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Abstract. In this paper, we study the performance of estimators of param-
eters of two-parameter exponential distribution based on upper records. The
generalized likelihood ratio (GLR) test was used to generate preliminary test
estimator (PTE) for both parameters. We have compared the proposed esti-
mator with maximum likelihood (ML) and unbiased estimators (UE) under
mean-squared error (MSE) and Pitman measure of closeness (PMC). Ana-
lytical as well as graphical methods are used to show the range of parameter
in which PTE performs better than ML and UE. Results demonstrate that
in the case of that prior information is not too far from its real value, the
PTE is superior in compare with ML and UE based on both MSE and PMC
criteria. The results of the paper will be useful in estimation with record
data in life testing experiments.
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1 Introduction
The method known in the statistical literature as preliminary test estima-
tion was implemented by Bancroft (1944). He dealt with the problem of
estimating the unknown parameter when it is suspected that some “un-
certain prior information” on the parameter of interest is available. This
concept was developed by Han and Bancroft (1968) and since then several
authors have considered estimation of the parameters based on PTE. For ex-
ample, Chiou(1987) found the PTE of reliability in a life-testing model and
Chiou (1988) utilized preliminary test estimation for the scale parameter
of the extreme value distribution. Among the numerous papers discussing
different aspects of PTE, one may refer to Benda (1996), Khan and Saleh
(2001) and Hoque et al. (2009). Preliminary test methodology connects
directly with the size of a test, so Kibria and Saleh (2006) suggested the
optimum critical value for the test which formed PTE. Baklizi (2005) and
Kibria and Saleh (2010) have applied the method of PTE for estimating the
scale parameter of exponential distribution based on censored data. Arashi
and Tabatabaey (2008) obtained preliminary test, Stein-type shrinkage and
positive-rule shrinkage estimators, by assuming in the multiple regression
model, that the error vector follows multivariate Student’s t-distribution.
Arashi (2012) proposed some estimators including PTE for the regression
parameters of a multiple regression model and studied their performance.
We refer the interested reader to Saleh (2006) for more details on the theory
and application of PTE. Almost all of the works on PTE, utilized biased
and risk function of estimators as a criteria of comparison between proposed
estimators. In this paper, we consider the comparison of estimators based
on PMC as well as MSE.
We recall that Pitman (1937) considered a comparison between two estima-
tors of a parameter of interest based on the joint distribution of resulting
losses. This was in contrast to usual decision-theory analysis based on the
marginal distributions of the losses. According to his definition, if T1 and
T2 are two estimators of a common parameter θ, then T1 is a Pitman closer
estimator than T2 if

PMC(T1, T2|θ) = Pr(|T1 − θ| < |T2 − θ|) > 1

2
, ∀ θ ∈ Ω, (1)

with strict inequality holding for at least one θ, where Ω is the parameter
space. Pitman made his original definition under the assumption that the
probability of equality of competing estimators is zero. But what should
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we do with possible ties? i.e. Pr(T1 = T2) ̸= 0. To overcome this problem,
Kubokawa (1989) used the method, which later called the generalized Pitman
closeness (GPC), as follows

GPC(T1, T2|θ) = Pr(|T1 − θ| < |T2 − θ|)− Pr(|T1 − θ| > |T2 − θ|).

If T1 and T2 are two estimators of a common parameter θ, then T1 is corrected
Pitman preferred to T2, if

GPC(T1, T2|θ) > 0, ∀ θ ∈ Ω, (2)

with strict inequality holding for at least one θ. In the case of Pr(T1 = T2) =
0, the expressions (1) and (2) are equivalent. This concept has been studied
in great detail in the literature, one may refer to the monograph by Keating
et al. (1993) for comprehensive details about PMC. Among the few papers
concerning PMC for comparing preliminarily test type estimators, Saleh and
Sen (1991) used PMC and GPC to compare the preliminary test estimator
(PTE), shrinkage and positive-rule versions of the MLE for location param-
eter of normal distribution. Let X be a continuous random variable from
exponential distribution with pdf

f(x;µ, σ) = σe−σ(x−µ), x > µ, σ > 0,

where µ and σ are location and scale parameters, respectively. The two-
parameter exponential distribution has wide application in reliability theory,
especially when there exists a lower threshold value of the variable. We also
recall that, in a sequence of random variables {Xn, n > 1}, an observation Xj

