-s} \sum_{i=1}^{j} i = \sum_{j=1}^{k-s} \frac{j(j+1)}{2} = \frac{(k-s)(k-s+1)(k-s+2)}{6}$$
$$= \frac{(4k-n)(4k-n+1)(4k-n+2)}{6},$$

where s = n - 3k.

Conjectures

In view of the argument given in this note, we make the following conjectures.

Using Lemma 7, we note that if $k \leq n \leq 2k$ then the number of minimal path sets of size 1 is $2k - n = \binom{2k - n}{1}$.

Using the first equation given in the proof of Theorem 9, we note that if $2k \le n \le 3k+1$ then the number of minimal path sets of size 2 is

$$\frac{(3k-n)(3k-n+1)}{2} = \binom{3k-n+1}{2}.$$

And by Remark 8, we note that if $3k \le n \le 4k+1$ then the number of minimal path sets of size 3 is

$$\frac{(4k-n)(4k-n+1)(4k-n+2)}{6} = \binom{4k-n+2}{3}.$$

Now let $p_n^{\bar{r}_k(n)}(k)$ denote the number of minimal path sets with minimum size $\bar{r}_k(n) = |n/k|$, in a con|k|n:F system.

Conjecture 1.
$$p_n^{\bar{r}_k(n)}(k) = \binom{(\bar{r}_k(n)+1)k-n+\bar{r}_k(n)-1}{\bar{r}_k(n)}$$

Note that the number of minimal path sets with minimum size and the number of path sets with minimum size in a $\operatorname{con}|k|n$:F system are the same. Therefore, we can use the results of Seth and Sadegh (1999) to compute $p_n^{\bar{r}_k(n)}(k)$ but the expression as given in Conjecture 1 is simpler.

Conjecture 2. We have shown in section 2 and section 3 that the recursive relations for $p_n^C(k)$ and $p_n^L(k)$, for the cases k=2 and k=3 are the same but with different initial conditions. Hence, we conjecture that this property may also hold for a general con|k|n:F system, that is, for $k \ge 4$.

We may add that direct computation for determination of $p_n(k)$, the number of minimal path sets of a con|k|n:F system is a difficult task.

References

- Chao, M.T., Fu, J.C., and Koutras, M.V. (1995). Survey of reliability studies of consecutivek-out-of-n:F and related systems. *IEEE Trans. Rel.* 44, 120-127.
- Kontoleon, J.M. (1980). Reliability determination of a r-successive-out-of-n:F system. IEEE Trans. Rel. 29, 437.
- Ramamurthy, K.G., Seth, A., and Sadegh, M.K. (2003). A combinatorial approach for component importance. Comm. Statist. Theory Methods 32, 497-507.
- Seth, A. and Sadegh, M.K. (1999). Number of path sets with known size in a consecutive-k-out-of-n:F system. *IAPQR Trans.* **24**, 17-33.
- Seth, A. and Sadegh, M.K. (2001). Minimal path sets with known size in a consecutive-2-out-of-n:F system. *OPSEARCH* 38, 352-371.

Mohammad Khanjari Sadegh Department of Statistics, University of Birjand,

Birjand, Iran.

e-mail: mkhanjari@birjand.ac.ir

Bagher Moghaddaszadeh

Department of Statistics, Payame Noor University of Mashhad, Mashhad, Iran.

e-mail: Bmoghaddaszadeh@yahoo.com