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Abstract. In this paper, at first we derive a family of maximum Tsallis
entropy distributions under optional side conditions on the mean income
and the Gini index. Furthermore, corresponding with these distributions
a family of Lorenz curves compatible with the optional side conditions is
generated. Meanwhile, we show that our results reduce to Shannon entropy
as β tends to one. Finally, by using actual data, we compare the maximum
Tsallis entropy Lorenz curve with some parametric Lorenz curves.
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1 Introduction
Recently the concept of entropy has been used in many research areas, par-
ticularly in economics. In this research area, classical models often consider
perfect information which in many cases requires some assumptions to es-
timate functions. Some new approaches to the treatment of problems in
economics are made using methods that exploit the use of entropy. The use
of concepts such as entropy is growing over time, giving rise to other concepts
and methodologies, such as Maximum Entropy and Cross-Entropy . The ap-
plication of these methods began with the analysis of financial markets, and
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42 Tsallis Maximum Entropy Lorenz Curves

was later extended to other areas such as industrial economics, agricultural
economics or microeconomics. (For more ditails see Ferreira and Dionísio,
2012).

Suppose that a random variable has a known probability density function,
so, it determines the distribution completely. But in many cases, the explicit
density is unknown and must be estimated. The classical procedure consists
of fitting an analytical function to the observations. Another more logical
approach is to apply the maximum entropy that was proposed by Jaynes
(1957). This technique allows choosing among all the possible probability
distributions the most suitable one with respect to the available knowledge.
The maximum entropy principle states that when some information is given
about a random variable, the least biased probability distribution can be ob-
tained by maximizing the Shannon entropy subject to the given constraints.
The Shannon entropy is additive, but additivity is not a necessary condition
for a function to measure the uncertainty of a probability distribution. Over
the past 60 years, after Shannon introduced his measure of entropy, various
forms of the entropy have been suggested that were non additive. One of
them is the Tsallis entropy, that was introduced by Tsallis (1988). Tsal-
lis entropy is a one-parameter generalization of the Shannon entropy which
can lead to models or statistical results different from those obtained by the
Shanoon entropy. It should be noted that Tsallis entropy is a monotonic
function of Renyi entropy. On the other hand, Tsallis distributions (the ones
derived from the maximization of Tsallis entropy) are of great interest in
many branches of science since they are similar to generalized Pareto distri-
butions and appear as the limit distribution of excesses over a threshold (see
Yaghoobi et al., 2010). A review of Tsallis entropy and its applications are
presented in Tsallis (2000).

There are many papers, books, monographs published about maximum
Shannon entropy and maximum Tsallis entropy such as Jaynes (1982), Zell-
ner and Highfield (1988), Kapur (1989), Ryu (1993), Dos Santos (1997),
Dober and Bolle (2001), Grender and Grender (2001), Harremoes and Top-
soe (2001), Wu (2003), Chery and Maslov (2004), Dukkiputi et al. (2005),
Karmeshu and Sharma (2006), Cover and Thomas (2006) and Holm (1993).
Holm (1993) especially applied maximum Shannon entropy for finding the
Lorenz curve.
This paper has two main objectives. First, we derive a family of maximum
Tsallis entropy distributions under the conditions on the mean and the Gini
index. Afterword, as a consequence of the first objective, we find families of
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Lorenz curves.

2 Preliminaries
In this section, we provide some basic definitions that are necessary in the
next section.

2.1 Shannon Entropy and Tsallis Entropy
The Shannon entropy of a continuous random variable X, taking its values
in R, with probability density function f(x), is defined by

H(f) = −
∫
R
log f(x)f(x)dx, (1)

provided that, the integral exists.
One extension of the Shannon entropy is the Tsallis entropy which is defined
as:

Hβ(f) =
1

β − 1

{
1−

∫
R
fβ(x)dx

}
. (2)

It is easy to show that, Hβ(f) = H(f) as β −→ 1. Therefore, the Tsallis
entropy is a generalization of the Shannon entropy.

2.2 The Lorenz Curve
The Lorenz curve is an important tool for analyzing income distributions
introduced by Max Lorenz (1905). He proposes a simple graphical means
to summarize the inequality of wealth. Graphically, the Lorenz curves gives
the proportion of the total societal income accruing to the lowest earning
proportion of income earners.