is called a (upper) record if Xj > Xi for all i = 1, 2, . . . , j − 1. We refer the
reader to Arnold et al. (1998) for more details on the theory and applications
of record data. Recently, PMC criterion faced considerable attention for
comparing estimators based on different type of ordered data. Especially,
Ahmadi and Balakrishnan (2009) and Raqab and Ahmadi (2011) discussed
the Pitman-closeness of record values as estimator of population quantiles.
Several estimation techniques exist in the literature for estimating the model
parameters in terms of record values. However, the parameters estimation
for the record data by using the preliminary test estimator is very few. In
what follows, we consider the upper records from two-parameter exponential
distribution and compute the MLE, UE and PTE of the scale and location
parameters in order to see which one is Pitman closer to the target parameter.
The layout of this paper is as follows. In Section 2, the problem of estimation
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has been discussed. We present the MLE, UE and PTE based on GLR
test. Section 3 contains the PMC of estimators in pairs. Comparison based
on MSE discussed with details in Section 4. Finally, numerical example is
presented is Section 5 to show the performance of the estimators for real
data.

2 Preliminary Test Estimation
In this section, we study the estimation of the location and scale parameters
for the exponential distribution based on records, which include ML and UE,
as well as PTE. Let us use the notation Ri to signify the ith upper record,
for convenience of notations we consider R1 = X1. Let R1, R2, . . . , Rn be the
first n upper records from exponential distribution with location parameter
µ and scale parameter σ. Then, the likelihood function is given by (see,
Arnold et al., 1998)

L(µ, σ) =
n−1∏
i=1

f(ri)

1− F (ri)
f(rn) = σne−σ(rn−µ), r1 > µ,

where ri is the corresponding observed value of Ri. Since the likelihood
function is an increasing function of µ, it is obvious that MLE of location
parameter is µ̂ = R1. Also, with some straightforward calculation one can
get that MLE of σ is

σ̂ =
n

Rn −R1
.

By using the properties of records from exponential distribution, it is known
that σ(R1 − µ) and σ(Rn −R1) are independent with standard exponential
and gamma distribution with parameters (n− 1, 1). Therefore, UE of σ and
µ are

σ̃ =
n− 2

Rn −R1
and µ̃ =

nR1 −Rn

n− 1
,

respectively.
Now our interest is to estimate the parameter when it is suspected that σ (or
µ) may be σ0 (or µ0). First, we consider the estimation of scale parameter.
When the non sample prior information σ = σ0 is doubted, the choice of
estimator for σ will depend on the outcome of the test H0 : σ = σ0 against
the alternative H1 : σ ̸= σ0. Combining the result of test and a target
estimator, if H0 were true we would use σ0 as an estimator of σ, otherwise,
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PTE will reduce to the target estimator. In this context, UE is considered
as target estimator. Accordingly, we write the possible estimator as

σ̃PT = σ0I(As) + σ̃I(Ās) = σ̃ − (σ̃ − σ0)I(As),

where As is the acceptance region of H0 : σ = σ0, vs. H1 : σ ̸= σ0 and I(As)
is the indicator function of set As. In order to determine the set As, we use
the GLR test of level α where the likelihood ratio statistic is obtained as
follows

Λ =
L(µ̂, σ0)

L(µ̂, σ̂)
=

{
σ0(Rn −R1)

n

}n

e
−n

{
σ0(Rn−R1)

n
−1

}
=

(
Z0

2n

)n

e−n(
Z0
2n

−1).

So the critical region of the GLR test is given by

Cs =

{
z :

(
Z0

2n

)n

e
−n

(
Z0
2n

−1
)
6 c0

}
,

where c0 is chosen such that Pr
{(

Z0
2n

)n
e
−n

(
Z0
2n

−1
)
6 c0

}
= α. As a function

of Z0, the likelihood ratio statistic first increases and then decreases, so it
can be clearly seen that we will reject H0 if, for some positive values a and b

Z0 < a or Z0 > b,

ane−
a
2 = bne−

b
2 .

Since under null hypothesis Z0 has chi-square distribution with ν = 2(n− 1)
degrees of freedom, we choose a and b such that

∫ b
a h2(n−1)(t)dt = 1− α

a2h2(n−1)(a) = b2h2(n−1)(b),

where hν(·) stands for the pdf of chi-square distribution with ν = 2(n − 1)
degrees of freedom. Table 680 of Tate and Klett (1959) presents critical
values for applying the GLR test for some choices of n and α.
Similarly, to estimate the location parameter, we write the PTE as

µ̃PT = µ0I(Al) + µ̃I(Āl) = µ̃− (µ̃− µ0)I(Al),
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where Al is the acceptance region of H0 : µ = µ0, vs. H1 : µ ̸= µ0 and I(Al)
is the indicator function of set Al. To determine the set Al, the GLR test of
level α leads to the following quantity

W =
R1 − µ0

Rn−R1
n−1

.

