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Abstract. In this paper, we consider the estimation of the unknown pa-
rameter of the scaled logistic distribution on the basis of record values. The
maximum likelihood method does not provide an explicit estimator for the
scale parameter. In this article, we present a simple method of deriving an
explicit estimator by approximating the likelihood function. Bayes estima-
tor is obtained using importance sampling. Asymptotic confidence intervals,
bootstrap confidence interval and credible interval are also proposed. Monte
Carlo simulations are performed to compare the different proposed methods.
Analysis of one real data set is also given for illustrative purposes.
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1 Introduction

Let X7, Xo,... be asequence of independent and identically distributed (iid)
random variables with cumulative distribution function (cdf) F(z;6) and
probability density function (pdf) f(z;#), where 0 is an unknown parameter.
An observation X; will be called an upper record value if its value exceeds
that of all previous observations. Thus, X; is an upper record if X; > X; for
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42 Analysis of Record Data from the Scaled Logistic Distribution

every ¢ < j. An analogous definition can be given for lower record values. If
{U(n), n > 1} is defined by

U =1, Um)=min{j:j > U(n—1), X; > Xy@n_n}

for n > 2, then the sequence {XU(n), n > 1} provides a sequence of upper
record statistics. The sequence {U(n), n > 1} represents the record times.

Record statistics are defined as a model for successive extremes in a se-
quence of iid random variables (see, for example Glick, 1978). These statistics
are of interest and important in many real life problems involving weather,
economics, sports data and life testing studies. The times achieved in ath-
letic events are most easily accessed in terms of record values. In reliability
and life testing experiments, many products fail under stress. Hence, in such
experiments, measurements may be made sequentially and only the record
values (lower or upper) are observed. The statistical study of record values
started with Chandler (1952) and has now spread in different directions. For
more details on record values and its applications, see Arnold et al. (1998)
and Nevzorov (2001). See also Ahmadi and Balakrishnan (2010), Soliman
and Al-Aboud (2008) and Lee et al. (2011).

In recent years, a lot of work has been on statistical inference based
on record data , see for example, Ahmadi and Arghami (2001, 2003a, b);
Carlin and Gelfand (1993); Balakrishnan et al. (1995); Feuerverger and Hall
(1998); Gulati and Padgett (1995, 2003), Asgharzadeh and Fallah (2011) and
MirMostafaee and Ahmadi (2011), and references therein.

The logistic distribution, as well as the logistic growth curve, have many
applications in reliability and in the biological sciences. The logistic model
has often been selected as a substitute for the normal because of the similarity
of the two distributions. Although much work has been done on inferential
procedures for logistic distribution based on complete and censored data, but
not much work has been done for record data. In this article, we consider
record values from a scaled logistic distribution.

The rest of the paper is organized as follows. In Section 2, we discuss
the point estimation of the unknown parameter of the scaled logistic dis-
tribution. We obtain the maximum likelihood estimator (MLE) and the
approximate maximum likelihood estimator (AMLE). We also consider the
Bayesian estimator based on the assumption that the unknown parameter
has an inverse gamma prior. It is observed that the Bayesian estimator
cannot be obtained in closed form and we propose to use importance sam-
pling technique to compute the Bayes estimator. In Section 3, we provide
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asymptotic confidence interval, bootstrap confidence interval and Bayesian
confidence interval. Bayesian confidence interval is obtained using impor-
tance sampling technique. Finally, in Section 4, one numerical example and
a Monte Carlo simulation study are given to illustrate the results.

2 Point Estimation

In this subsection, we discuss the point estimation of the scale parameter of
the logistic distribution.