Definition 1. Let X be a non-negative random variable with probability
density function fX(x) and distribution function FX(x). The Lorenz curve
of X denoted by LX(p) is defined as:

LX(p) =
1

µ

∫ p

0
F−1
X (y)dy, 0 6 p 6 1, (3)

where, F−1
X (y) = inf[x : FX(x) > y] is the quantail function and µ is the

mean of X. From Definition 1, we can show that, L is a continuous function
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on [0 , 1], with L(0) = 0 and L(1) = 1. Also L is an increasing and convex
function of p.

There are various ways for the construction of the parametric families
of the Lorenz curves. The first way consists of achieving parametric family
distribution and substituting them in (3) (For example see Gastwirth, 1971).
Note that the explicit distribution is unknown in many cases, therefore it
must be estimated by the classical methods such as maximum entropy.

Another way consists of selecting parametric families of curves that satisfy
the properties of the Lorenz curves. Some of the most common parametric
Lorenz curves are as follows:

• The Kakwani and Podder specification
The pioneer model was proposed by Kakwani and Podder (1973). The Kak-
wani - Podder Lorenz curve is specified as:

L(p) = pαe−β(1−p), 0 6 p 6 1, 1 < α < 2, β > 0.

Kakwani and Podder (1976) also proposed a new parametric model based on
a geometric motivation.

• The Gupta specification
Gupta (1984) provided another parametric Lorenz curve in the following
form:

L(p) = pαp−1, 0 6 p 6 1, α > 0.

• The Rasche specification
Rasche et al. (1980) suggested the following form for Lorenz curve,

L(p) = [1− (1− p)α]
1
β , 0 6 p 6 1, 0 < β, 0 < α 6 1.

If β = 1 and α < 1, we obtain the Lorenz curve corresponding to the classical
Pareto distribution with the form:

L(p) = 1− (1− p)α, 0 6 p 6 1, 0 < α 6 1.
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• The Chotikopanich specification
The Chotikopanich Lorenz curve was proposed by Chotikopanich (1993).
This model is as follows:

L(p) =
ekp − 1

ek − 1
, 0 6 p 6 1, k > 0.

• The Pakes specification
The family proposed by Pakes (1981) has a Lorenz curve of the form:

L(p) =

∫ p
0 xα−1(1− x)β−1

B(α, β)
dx, 0 6 p 6 1,

where α > 1, 0 < β 6 1 and B is the beta function.

For more details, see for example: Kleiber (2005), Kleiber and Kotz (2003),
Sarabia (2008), Arnold (2007), Villasenor and Arnold (1989) and Rohde
(2008).

2.3 Gini Index
The Gini index was developed by Corrado Gini (1912). It is strictly con-
nected with representation of income inequality via the Lorenz curve. The
Gini index is given as twice the area between the Lorenz curve and the equal-
ity line.

Definition 2. Let X be a non-negative random variable with Lorenz curve,
L(p). The Gini index is denoted by G and is defined as:

G = 2

∫ 1

0
{p− L(p)}dp = 1− 2

∫ 1

0
L(p)dp, (4)

we note that, 0 6 G 6 1.
By setting the L(p) of (3) in (4), the following useful form is obtained:

G =
1

µ

∫ 1

0
(2p− 1)F−1(p)dp. (5)

Note that, the mean income can be written as:

µ =

∫ 1

0
F−1(p)dp. (6)
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For more details, see Gastwirth (1971) and Nembua (2006).
Usually the Gini index is calculated from the Lorenz curve, but we shall

do the opposite.

3 Main Results
Let X be a non-negative and absoulutely continuous random variable1 in-
dicating the level of income, with values in the interval [x0, x1]. Also, sup-
pose f(x) and F (x) are the probability density function and the distribution
function of X, respectively. Furthermore, assume F (x) is strictly increasing.
Tsallis entropy of this distribution is defined as:

Hβ(f) =
1

β − 1

{
1−

∫ x1

x0

fβ(x)dx

}
, (7)

by choosing F (x) = p, we have:

x = F−1(p) =⇒ f(x) = f(F−1(p)).

On the other hand, we note that F (F−1(p)) = p, so

dF−1(p)

dp
f(F−1(p)) = 1, (chain rule),

therfore,
f(F−1(p)) =

1
dF−1(p)

dp

.