Using the independence of σ(R1 − µ0) and σ(Rn − R1), it is easy to verify
that W has F-distribution with (2, 2(n− 1)) degrees of freedom (see, Arnold
et al., 1998). We will reject H0 : µ = µ0 if

(n− 1)(R1 − µ0)

Rn −R1
> f(2,2(n−1))(1− α) = f,

where f(ν1,ν2)(p) is the pth quantile of the F-distribution with (ν1, ν2) degrees
of freedom.
In the sequence, the proposed estimators will be compared under PMC and
MSE criteria.

3 Comparison Based on PMC
In this section, we compare the proposed estimators via Pitman measure of
closeness. First, the estimators of scale parameter are compared in pairs,
and then we consider the estimators of the location parameter.

3.1 Results for Scale Parameter
In this subsection, the comparison of scale estimators is considered in terms
of Pitman measure of closeness. Since PMC suffers from lack of transitivity,
we have to conduct three comparisons. To this end, we use the variable
Z = 2σ(Rn −R1) and define the following events

As =

{
a

∆s
< Z <

b

∆s

}
,

B1 = {Z < 2(n− 1)} and B2(j) =

{
|∆s − 1| <

∣∣∣∣2jZ − 1

∣∣∣∣} .

where ∆s = σ0
σ and j = n − 2, n. We will show that the Pitman-closeness

probability of the estimators is the intersection or union of this events. Let
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us first find the probability of desired events. It is easy to verify that

Pr(B1∩ Ās) = Pr
(
Z < min

{
2(n− 1),

a

∆s

})
+Pr

(
Z < 2(n− 1), Z >

b

∆s

)
.

(3)
With some simple calculations, it follows that the event B2(j) is equivalent
to

B2(j) =


{Z < 2j

2−∆s
} ∪ {Z > 2j

∆s
}, 0 < ∆s < 1;

{Z < 2j
∆s

} ∪ {Z > 2j
2−∆s

}, 1 6 ∆s < 2;

{Z < 2j
∆s

}, 2 6 ∆s.

So the probability of the intersection of B2(j) and As is obtained as

Pr(B2(j) ∩As) =
Pr{ a

∆s
< Z < min( b

∆s
, 2j
2−∆s

)}+ Pr{ 2j
∆s

< Z < b
∆s

}, 0 < ∆s < 1;

Pr{ a
∆s

< Z < 2j
∆s

}+ Pr{max( a
∆s

, 2j
2−∆s

) < Z < b
∆s

}, 1 6 ∆s < 2;

Pr{ a
∆s

< Z < 2j
∆s

}, 2 6 ∆s.

If 0 < ∆s < 1, then b
∆s

> 2j
2−∆s

, however in the case of a
∆s

> 2j
2−∆s

, we have

Pr
{

a

∆s
< Z < min

(
b

∆s
,

2j

2−∆s

)}
= 0.

And similarly, if 1 < ∆s < 2, then a
∆s

< 2j
2−∆s

, but b
∆s

< 2j
2−∆s

leads to

Pr
{
max

(
a

∆s
,

2j

2−∆s

)
< Z <

b

∆s

}
= 0.
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Therefore, the probability of (B2(j) ∩As) can be rewritten as follows

Pr(B2(j) ∩As) =
Pr
{
min

(
a
∆s

, 2j
2−∆s

)
< Z < 2j

2−∆s

}
+ Pr{ 2j

∆s
< Z < b

∆s
}, 0 < ∆s < 1;

Pr{ a
∆s

< Z < 2j
∆s

}+ Pr
{

2j
2−∆s

< Z < max
(

2j
2−∆s

, b
∆s

)}
, 1 6 ∆s < 2;

Pr{ a
∆s

< Z < 2j
∆s

}, 2 6 ∆s.

(4)

With the same method as mentioned for Pr(B2(j) ∩As), we have

Pr(B̄2(j) ∩As) =


Pr
{
max

(
a
∆s

, 2j
2−∆s

)
< Z < 2j

∆s

}
, 0 < ∆s < 1;

Pr
{

2j
∆s

< Z < min
(

b
∆s

, 2j
2−∆s

)}
, 1 6 ∆s < 2;

Pr{ 2j
∆s

< Z < b
∆s

}, 2 6 ∆s.

(5)

Now, we turn our attention to the probability of closeness of the scale esti-
mators. For the calculation of the probability of closeness between σ̂ and σ̃,
we use (1) as follows

PMC(σ̃, σ̂|σ) = Pr
{∣∣∣∣ (n− 2)

(Rn −R1)
− σ

∣∣∣∣ < ∣∣∣∣ n

(Rn −R1)
− σ

∣∣∣∣}
= Pr

{
(n− 2)2 − 2σ(n− 2)(Rn −R1) < n2 − 2nσ(Rn −R1)

}
= Pr {Z < 2(n− 1)} .