2.1 Maximum Likelihood Estimation

Let the failure time distribution be the scaled logistic distribution with prob-
ability density function (pdf)

_Y

gy o) = —"5—,  —co<y<oo, a>0 (1)
o(l+e7)2
and cumulative distribution function (cdf)
1
Gly,0) = —, —00 <y < +oo, o>0. (2)
1+e o
Suppose we observe m upper record values Yy (1) = y1, Yy2) = y2,-- -,
Y7 (m) = Ym from the logistic distribution with pdf (1). The likelihood func-
tion (LF) of o for the given record sample y = (y1,¥2,...,Ym) is given (see
Arnold et al., 1998) by
T 9Wio)
Lo — o A A e
(0]y) = 9(ym, o) ];[1 T Gy o)
m _Yi\_q
m (1 o
_ e_yTU_mHZ_l( +eym ) ) (3)
14+e o

The log-likelihood function is

m
In L(oly) = L Zln(l + e_%) —In(14e 7).
o
i=1
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44 Analysis of Record Data from the Scaled Logistic Distribution

Taking the derivative with respect to ¢ and equating it to zero, we obtain
the likelihood equation for o as

dIn L(oly) ym_i_ Z yie % _iyme i
do —l+te Y 21 4 e
:O7
or Yi Ym
7772 L N - (4)

i=1 ]. + e o a ]- + (& g
Since (4) can not be solved analytically, some numerical methods such as

Newton-Raphson method should be used to find the MLE of o.

The following theorem shows the existence and uniqueness of the MLE
of o.

Theorem 1. Suppose we have observed the first m upper record values
Yoy = 1, Yue) = Y2, Yum) = Ym from the logistic distribution with
pdf (1). Then, the MLE of o exists and is unique if and only if ym, > 0.

Proof. Define p(0) = o2 L(@lY) e have

do
2 m _ Y _Ym
o®dIn L(oly) yie o Yme @
plo) = ——= =y, —mo — T — —
(@) do " ;1-{—6% 1+e K
We note that
lim p(o) =ym,  lim (o) = —oo
and
/ % y2e— i y?ne d
=-m— . <0
¢'(0) = —m 2_: — —

It follows that ¢(0) > 0 if and only if y,,, > 0. Therefore in this case, (o) is
a continuous function on (0, co0) which decreases monotonically from positive
to negative values. Therefore, the MLE of o which is a solution to ¢(o) = 0,
exists and is unique if and only if ¥,, > 0. O

Let us now discuss P (Yy () > 0) for different values of m. The density

function of the mth upper record value Y, is given (see Arnold et al.,
1998) by

(= In[1 — F(ym))™
m!

, —00 < Yy < 00. (5)
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For the scaled logistic distribution, the density function of Y7;(,,) becomes

Ym m
o <y7m +1n[1+e‘7])
fm(y’m) = v \ 2 ) m! ) —00 < Yy < Q.
o (1 + 6_7> ’

In Table 1, we have presented the values of P.(Y7(,) > 0) = fooo Fm(Ym)dym,
for different values of m. From Table 1, we can see that P.(Yy(y) > 0)
is very large. This means that the chances of obtaining the MLEs are
very high in practice. Also, as the sample size m increases, the proba-
bility of the feasibility of the MLE increases. On the other hand, since
Pr(Yymmy > 0) = PT(@ > 0), the above probability does not depend on
the parameter o.

Table 1. Values of Pp(Yy(m) > 0) for different m.

m 2 3 5 7 10 15 20

P.(Yy(m) >0) 09667 0.9944 0.9999 0.9999 0.9999 1.0000 1.0000

2.2 Approximate Maximum Likelihood Estimation

Since the MLE of ¢ when it exists, is not in an explicit form, we here propose
the approximate MLE which has the explicit expression. Let us consider
T; = %, 1 =1,2,...,m. Then z1,...,z,, are the first m observed record

data from the standard logistic distribution with pdf and cdf as

—T

e
f(x):m, —OO<.Z'<OO,
and !
F(:U):1+e_x, —00 < x < 00,
respectively. Since g(y,0) = 2 f(¥£) and G(y,0) = F(£), and
fla) =F@)1-F(z)],  f(z)=f(=)[l-2F(2)], (6)
the LF based on the transformed record data, x = (z1,...,x,,) may be
rewritten as .
L(o) = L(o|x) = o~ " f(wm) [ ] Flx:) - (7)
i=1
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46 Analysis of Record Data from the Scaled Logistic Distribution