Finally, by substituting above relations into (7) we derive:

Hβ(f) =
1

β − 1

{
1−

∫ 1

0

(
dF−1

dp

)1−β

dp

}
, (8)

where, F−1 is the inverse function of F .
We intend to obtain the maximum of the function described in (7), pro-

vided that the mean and the Gini index are known.
On the other hand, via integration by part it is easy to show that, the rela-
tions (5) and (6) are equal to,∫ 1

0
(1− p)

dF−1

dp
dp = µ− x0, (9)
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∫ 1

0
(1− p)p

dF−1

dp
dp = Gµ, (10)

respectively.
Now, we consider the following optimization problem,

max Hβ(f) =
1

β − 1

{
1−

∫ 1

0

(
dF−1

dp

)1−β

dp

}
,

such that, ∫ 1

0
(1− p)

dF−1

dp
dp = µ− x0,

∫ 1

0
(1− p)p

dF−1

dp
dp = Gµ.

For using the Lagrangian method we define Λ(f) as:

Λ(f) =
1

β − 1

{
1−

∫ 1

0

(
dF−1

dp

)1−β

dp

}

− λ1

{∫ 1

0
(1− p)

dF−1

dp
dp− (µ− x0)

}

− λ2

{∫ 1

0
(1− p)p

dF−1

dp
dp−Gµ

}
,

by differentiating Λ(f) and some calculations we obtain:

dF−1

dp
=

1

{λ1(1− p) + λ2p(1− p)}
1
β

, (11)

in which, λ1 and λ2 are the undetermined Lagrange multipliers arising from
the condition (9) and (10), respectively. Various values of β, λ1 and λ2 lead
to familiar distributions, some of which are discussed in the next subsections.

3.1 Maximum Tsallis Entropy Lorenz Curve
A family of Lorenz curves that is in agreement with the conditions will be
generated from (11). For all members of this family, we have L(0) = 0,
L(1) = 1. The different cases are classified below:
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3.1.1 λ1 ̸= 0 and λ2 = 0

In this case, equation (11) reduces to

dF−1

dp
=

(1− p)
− 1

β

β
√
λ1

.

An integration of dF−1

dp over [0, p], we obtain

F−1(p) =
β

β − 1
· 1

β
√
λ1

{
1− (1− p)

1− 1
β

}
+ x0. (12)

Now by using (5) and (6) we derive:

x0 =

{
1−

(
3− 1

β

)
G

}
µ,

and so,

F−1(p) = µ

[
1 +G

3β − 1

β − 1

{
1− (3β − 1)(2β − 1)

β
(1− p)

1− 1
β

}]
. (13)

Since F−1(p) = x, then F (x) = p, by some calculations we derive:

F (x) = 1−

 β

(3β − 1)(2β − 1)
+

x− µ

Gµ (3β−1)2(2β−1)
β(1−β)


−( β

1−β
)

(14)

Finally substituting F−1 into (3) gives a one-parametric model:

Lβ
∗ (p) = p+G

3β − 1

β − 1

{
p− 1 + (1− p)

2− 1
β

}
, (15)

where, β may be used for optimization with respect to additional information.

• The Pareto distributions provide models for many applications in social
science, physical science and economics. Also, this family is related to
many other families of distributions. The cumulative distribution of Pareto
(IV )(µ, θ, γ, α) is as follows:

F (x) = 1−

{
1 +

(
x− µ

θ

) 1
γ

}−α

, x > µ. (16)
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Putting (α = 1), (γ = 1) and (γ = 1, µ = θ) in the above relation leads us to
the cumulative distribution function of Pareto (III), Pareto (II) and Pareto
(I), respectively.

Comparing (14) and (16), we find that, if we set β = 3+
√
3

6 , in (14), it re-
duces to a cumulative distribution function of Pareto (II)(µ, (3+2

√
3)Gµ, (2+√

3)), and if we set β = 3+
√
3

6 , in (15), we obtain the Lorenz curve corre-
sponding to Pareto (II)(µ, (3 + 2

√
3)Gµ, (2 +

√
3)).

Further, if we set β = 3+
√
3

6 and G = 1
3+2

√
3

in (14) and (15), then we ob-
tain the distribution function of Pareto(I)(µ, (2+

√
3)) and its Lorenz curve

respectively.

• A predicted minimum income x0 = 0, the standard lower bound of many
income distributions, is obtained for G = β

3β−1 .