With the same justification as mentioned in Balakrishnan et al. (2011), we
have

PMC(σ̃, σ̂|σ) = Pr(B1) >
1

2
.

So the unbiased estimator of σ is always Pitman closer than the correspond-
ing MLE. Now, we consider the comparison of σ̃PT with UE. Since

Pr(σ̃PT = σ̃) = Pr
(
Z <

a

∆s
or Z >

b

∆s

)
= Pr(Ās) ̸= 0,
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comparison is applied based on (2). Thus, we have

GPC(σ̃PT , σ̃|σ) = Pr(|σ̃PT − σ| < |σ̃ − σ|)− Pr(|σ̃PT − σ| > |σ̃ − σ|)

= Pr(B2(n−2) ∩As)− Pr(B̄2(n−2) ∩As). (6)

Substituting (4) and (5), for j = n − 2, in (6), we are able to compare two
estimators. Let us consider the Pitman closeness of σ̃PT in compare with
MLE. In this case,

Pr{σ̃ − (σ̃ − σ0)I(As) = σ̂} = 0,

so we use the concept of PMC to compare the estimators. We have

PMC(σ̃PT , σ̂|σ) = Pr{|σ̃ − (σ̃ − σ0)I(As)− σ| < |σ̂ − σ|}

= Pr{|σ̃ − σ| < |σ̂ − σ|, I(As) = 0}
+ Pr{|σ0 − σ| < |σ̂ − σ|, I(As) = 1}

= Pr{B1 ∩ Ās}+ Pr{B2(n) ∩As},

which could be found by (3) and (4). All the probabilities of closeness depend
on the number of records, ∆s and the size of test, so for different values of
n and α, the graphs of GPC and PMC have been drawn for ∆s ∈ (0, 3), in
Figures 1 and 2. To determine the range of ∆s for which σ̃PT is closer to σ,
the line GPC= 0 (or PMC= 0.5) is drawn. In plot (A) of Figures 1 and 2, the
GPC or PMC is drawn for fixed n = 10 and α = 0.05, 0.025, 0.005, 0.0025,
and plot (B), the GPC or PMC is drawn for fixed α = 0.05 and n = 4, 5, 6, 7.
The maximum value of PMC or GPC occurred near the null hypothesis.

3.2 Results for Location Parameter
In this subsection, we compare three estimators of location parameter, which
was presented in Section 2. We follow the same layout as Subsection 3.1, i.e.
we first defined some events and find their probabilities, then the probabilities
of Pitman closeness are obtained using these notations. Let U = σ(R1 − µ)
and V = σ(Rn −R1), we consider

Al = {(n− 1)(U +∆l) < fV }, D1 =

{
2U >

V

n− 1

}
,

D2 = {|∆l| < U} and D3 =

{
|∆l| <

∣∣∣∣U − V

n− 1

∣∣∣∣} ,
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Figure 1. GPC of σ̃PT relative to σ̃: (A) for fixed n = 10, (B) for fixed α = 0.05.
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Figure 2. PMC of σ̃PT relative to σ̂: (A) for fixed n = 10, (B) for fixed α = 0.05.

where ∆l = σ(µ− µ0) and f = f(2,2(n−1))(1− α). For comparison of estima-
tors, we need the probabilities of the mentioned events. For later use, let us
take t1 =

∆l(n−1)
f , t2 = 2∆l(n−1)

f−1 , t3 = ∆l(n−1)
f−0.5 , λ1 = 1 + f

n−1 and

ρn(t, λ) =

∫ ∞

t

yn−1e−λy

Γ(n)
dy =

1

λn

n−1∑
k=0

e−λt(λt)k

k!
. (7)

We start with the probability of intersection of D1 and Āl. In this case, we
have two situations. For ∆l 6 0, since V

2(n−1) < fV
n−1 with probability one,
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we find that

Pr{D1 ∩ Āl} = Pr
{
U >

V

2(n− 1)
, U >

fV

n− 1
−∆l

}

= Pr
(
U >

fV

n− 1
−∆l

)

=

∫ ∞

0

∫ ∞

fv
n−1

−∆l

vn−2

Γ(n− 1)
e−(u+v)dudv = e∆lλ1−n

1 . (8)

And for ∆l > 0, the probability of D1 ∩ Āl is obtained as

Pr{D1 ∩ Āl} = Pr
(
U > max

{
V

2(n− 1)
,

fV

n− 1
−∆l

})