The log-likelihood function is

m—1

InL(o) =—mlno +In f(z,) + Z In F(z;). (8)
i=1

By using the equation (6), we derive the likelihood equation for o from (8),

as
dinL(oc) 1 B
da——g{mjtzgl:xz—:pm Tm) E z; F wz}—O. (9)

The likelihood equation in (9) does not admit an explicit solution because
of the presence of the term F'(x;) i = 1,...,m. Therefore, we approximate
the term F'(x;) by expanding it in a Taylor series around E(X;) = ;. Some
approximate solutions for the MLEs have been discussed in the book by
Tiku et al. (1986). Balakrishnan and Aggarwala (2000), Balakrishnan and
Kannan (2000), Balakrishnan and Asgharzadeh (2005), Raqab et al. (2010)
and Asgharzadeh et al. (2011) used approximate solutions for the MLEs
when the data are progressively censored.

From Arnold et al. (1998), it is known that

4

F(X;) Ui,

where Uj is the ith record statistic from the uniform U (0, 1) distribution. We

then have
d

X; F~Y(Uy), (10)

and hence
8 = B(Xi) =~ F~H(E(Uy)). (11)

From Arnold et al. (1998), it is known that

EWﬁ:l—(in, i=1,...,m. (12)

Since, for the standard logistic distribution, we have

Fﬂm:m<1‘), (13)

1—u

we can approximate &; by F~1{1 — (%)”1} = In(2"+! —1).
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Now, upon expanding the function F'(x;) around the point J; and keeping

only the first two terms, we get
F(z;) = F(6;) + (zi — 6:) f(0:)
:a’i_l'ﬁixi, t=1,...,m, (14)
where
OéZ:F((SZ)—(SZf((SZ), 1= 1,...,m,
and
Bi=f(6:;)=0, i=1,...,m.

Using the expression in (14), we approximate the likelihood equation in (9)
by

dinL*(0) 1 % S B
T - _; {m + ;wz - xm(am + Bmxm) - ;xz<az + Bzxz)} - 0

(15)
which can be rewritten as

1 (& < 1 .
—m — p (Z Yi — OmYm — Z ()éiyi) + -2 (6my72n + Zﬁz’y?) =0 (16)
i=1 i=1 i=1

By solving the quadratic equation in (16) for o, we obtain the approximate

MLE of ¢ as
. —A+VA24+4AmB
5= , (17)
2m
where

m m m
A=y —amym — > i, B=Buyn+ > Bl (18)
i i=1

=1 =1

Note that Eq. (16) has two roots but since B > 0, only one root in (17)
is admissible. The approximate MLE in (17) may provide us with a good
starting value for the iterative solution of the likelihood equation in (4).

2.3 Bayes Estimation

Here we consider the Bayes estimation of the unknown parameter o. The
loss function is squared error. It is assumed that ¢ has an inverse gamma
prior, IG(a,b), with pdf

(o) x e_ga_(aﬂ), oc>0, a,b>0. (19)
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48 Analysis of Record Data from the Scaled Logistic Distribution

This prior is suitable for deriving the posterior density. If a = b = 0, the

prior has the pdf
1

(o) x p
which is the Jeffreys non-informative prior distribution of the parameter o.
The inverse gamma prior distribution is widely used in Bayesian analysis. It
is often used as the conjugate prior of the variance parameter in a normal
distribution. It is also used as the conjugate prior of the exponential mean
in a exponential distribution.

To choose the hyper-parameters a and b in (19), several methods have
been discussed in the literature. As suggested by Berger (1980), a common
way for determining prior parameters is to calculate them from estimated
prior moments. For the inverse gamma prior distribution, one can specify
the prior mean and variance for o, and then use the relationships

b b?