• Note that in (15), limβ−→1 L
β
∗ (p) gives the function that was obtained

by Holm (1993). In this case

L∗(p) = p+ 2G(1− p) ln(1− p). (17)

Figure 1 shows two Lorenz curves corresponding with model (17) and
model (15) with β = 2, when G = 0.35.
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3.1.2 λ1 = 0 and λ2 ̸= 0

Equation (11) with λ1 = 0 , λ2 ̸= 0 implies a density quantile function
symmetric with respect to p = 0.5. By integration of dF−1

dp over [0, p], we
obtain:

F−1(p) =
1

β
√
λ2

∫ p

0
t
− 1

β (1− t)
− 1

β dt+ x0, (18)

considering an expansion of (1− t)
− 1

β =
∑∞

j=0

(− 1
β

j

)
(−1)jtj , we are led to:

F−1(p) =
1

β
√
λ2

∞∑
j=0

(
− 1

β

j

)
(−1)j

p
j− 1

β
+1

j − 1
β + 1

+ x0. (19)

Now by using (9) and (10) we derive:

x0 = µ

{
1−G

B(1− 1
β , 2−

1
β )

B(2− 1
β , 2−

1
β )

}
.

Finally, by substitution of F−1 into (3) we obtain:

Lβ
∗ (p) = p+G


2− 3β

β − 1
p+

∞∑
j=0

(− 1
β

j

)
(−1)j p

j− 1
β
+2

(j− 1
β
+2)(j− 1

β
+1)

B(2− 1
β , 2−

1
β )

 , (20)

in which, B(a, b) =
∫ 1
0 ta−1(1− t)b−1dt.

• Note that limβ−→1 L
β
∗ (p) = p + G[p ln(p) + (1 − p) ln(1 − p)] that was

attained by Holm (1993).

3.1.3 λ1 ̸= 0 and λ2 ̸= 0

Equation (11) with λ1 ̸= 0 , λ2 ̸= 0 represents the following complex model,

dF−1

dp
=

1

{λ1(1− p) + λ2p(1− p)}
1
β

=
1

β
√
λ1

(1− p)
− 1

β (1 + ap)
− 1

β , (21)

where a = λ2
λ1

.
With a similar process, integration over [0, p] gives

F−1(p) =
1

β
√
λ1

∫ p

0
(1− t)

− 1
β (1 + at)

− 1
β dt+ x0. (22)
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We know that, (1 + x)s =
∑∞

m=0A(s,m)xm and (1 − x)s =
∑∞

m=0(−1)m

×A(s,m)xm in which, A(s,m) = Γ(s+1)
Γ(s+1−m)Γ(m+1) .

By using the above expansion for (1 + at)
− 1

β and (1− t)
− 1

β we derive:

F−1(p) =
1

β
√
λ1

∞∑
n=0

∞∑
m=0

(−1)namA

(
− 1

β
, n

)
A

(
− 1

β
,m

)

×
∫ p

0

tm+n+1

m+ n+ 1
dt+ x0, a < 1.

F−1(p) =
1

β
√
λ1

∞∑
n=0

∞∑
m=0

(−1)namA

(
− 1

β
, n

)
A

(
− 1

β
,m

)

× pm+n+1

m+ n+ 1
+ x0, a < 1. (23)

With a common procedure we have the following results for the two-
parameter model:

Lβ
∗ (p) = p−G

∑∞
m=0A(−

1
β ,m)amB(m+ 1, 2− 1

β )∑∞
m=0A(−

1
β ,m)amB(m+ 2, 2− 1

β )
p

+G

{∑∞
n=0

∑∞
m=0(−1)namA(− 1

β , n)A(−
1
β ,m)

}
pm+n+2

(m+n+1)(m+n+2)∑∞
m=0A(−

1
β ,m)amB(m+ 2, 2− 1

β )
.