=

∫ t3

0

vn−2

Γ(n− 1)
e
−v 2n−1

2(n−1)dv + e∆l

∫ ∞

t3

vn−2

Γ(n− 1)
e−v(λ1)dv

=

{
2(n− 1)

2n− 1

}n−1

− ρn−1

{
t3,

2n− 1

2(n− 1)

}
+ e∆lρn−1(t3, λ1),

(9)

where ρn(·, ·) is defined in (7). For the probability of the second event, i.e.
D2, we consider two cases, first, for ∆l 6 0, we have

Pr{D2 ∩Al} = Pr
(
|∆l| < U,U <

f

n− 1
V −∆l

)

=

∫ ∞

0

∫ f
n−1

v−∆l

|∆l|

vn−2

Γ(n− 1)
e−(u+v)dudv = e∆l

{
1− λ1−n

1

}
.

(10)

And for ∆l > 0, the probability of D2 ∩Al is given by

Pr{D2 ∩Al} =

∫ ∞

2t1

∫ f
n−1

v−∆l

∆l

vn−2

Γ(n− 1)
e−(u+v)dudv

= e−∆lρn−1(2t1, 1)− e∆lρn−1(2t1, λ1). (11)

Now, let us find the probability of D3 ∩Al. We have

Pr{D3 ∩Al} = Pr
(∣∣∣∣U − V

n− 1

∣∣∣∣ > |∆l| , U <
f

n− 1
V −∆l

)
. (12)
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For ∆l > 0, the right hand side of (12) is equal to

e−∆lρn−1(t2,
n

n− 1
)− e∆lρn−1(t2, λ1) + ρn−1(∆l(n− 1), 1)− e∆l

× ρn−1

(
∆l(n− 1),

n

n− 1

)
,

and, for ∆l 6 0, the right hand side of (12) is equal to

e∆l

{
(
n− 1

n
)n−1 − (

1

λ1
)n−1

}
+ ρn−1(−∆l(n− 1), 1)− e−∆l

× ρn−1

(
−∆l(n− 1),

n

n− 1

)
.

Finally, the probability of D̄3 ∩Al is given by

Pr{D̄3 ∩Al} = Pr
(
|∆l| >

∣∣∣∣U − V

n− 1

∣∣∣∣ , U <
f

n− 1
V −∆l

)

= 1− ρn−1(−∆l(n− 1), 1)− e∆l

( n
n−1)

n−1

+ e−∆lρn−1

(
−∆l(n− 1),

n

n− 1

)
, (13)

when ∆l 6 0, and it is equal to

Pr{D̄3 ∩Al} = (e∆l − e−∆l)

{
ρn−1

(
∆l(n− 1),

n

n− 1

)}
− ρn−1(∆l(n− 1), 1)

− e−∆l

{
ρn−1

(
t2,

n

n− 1

)
− ρn−1

(
∆l(n− 1),

n

n− 1

)}
+ ρn−1(t1, 1)− e∆l {ρn−1(t1, λ1)− ρn−1(t2, λ1)]}, (14)

when ∆l > 0. Now, we turn our attention to the probability of closeness of
location estimators. To compare the estimator µ̃ with µ̂, in terms of PMC,
we have

PMC(µ̃, µ̂|µ) = Pr (D1) = Pr
(
2U >

V

n− 1

)
.
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On the other hand, it is easy to find that

Pr{D1} = Pr
(
2U >

V

n− 1

)

=

∫ ∞

0

∫ ∞

v
2(n−1)

vn−2

Γ(n− 1)
e−(u+v)dudv

=

{
2(n− 1)

2n− 1

}n−1

.

Since Pr{D1} is decreasing in n, and

lim
n→∞

{
2(n− 1)

2n− 1

}n−1

>
1

2
,

the UE of µ is always Pitman closer than MLE. Now, we consider the com-
parison of µ̃PT with UE of µ. Since

Pr{µ̃PT = µ̃} = Pr((n− 1)(U +∆l) > fV ) = Pr(Āl) ̸= 0,

comparison is applied based on GPC. Thus,

GPC(µ̃PT , µ̃|µ) = Pr(|µ̃PT − µ| < |µ̃− µ|)− Pr(|µ̃PT − µ| > |µ̃− µ|)

= Pr(D3 ∩Al)− Pr(D̄3 ∩Al).

Using (12), (13) and (14), we are able to compare the estimators. Let us
consider the Pitman closeness of µ̃PT in compare with MLE. In this case

Pr{µ̃− (µ̃− µ0)I(Al) = µ̂} = 0,

so, we use the concept of PMC to compare the estimators.