E(o) = a>1, Var(o) = - 12a=2)’ a>2

to determine a and b.
By combining the LF in (3) and the prior pdf in (19), we obtain the
posterior density of o as

_Yi\_q
) 0.8 €_é(ym+b)0'_(m+a+1) H:il(l Te ° ) .

Ym

l+e »

m(aly

The Bayes estimator of ¢ under squared error loss function is the posterior
mean of ¢ which can be written as

o0
Gps = M‘ (20)
fo m(oly)do
It is clear that the Bayes estimator of ¢ can not be obtained in a closed
form, due to the complex form of 7(cly). Here we use importance sampling
scheme to obtain the Bayes estimator of o as follows. Note that the posterior
density of o can be written as

m(oly) < IG(m + a,Ym + b) h(o) (21)
where w
noy = Umlre ) 22)
1+e 0
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Substituting (21) in (20), we can obtain the Bayes estimator of o as

E,[oh(o)]

B0 (23)

0Bs =

where E denotes the expectation with respect to the inverse gamma IG(m+

a, Ym + D).
We now apply importance sampling scheme to generate samples from the
posterior distribution 7(o|x). The steps are:

Step 1. Generate o from IG(m + a,ym, +b).
Step 2. Repeat Step 1, M times to obtain o1,...,0/.
Now, using (23), an approximate Bayesian estimate of o can obtained as
M
Gps = ﬁ Zj:l a; h(o;)
- M
ﬁ Zj:l h(o;)

For more details on important sampling scheme, see Robert and Casella
(2004).

(24)

3 Confidence Intervals

In this section, we propose different confidence intervals of the unknown
parameter o.

3.1 Approximate Confidence Interval

In mathematical statistics, the quantity E [dhzlii_(a)]Q is called the Fisher in-

formation of the sample about o, and will be denoted by I(c). Under some
regularity conditions (e.g., see Ferguson, 1996, pp. 121), it can be shown

that I(o) = — E[T0L@)]
First, let us derive the Fisher information based on the likelihood as well
as the approximate likelihood functions. From the log-likelihood function in

(9), we obtain

d>InLe) m 237" x{l—F(z)} 2x,F(zm)
Tdo? 2 o2 =
i aif (@) xp f(em)

S8 Il (25)

g
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From this expression, we obtain the Fisher information as

I(o) = _E{d2lnL(a)}

do?
w2 B FOG)] | 2B F ()
o2 o2 o2
o S EORI0) | POXI(X0) o

Proceeding similarly, we obtain from the approximate likelihood equation
n (15) that

PFInL* (o) m | 257" (1 —m)zi  20mam 3o Bia?
do? T o2 + o2 02 o2
- 35m33%n

o2

(27)

From this expression, we obtain the Fisher information as

ro=-p{TREE]

m 2370 (1 — o) B(X:) +2amE(Xm) 33 BiE(X?)

o2 o2 o2 o2

(28)
To derive the Fisher information in (26) and (28), we first need to cal-

culate the four expectations E[X;], E[X?], E{X;F(X;)} and E{X?f(X;)}.
From Ahsanullah (1995), we have

E[X] = ZC i>2,

and
1+1

E[X? —QZZC ) —i(i+1) +Z l+1

where ((-) is Riemann zeta function ((n) = Y -, k=" and for n > 2

1 1 1
Bp=-(1+= —
= (g ).
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Also, for i > 1, we have

B~ FOOY = 51 = S g (29)
=1

and

1
E[X;F(X){1-F 2{122l+2 l(2l+3)i}

=1

1 1
DY {Zk(z+k+2)i_1k(l+k+3)i}

1<I<k<oo
1
2 - |
* ZZ{ 11+ 3)iT 1(z+2)z+1}
11
+ (z+1)<22+2 3i+2>. (30)

For the proofs of (29) and (30), see the Appendix. Moreover, E{X,;F(X;)}
and E{X?f(X;)} can be obtained from the expressions

E{X;F(X;)} = E[X;] — E[Xi{1l - F(X;)}]

B{X?f(X:)} = B [X7F(X){1 - F(X:)}],
and using the above expectations.
Now under the regularity conditions, the variance of the MLE, 7, can
be approximated by inverting the Fisher information, i.e, Var(¢) ~ I~1(7).
Then, the approximate 100(1 — )% confidence interval for o based on MLE

is given by
<a + 29 \7a\r(3)> .