(24)

3.2 An Application and Some Comparisons

For using a specific model it must pass the test of empirical data. In this
study the maximum Tsallis entropy model (15) is evaluated by examining
the residual vector Ri = L(pi) − Li for an actual data set {(pi Li) | i =
1, 2, . . . , 9} given in Table 2 of Villasenor and Arnold (1989) with an actual
value G = 0.3196.
From Table 1, we note that β = 1.3 is the minimum sum square error (SSE),
therefore to compare L̂β with other models, we use L̂1.3 in Table 2.
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Table 1. Maximum Tsallis Entropy model (15) for some β values

p L L̂0.9
∗ L̂1.1

∗ L̂1.2
∗ L̂1.3

∗ L̂1.4
∗ L̂1.5

∗ L̂1.7
∗ L̂1.9

∗

0.1 0.0213 0.04242 0.03693 0.03491 0.03321 0.03176 0.03051 0.02847 0.02687
0.2 0.0657 0.09089 0.08191 0.07865 0.07595 0.07366 0.07171 0.06853 0.06607
0.3 0.1273 0.14625 0.13583 0.13215 0.12912 0.12659 0.12445 0.12102 0.11838
0.4 0.2001 0.20962 0.19987 0.19654 0.19387 0.19167 0.18984 0.18694 0.18477
0.5 0.2833 0.28251 0.27555 0.27335 0.27166 0.27032 0.26923 0.26760 0.26644
0.6 0.3781 0.36701 0.36499 0.36463 0.36447 0.36443 0.36447 0.36467 0.36493
0.7 0.4867 0.46669 0.47137 0.47338 0.47517 0.47674 0.47814 0.48048 0.48237
0.8 0.6119 0.58722 0.59989 0.60449 0.60831 0.61151 0.61422 0.61859 0.62194
0.9 0.7624 0.74159 0.76117 0.76758 0.77265 0.77675 0.78012 0.78534 0.78917

SSE 0.00309 0.00118 0.00092 0.00086 0.00090 0.001 0.0013 0.0016

L: actual value L̂∗
β : Maximum Tsallis Entropy model (15) with β = 0.9, 1.1, . . . , 1.9

Table 2. Actual and estimated values for Lorenz curve

p L L̂KP L̂P L̂CL L̂1.3
∗

0.1 0.0213 0.02198 0.0331 0.05961 0.03321
0.2 0.0657 0.06368 0.0843 0.12206 0.07595
0.3 0.1273 0.12112 0.1470 0.18785 0.12912
0.4 0.2001 0.19393 0.2200 0.25769 0.19387
0.5 0.2833 0.28255 0.3025 0.33259 0.27166
0.6 0.3781 0.38781 0.3958 0.41405 0.36447
0.7 0.4867 0.51080 0.5013 0.50458 0.47517
0.8 0.6119 0.65283 0.6225 0.60893 0.60831
0.9 0.7624 0.81535 0.7683 0.73900 0.77265

SSE 0.00523 0.00231 0.01622 0.00086
SAE 0.14349 0.138 0.3423 0.0808

L: actual value L̂kp: Kakwani - Podder model L̂p: peak model
L̂cl: classical Pareto model L̂∗

1.3: Maximum Tsallis Entropy model (15).

Table 2 consists of the actual values L, estimated values via Kakwani-
Podder L̂KP , with α = 1.462 and β = 0.501, Pakes L̂P with α = 1.33 and
β = 0.727, and classic Pareto L̂CL with α = 0.583 that have been obtained
by Villasenor and Arnold (1989), also the obtained values from maximum
Tsallis entropy model (15) L̂β

∗ , with β = 1.3 2.
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Furthermore, Figure 2 displays residual vectors of Kakwani-Podder model
with α = 1.462 and β = 0.501, Pakes model with α = 1.33 and β = 0.727,
classic Pareto model with α = 0.583, and maximum Tsallis entropy model
(15) with β = 1.3.

We observe in Table 2 that L̂1.3 is improved upon by L̂KP , L̂P and L̂CL

on the basis of sum of square errors (SSE) and sum of absolute errors (SAE)3
(as the goodness of fit criteria).

4 Conclusions
In this study, the maximum Tsallis entropy density function of an income
distribution was found, when the mean and the Gini index are known and
as a consequence of this process, several models for Lorenz curve have been
obtained. We have shown that our findings in β → 1 are compatible with
the findings of Shannon entropy which some of them have been achieved by
Holm (1993).
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Descriptions

1. Its cumulative distribution function is continuous and differentiable.

2. The last column in Table 2 is our work and other columns are obtained
by Villasenor and Arnold (1989).

3. Note that for observations x1, x2, . . . , xn we have:
SSE =

∑n
i=0(xi − x̂)2

SAE =
∑n

i=0 |xi − x̂|
where x̂i is estimate of xi.
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