PMC(µ̃PT , µ̂|µ) = Pr{|µ̃− (µ̃− µ0)I(Al)− µ| < |µ̂− µ|}

= Pr
{
2R1 −

Rn −R1

n− 1
> 2µ, I(Al) = 0

}
+ Pr{|µ0 − µ| < |R1 − µ| , I(Al) = 1}

= Pr{D1 ∩ Āl}+ Pr{D2 ∩Al}.
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Using (8), (9), (10) and (11), we find the PMC(µ̃PT , µ̂|µ).
Similar to the probability of closeness for the scale estimators, in this section
all the probabilities depend on the number of records, ∆l and the size of
test. The graphs of GPC and PMC for different values of n and α, when
∆l ∈ (−5, 5) are displayed in Figures 3 and 4, respectively. Again the maxi-
mum value of GPC and PMC occurred near the null hypothesis. Looking at
the Figures 3 and 4, it is noticeable that Pitman criterion seems robust for
location parameter.
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Figure 3. GPC of µ̃PT relative to µ̃: (A) for fixed n = 10, (B) for fixed α = 0.05.
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Figure 4. PMC of µ̃PT relative to µ̂: (A) for fixed n = 10, (B) for fixed α = 0.05.
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4 MSE Evaluations
Considering the MSE as a criterion of comparison, in this section we compare
the performance of the proposed estimators based on mean-squared relative
efficiency (MRE). We first consider the estimators of the scale parameter and
then will find the MRE of the location estimators.

4.1 Results for Scale Parameter

In order to derive the MSE of estimators, we recall that if χ2
ν is a chi-square

random variable with ν degrees of freedom, then, for k > 0

E{(χ2
ν)

−k} =

(
1

2

)k Γ(ν2 − k)

Γ(ν2 )
, (15)

where Γ(·) is the complete gamma function. Moreover, let φ(χ2
ν) be a mea-

surable function of χ2
ν , then

E{(χ2
ν)

−kφ(χ2
ν)} =

(
1

2

)k Γ(ν2 − k)

Γ(ν2 )
E{φ(χ2

ν−2k)}. (16)

From (15), MSE of ML and unbiased estimators are straightforward. We
have

MSE(σ̂) =
(n+ 6)σ2

(n− 2)(n− 3)
and MSE(σ̃) =

σ2

(n− 3)
. (17)

Now, for PTE we have

MSE(σ̃PT ) = E{(σ̃ − σ)− (σ̃ − σ0)I(As)}2

= MSE(σ̃)− E{σ̃2I(As)}+ (σ2
0 − 2σσ0)E{I(As)}

+ 2σE{σ̃I(As)}. (18)

The first term on the right hand side of (18) is given as in (17). For the
second term, take φ(χ2

ν) = I(As) then using (16), for any k > 0, we have

E{σ̃kI(As)} = {σ(n− 2)}k
Γ(ν2 − k)

Γ(ν2 )

{
Hν−2k

(
b

∆s

)
−Hν−2k

(
a

∆s

)}
,

(19)
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where ∆s = σ0
σ and Hν(·) stands for the cdf of chi-square distribution with

ν degrees of freedom. For k = 0, 1, 2, substitution (19) in (18) leads to

MSE(σ̃PT ) = MSE(σ̃)−
σ2(n− 2){Hν−4(

b
∆s

)−Hν−4(
a
∆s

)}
(n− 3)

+ (σ2
0 − 2σσ0)

×
{
Hν

(
b

∆s

)
−Hν

(
a

∆s

)}

+ 2σ2

{
Hν−2

(
b

∆s

)
−Hν−2

(
a

∆s

)}
.

The efficiency of MLE compare to UE is

MRE(σ̃, σ̂) =
MSE(σ̂)

MSE(σ̃)
=

n+ 6

n− 2
> 1. (20)

Therefore, based on MSE criteria unbiased estimator of the scale parameter
is superior. Now, we compare the MSE functions of σ̂ and σ̃ with respect to
preliminary test estimator.

MRE(σ̃PT , σ̃) =

[
1− (n− 2)

{
Hν−4

(
b

∆s

)
−Hν−4

(
a

∆s

)}

+ (n− 3)(∆2
s − 2∆s)

{
Hν

(
b

∆s

)
−Hν

(
a

∆s

)}

+2(n− 3)

{
Hν−2

(
b

∆s

)
−Hν−2

(
a

∆s

)}]−1

.