Similar approximate confidence interval can be obtained based on AMLE
also.

3.2 Bootstrap Confidence Intervals

In this subsection, two parametric bootstrap procedures are proposed to
construct the bootstrap confidence intervals. The first one is the percentile
bootstrap (Boot-p) confidence interval proposed by Efron (1982). The sec-
ond one is the bootstrap-t (Boot-t) confidence interval proposed by Hall
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(1988). These two parametric bootstrap procedures are described as follows.
Boot-p Procedure:
1. Estimate o, say &, from sample based on the MLE procedure.

2. Generate a bootstrap sample { X7, ..., X }, using 5. Obtain the boot-
strap estimate of o, say ¢* using the bootstrap sample.

3. Repeat Step 2 NBOOT times.

4. Order o7, ...,08gooT 38 3?1), cee 8EKNBOOT)' Then, the approximate

100(1 — )% confidence interval for o becomes

- 7\ == b
(U Boot—p <§) » 0" Boot—p (]— - 5))

Boot-t Procedure:
1. Estimate o, say &, from sample based on the MLE procedure.

2. Generate a bootstrap sample {X7,..., X*} , using ¢ and obtain the
bootstrap estimate of o, say *. Also compute V (0*) = I~1(c*).

3. Determine the T™* statistic

NG

V(o¥)
4. Repeat Steps 2 and 3 NBOOT times.

5. Define 65, , = 0 + \/?(?)T*. Order 07,...,0NpooT @8 32‘1),...,
EE"N BOOT)- Then, the approximate 100(1 — )% confidence interval for

o becomes
(oot (3) - T Boot1 (1= 5))
Boot—t 2 5 Boot—t 9 .
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3.3 Credible Interval

In Bayesian statistics, we use the posterior distribution to determine Bayesian
confidence intervals or credible intervals. An interval (I, I5) is a 100(1—~)%
credible interval for o if

1P
/ (o] y)do =1 —~.
I

Credible intervals are not unique. We can form a credible interval by taking
the highest posterior density (HPD) interval of the parameter space. A HPD
interval is such that the posterior density for every point inside the interval
is greater than that for every point outside of it.

Here we obtain the credible interval of o using the idea of Chen and Shao
(1999). Consider the posterior density of o, w(co|y). Let us denote II(cly) as
the posterior distribution function of . Denote ¢(?) as the yth quantile of
o where ¢ = inf{o : II(c|x) >~} and 0 < v < 1. For a given ¢*, we have
II(0*|y) = E[ls<o+(0)]y], where I,<,+(0) is the indicator function defined by

1 ifo<o*
lo<on(0) = { 0 ifo ; o*
b

hence, a simulation consistent estimator of II(c*|y) is

S| Io<o- (0)h(03)

I(c*|y) = i (31)
i1 (o)
where h(+) is given in (22).
Now, suppose that o(y),...,0(,) are the ordered values of o1,...,0op.
Define W)
0' .
wi= = = 1,2, M. (32)
ZZ‘:1 h(U(z’))
Then, a simulation consistent estimator of II(c*|y) is given by
0 if o* < o(1)
(o™ly) = ¢ Xiywy if 0@ < 0% <o)
1 if o* > o(M)-

Thus, an approximate estimate of o(?) is obtained as

500 — {U(l) ff gl :,-_? i (33)
og it Yiwy << Yo wy
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Now let us consider the following intervals
(640, 5<W>) L =12 M—[1-1)M]  (34)

where [a] denotes the greatest integer less than or equal to a. We then choose
the interval with the smallest width. This interval will be the 100(1 — )%
HPD interval estimate of o.