Let us now consider the efficiency function of the σ̃PT relative to the MLE.
Therefore,

MRE(σ̃PT , σ̂) =

[
(n− 2)

(n+ 6)
− (n− 2)2

(n+ 6)

{
Hν−4

(
b

∆s

)
−Hν−4

(
a

∆s

)}

+
(n− 2)(n− 3)

(n+ 6)
(∆2

s − 2∆s)

{
Hν

(
b

∆s

)
−Hν

(
a

∆s

)}

+
2(n− 2)(n− 3)

(n+ 6)

{
Hν−2

(
b

∆s

)
−Hν−2

(
a

∆s

)}]−1

.
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Note that the relative efficiencies depend on the number of records and size
of the test. We have plotted the MRE of the proposed estimators for fixed
n = 10 and α = 0.05, 0.025, 0.005, 0.0025, in part (A) of Figures 5 and
6. In plot (B) of these figures, MREs are presented for fixed α = 0.05 and
n = 4, 5, 6, 7. Obviously, the relative efficiency reaches its maximum under
H0. The preliminary test estimator is more efficient near the null hypothesis,
which was widely anticipated. Looking at the plot (A) of these figures, it is
noticeable that comparing with MSE, PMC criterion is less effected by the
size of test.
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Figure 5. Efficiency of σ̃PT relative to σ̃: (A) for fixed n = 10, (B) for fixed α = 0.05.
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Figure 6. Efficiency of σ̃PT relative to σ̂: (A) for fixed n = 10, (B) for fixed α = 0.05.
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4.2 Results for Location Parameter

In this subsection, we compare the estimators of location parameter via MRE.
To do this, first, the MSE of estimators are computed, then, to find the su-
perior estimator, we have considered the MRE of estimators. It is easy to
find that,

MSE(µ̂) =
1

σ2
and MSE(µ̃) =

1

(n− 1)σ2
. (21)

Now, let us consider the MSE of µ̃PT , which could be rewritten as follows

MSE(µ̃PT ) = E

[{
R1 −

Rn −R1

n− 1
−

(
R1 −

Rn −R1

n− 1
− µ0

)
I(Al)− µ

}2
]

=
1

σ2
E

{(
U − V

n− 1

)2

I(Āl)

}
+∆2

lE{I(Al)}

=
1

σ2

[
E

{
U2I(Āl) +

V 2

(n− 1)2
I(Āl)−

2UV

n− 1
I(Āl)

}
+∆2

lE{I(Al)}
]
. (22)

The last expression on the right hand side of (22) is given by

Pr{Al} =


1− e∆l

λn−1
1

, ∆l 6 0;

ρn−1(t1, 1)− e∆lρn−1(t1, λ1), ∆l > 0,

(23)

where ρn(·, ·) is defined in (7). Thus, calculating the MSE(µ̃PT ) reduce to
finding the E{U2I(Āl)}, E{UV I(Āl)} and E{V 2I(Āl)}. When ∆l < 0, the
expectation of U2I(Āl) is given by

E{U2I(Āl)} =

∫ ∞

0

∫ ∞

fv
n−1

−∆l

u2e−u vn−2

Γ(n− 1)
e−vdudv

=
e∆l(2− 2∆l +∆2

l )

λn−1
1

+
e∆l2f(1−∆l)

λn
1

+
e∆l

λn+1
1

nf2

(n− 1)
. (24)
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Moreover, for ∆l > 0, the term E{U2I(Āl)} is obtained as

E{U2I(Āl)} =

∫ ∞

t1

∫ ∞

fv
n−1

−∆l

u2e−u vn−2

Γ(n− 1)
e−vdudv

= e∆l
{
(2− 2∆l +∆2

l )ρn−1(t1, λ1)

+2f(1−∆l)ρn(t1, λ1) +
nf2ρn+1(t1, λ1)

(n− 1)

}
. (25)

With similar method as was done for U2I(Āl), we have

E{V 2I(Āl)} =


e∆ln(n−1)

λn+1
1

, ∆l < 0;

e∆ln(n− 1)ρn+1(t1, λ1), ∆l > 0,

(26)

and

E{UV I(Āl)} =
(n−1)e∆l (1−∆l)

λn
1

+ ne∆lf

λn+1
1

, ∆l 6 0;

(n− 1)e∆l(1−∆l)ρn(t1, λ1) + ne∆lfρn+1(t1, λ1), ∆l > 0.

(27)

Using (23), (24), (25), (26) and (27), we could find the MSE of µ̃PT . We
have plotted the MRE of location estimators in Figures 7 and 8, which have
similar behaviors to the scale parameter estimators.

5 Illustrative Example
In this section, we consider an example to illustrate the performance of the
proposed PTE. Table 1 presents the times (in minutes) between 48 consec-
utive telephone calls to a company switchboard, presented by Castillo et al.
(2005). They assumed that the times between 48 consecutive telephone calls
followed exponential distribution, see Castillo et al. (2005) page 109. Table
2 contains the upper record extracted from the data in Table 1. The ML
estimation of the scale parameter is σ̂ = 3.14 and unbiased estimation is
σ̃ = 2.09. Moreover, the estimations of location parameter are µ̂ = 1.34 and
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Figure 7. Efficiency of µ̃PT relative to µ̃: (A) for fixed n = 10, (B) for fixed α = 0.05.
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Figure 8. Efficiency of µ̃PT relative to µ̂: (A) for fixed n = 10, (B) for fixed α = 0.05.

µ̃ = 0.99. If there is an uncertain information about that is σ0 = 2.61, then
the PTE is chosen based on the result of following test

H0 : σ = 2.61 vs H1 : σ ̸= 2.61.

Using Table 680 of Tate and Klett (1959) for n = 6 and α = 0.05, the critical
values are a = 4.7584 and b = 24.3498. Since

4.7584 < 2σ0(Rn −R1) = 9.97 < 24.3498,

there is no evidence to reject H0, so the PTE is σ̃PT = 2.61. For the subjected
PTE, we have computed MRE and GPC (PMC) in compare with UE (MLE).
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We consider two estimated values for ∆s based on observed MLE (∆̂s) and
UE (∆̃s). Numerical results are presented in Table 3. These results confirm
the analytical claims in Sections 2 and 3.

Table 1. Times (in minutes) between 48 consecutive calls.

1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33 2.20 0.62 3.20 1.38
0.96 0.28 0.44 0.59 0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09
2.18 0.07 0.02 0.64 0.28 0.68 1.07 3.25 0.59 2.39 0.27 0.34
2.18 0.41 1.08 0.57 0.35 0.69 0.25 0.57 1.90 0.56 0.09 0.28

Table 2. Record values from times between 48 consecutive calls.

i 1 2 3 4 5 6

Ri 1.34 1.68 1.86 2.20 3.20 3.25

Table 3. MRE and PMC of PTE compare with MLE and UE for scale parameter.

MRE(σ̃PT , σ̂) MRE(σ̃PT , σ̃) PMC(σ̃PT , σ̂) GPC(σ̃PT , σ̃)

∆̂s = 0.83 3.70 1.23 0.7337 0.3002
∆̃s = 1.25 3.83 1.27 0.5888 0.1279

To find the PTE of location parameter, we have to conduct the following
test

H0 : µ = 0 vs H1 : µ ̸= 0.

In this case, the critical value is f(2,10)(0.95) = 4.102. Since

(n− 1)R1

Rn −R1
= 3.507 < 4.102,

there is no evidence to reject H0, which means that the PTE is zero. In
Table 4, MRE and PMC of PTE are presented in compare with ML and UE.

Table 4. MRE and PMC of PTE compare with MLE and UE for location parameter.

MRE(µ̃PT , µ̂) MRE(µ̃PT , µ̃) PMC(µ̃PT , µ̂) GPC(µ̃PT , µ̃)

∆̂l = 4.2 0.2 0.2411 0.541 -0.269
∆̃l = 2.06 0.286 0.343 0.325 -0.670
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In comparison of µ̃PT and µ̃, both criteria, MRE and GPC, prefer µ̃, so
unbiased estimation is Pitman closer and more efficient than µ̃PT . However,
in comparison of µ̃PT and µ̂, when ∆̃l = 4.2, MRE and PMC do not confirm
each other. Now, this question arises for a practitioner that which estimator
must be chosen in a practical situation. We respond that it depends on which
criterion is more important for that user. If PMC is established as the most
important criterion, then based on the results of Table 4, the µ̃PT must be
considered for the purpose of estimation. On the other hand, if we consider
the MRE criterion as the most important one, then we must prefer the µ̂. It
may be noted that one numerical example does not tell us much more.

6 Concluding Remarks
In this article, the preliminary test estimator for the location and scale pa-
rameters of exponential distribution is introduced. Performance of the pro-
posed estimator is investigated and compared with ML and UE by MSE and
PMC criteria. It is noticeable that the results presented in this paper can be
applied for other kind of ordered data such as censored data, k-record data.
Moreover, let the underlying distribution be Parato with scale parameter µ
and shape σ, then it is well-known that log(X) has exponential distribution
with location log(µ) and scale σ which means that the MSE and PMC ex-
pressions of estimators of Pareto distribution are homogeneous to those in
exponential distribution. Finally, since based on neither MSE nor PMC,
PTE is uniformly superior to the corresponding competing estimators, ML
and UE, further study may be needed to find the optimum significance level
of the preliminary test, which leaves for further researches.
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