4 Numerical Computations

In this section, one numerical example and a Monte Carlo simulation are
presented to illustrate all the estimation methods described in the preceding
sections.

Example 1 (Real data set).

The following data are the amount of annual maximum daily rainfall at
Mehrabad Synoptic Station from 1952 to 2000 (see the website:
http://www.iranhydrology.com /meteo.asp)

19 20 22 16 13 35 24 20 28 13
48 15 16 22 32 10 15 34 31 16
33 28 20 26 19 23 22 35 16 24
38 26 22 21 26 29 25 22 22.2 47
23.1 23 39 32.1 49 24.2 26 18.2 28.

After subtracting 25 from the above data, we analysed the transformed data
set by using the logistic distribution with scale parameter 4.851. It is ob-
served that the Kolmogorov-Smirnov (K-S) distance and the corresponding
P-value are respectively

K-S =0.1221, and p-value = 0.4335.

Hence the logistic model (1) fits quite well to the transformed data.
For the transformed data, we observe the following six upper record val-
ues:

-6 -5 -3 10 23 24.

Note that for the above record data, the K-S distance and the corresponding
P-value are respectively

K-S = 0.3677, and p-value = 0.3137,
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which supports conclusion above.
Here, we have m = 6,A = —23.734 and B = 30.105. From (18), we

obtain the AMLE of o as

. —A+VAZ+4mB

o= = 4.966.

2m

The MLE of ¢ is 5.316. Note that the MLE was obtained by solving the
nonlinear equation (4), in which the AMLE was used as the starting value
for the iterations. The Bayes estimator of ¢ is 4.762. To compute the Bayes
estimators, since we do not have any prior information, we assumed that
a = b = 0. In the case, the prior distribution for ¢ becomes improper. We
also computed 95% confidence intervals for o. The approximate confidence
intervals based MLE and AMLE are (1.510, 9.123) and (2.016, 7.916), re-
spectively. The p-boot and t-boot confidence intervals are (2.258, 10.030)
and (2.378, 8.097). The HPD interval is (3.074, 11.807).

Let us now compare different estimation methods using a Monte Carlo
simulation. In this simulation, we have randomly generated 1000 upper
record sample yq, ...,y from the logistic distribution in (1). We also used
two parameter values ¢ = 1,2. In any replication if y,, < 0, we have not
considered that sample. We then obtained different point and interval es-
timators based on the methods described in Sections 2 and 3. We then
compared the performances of the different point estimators MLE, AMLE
and the Bayes estimator in terms of biases, and mean square errors (MSEs).

For computing Bayesian point and interval estimators, we use two priors
as follows:

Prior1: a=0, b=0
Prior 2: a=25, b=1.

Note that Prior 1 is the non-informative inverse gamma prior for o. But Prior
2 is an informative inverse gamma prior in which the hyper-parameters a and
b have been chosen such that we have E(c) =  and Var(c) = 1.

For various choices of m, Table 2 presents the average biases, and MSEs of
different point estimators from this simulation study. All the computations
are performed using the SPLUS package.

From Table 2, we observe that the MLE and the AMLE are almost iden-
tical in terms of both biases and MSEs. Comparing the two Bayesan estima-

tors based on two Priors 1 and 2 clearly shows that the Bayesian estimators
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based on Prior 2 work better than the Bayesian estimatorts based on non-
informative Prior 1, in terms of both biases and MSEs. It is also observed
that if we have informative priors, Bayesian estimators have a clear advan-
tage over the classical estimators MLE and AMLE. It is also observed as m
increases, the performances become better in terms of biases and MSEs in
all cases considered.

Table 2. Biases and MSEs of Bayesian point estimators for different m and o = 1, 2.

oc=1 oc=2

MLE AMLE SEP MLE AMLE SEP

Prior 1 Prior 2 Prior 1 Prior 2

m=2 Bias 0.562 0.567 0.763  0.464 1.441 1.536  2.303 1.355
MSE 0.316 0.318  0.556  0.232 2.076 2359  3.304 1.918

m=3 Bias 0.401 0416 0.645 0.352 1.206  1.319 1.625 1.181
MSE 0.281 0.296 0.402 0.192 1.879  1.955 2.446 1.502

m=>5 Bias 0.322 0.338  0.556 0.241 0.584 0.663  0.850 0.458
MSE 0.104 0.115 0.314 0.058 0.341 0.382  0.701 0.210

m =10 Bias 0.266 0.289  0.436 0.181 0.480 0.507  0.733 0.376
MSE 0.071 0.084  0.190 0.033 0.262 0.286  0.452 0.157

m =15 DBias 0.182 0.201 0.341 0.171 0.294 0.332  0.421 0.219
MSE 0.060 0.071 0.111 0.025 0.109 0.126  0.219 0.067

m =20 Bias 0.075 0.087 0.183  0.048 0.153 0.168  0.250  0.106
MSE 0.029 0.036 0.066  0.012 0.074 0.088  0.113 0.039

We also compared different confidence intervals (CIs) in terms of the av-
erage confidence lengths, and coverage percentages in Table 3. The nominal
level for the confidence intervals is 0.95 in each case.

From Table 3, we observe that the Boot-t CIs and HPD credible intervals
based on informative Prior 2 provide the shortest confidence lengths. It is
also observed that Boot-t Cls perform better than the Boot-p CIs. The HPD
credible intervals based on non-informative Prior 1 do not work well. From
Table 3, it is clear that the Approximate CIs based on AMLE and Boot-
p credible intervals provide the most coverage percentages in the most of
cases considered. It is also noted that as m increases, the average confidence
lengths decrease in the most of cases considered.

© 2013, SRTC Iran



A. Asgharzadeh, M. Abdi and R. Valiollahi 57

Table 3. Average confidence/credible length and coverage percentage for different m
and 0 =1, 2.

SEP

AMLE MLE p-boot t-boot
Prior 1  Prior 2

m =2  Length 2223 1.794 1.984 1.226 3.226 1.345
Cov. Prob.  0.824 0.777 0.835 0.655 0.673 0.685

m =3  Length 2.002  1.628  1.818 1.190 2.760 1.205
Cov. Prob.  0.896  0.862  0.895 0.745 0.727 0.738

m =25 Length 1.917  1.568  1.775 1.158 2.281 1.135
Cov. Prob.  0.824 0.783  0.837 0.745 0.719 0.683

c=1 m=10 Length 1.131  1.023  1.067 0.792 1.075 0.828
Cov. Prob. 0905 0.885  0.927 0.786 0.802 0.739

m =15 Length 0.962  0.903  0.904 0.698 0.865 0.695
Cov. Prob.  0.928 0.924  0.926 0.826 0.804 0.765

m =20 Length 0.725  0.693  0.704 0.651 0.810 0.648

Cov. Prob.  0.937 0933  0.940 0.911 0.893 0.827

m =2  Length 4537  3.674  4.044 2.504 4.452 2.270
Cov. Prob.  0.820 0.775  0.835 0.655 0.673 0.545

m =3  Length 3.813  3.101  3.495 2.292 5.507 2.026
Cov. Prob.  0.876  0.781  0.819 0.675 0.685 0.565

m =25  Length 3.010  2.549  2.769 1.944 3.674 1.940
Cov. Prob.  0.877 0.846  0.875 0.754 0.785 0.695

c=2 m=10 Length 2.238  2.022 2111 1.579 2.175 1.522
Cov. Prob.  0.908 0.884  0.887 0.815 0.745 0.705

m =15 Length 1.932 1.821 1.812 1.391 1.692 1.339
Cov. Prob.  0.914 0916 0.928 0.837 0.775 0.739

m =20 Length 1.718 1.662  1.638 1.554 1.985 1.536

Cov. Prob.  0.927 0.935 0.942 0.904 0.842 0.827

Let us now consider a sequence of priors in order to perform a sensitive
analysis. In Table 4, we provided the value of Bayesian point estimators for
different values of a and b. In Table 5, we also provided the average confidence
length and coverage percentage of different Cls for different ¢ and b. From
Tables 4 and 5, it is clear that the results are not changed significantly by
changing the prior parameters a and b. From Tables for b fixed, when « is
increasing, the biases, MSEs and the average confidence lengths decrease,
which is reasonable. Since in this case, the variance of the prior distribution
decreases and hence, the efficiency of the prior increases.
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Table 4. Biases and MSEs of Bayes estimators for different m, and different
values of a and b.

a=3 b=
b=2 b=3 b=4 a=1 a=2 a=4
m=3 Bias 0.342 0.376 0.331 0.516 0.466 0.417
MSE 0.215 0.246 0.277 0.302 0.275 0.251
c=1 m=5 Bias 0.229 0.238 0.249 0.430 0.449 0.391
MSE 0.163 0.140 0.119 0.219  0.197 0.158
m=10 Bias 0.173 0.195 0.212 0.327 0.316 0.283
MSE 0.073 0.091 0.109 0.133  0.115  0.090
m=3 Bias 1.089 1.037 1.094 1.041  0.920 0.952
MSE 0.839 0.874 0.914 1.021  0.938 0.894
c=2 m=5 Bias 0.839 0.860 0.819 0.810 0.788  0.765
MSE 0.628 0.662 0.683 0.704 0.673 0.633
m=10 Bias 0311 0.295 0.281 0.362 0.311 0.277
MSE 0.329 0.362 0.380 0.397 0.361 0.307

Table 5. Average credible length and coverage percentage of Bayes estimations for

different m.
a=3 b=3
b=2 b=3 b=4 a=1 a=2 a=4
m =3  Length 1.307 1.627 1.772 1.826 1.528 1.252
Cov. Prob. 0.936 0.938 0.940 0.943 0.941 0.939
=1 m=5 Length 1.110 1.229 1.361 1.420 1.120 1.051
Cov. Prob. 0.939 0.942 0.944 0.945 0.944 0.942
m =10 Length 0.992 1.039 1.132 1.193 1.072 0.966
Cov. Prob. 0.943 0.946 0.948 0.951  0.948 0.948
m =3  Length 1.972 2.026 2.132 2.281 2.073 1919
Cov. Prob. 0.935 0.938 0.939 0.941 0941  0.939
c=2 m=25 Length 1.639 1.700 1.893 1.928 1.758  1.599
Cov. Prob. 0.937 0.940 0.943 0.944 0942 0.941
m =10 Length 1.328 1.441 1.517 1.582 1.439 1.239
Cov. Prob. 0.943 0.945 0.947 0.948 0.947 0.945
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Appendix

Proof of (29). For i > 1, we have

e’} —In . T i—1
B - PN = [ ot - pan =R s

! ~1(y, _u{—ln(l—u)}iflu
= [ e -t

B 1 o nu{—ln(l—u)}iflu
= [ 0= wme =

N e
+/0<1 e

since F~1(u) = Inu — In(1 — u). Setting t = —In(1 — u), we get

E[Xi{l—F(Xi)}]:/Oooln(l—e_t)e_% LA

which, upon writing In(1 —e™%) = —>"7°; l ', immediately gives

BXA{L = F(X))] 2@+1 Zzz+2

Proof of (30). We have

B[RO - FOO) = [ @F@){ - Fa)

[—In{1 — F(z)})""
% i—1)!

1
- / {Inu —In(1 — u)}u(l - u)

{1 !
I

f(z)dx

U.
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Using binomial expansion and setting t = — In(1 — u), we get

E[X?F(X;){1-F(X))}] = /OOO e2(1 — e~ {In(1 — e 1))2 (it

Writing In(1 — e %) =

(&)

we obtain

E[XZ2F(X;){1 - F(

Xi)}
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