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Abstract. In this paper, we study properties of exp-uniform distribution
and its applications. We provide closed forms for the density function and
moments of order statistics and we also discuss estimation of the parameters
via the maximum likelihood method. We will present certain characteriza-
tions of exp-uniform distribution. The applications of this distribution are
illustrated by fitting it to three real data sets and comparing the results with
other lifetime distributions. We hope that this distribution will attract wider
applications in lifetime models.
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1 Introduction
Barreto-Souza and Simas (2013) defined a class of distributions given by

F (x) =

{
1−e−λG(x)

1−e−λ λ ̸= 0

G(x) λ = 0
(1)

where G (x) is a cumulative distribution function (cdf) and λ ∈ R is a
constant. The cdf F is called exp-G distribution. Barreto-Souza and
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Simas (2013) obtained several mathematical properties of this class of dis-
tributions such as Kullback-Leibler divergence, Shannon entropy, moments,
order statistics, estimation of parameters and inference for large sample and
discussed the two special cases: exp-Weibull and exp-beta distributions. In
this article, we assume G(x) is the cdf of the uniform distribution with pa-
rameters a and b. So, the random variable X is said to have exp-uniform
(EU) distribution with cdf, probability density function (pdf) and hazard
functions respectively as

F (x) =
1− e−

λ(x−a)
b−a

1− e−λ
, a 6 x 6 b, (2)

f(x) =
λe−

λ(x−a)
b−a

(b− a)(1− e−λ)
, a < x < b, (3)

and
h(x) =

λ

(b− a)

{
1− e−

λ(b−x)
b−a

} , a < x < b, (4)

for λ ̸= 0, a, b ∈ R. For a = 0 , b = 2π and 2πλ (in place of λ), (2) is called
“Wrapped Exponential” and for a = −π , b = π and 2πλ , it is called
“Modified Wrapped Exponential” in Phani et al. (2013).

We provide four possible motivations for discussing EU distribution. The
first motivation is that EU distribution is tractable and there are closed forms
of hazard function, characteristic function (cf), moments, density function
and moments of order statistics unlike exp-Wiebull and exp-beta distribu-
tions. Exact MLEs of a and b are also obtained and shown to be consistent.
We hope that our findings will attract applicability in reliability.

The second motivation is based on the relationship between a pdf and
its hazard function. In life data analysis increasing hazard rate occurs com-
monly in practice. Such situations are commonly modelled using the Weibull,
gamma and gamma exponential (GE) distributions. They are flexible distri-
butions but they do not allow for an increasing hazard function when their
pdfs are monotonically decreasing. They are not suitable for data sets which
have increasing empirical hazard functions and decreasing histograms but
EU distribution can be fitted to data sets of this kind. Also the beta expo-
nential (BE) distribution that was introduced by Nadarjah and Kotz (2006)
such as the weibull, gamma and GE distributions are flexible, but they only
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allow for decreasing or constant hazard function when its respective pdf is
monotonically decreasing.

Recently, Nadarajah and Haghighi (2011) introduced an extension of the
exponential distribution (exp-NH) as an alternative to the gamma, Weibull
and GE distributions. The exp-NH distribution allows for an increasing
hazard function when its pdf is monotonically decreasing. But there are no
closed forms for MLEs. Also, the moments and Rény entropy are calculated
approximately.

Our third motivation is that EU distribution can be interpreted as a
truncated exponential distribution. Suppose Y is an exponential random
variable with parameter λ. Let Z = (b − a)Y + a, then the distribution
in Equation (3) is the same as that of Z truncated at b. This fact does not
mean that EU distribution does not deserve a separate treatment. Truncated
distributions are of special interest by themselves. There are many papers
about truncated forms of known distributions. Also, the exp-NH distribution
can be interpreted as a truncated Weibull distribution.

The final motivation is the characterizations of EU distribution. An
investigator will be vitally interested to know if their model fits the require-
ments of the EU distribution. To this end, one will depend on the char-
acterizations of this distribution which provide conditions under which the
underlying distribution is indeed an EU distribution. We present several
characterizations of EU distribution with the hope that they can be used by
the applied researchers to determine their distribution model.

The rest of the paper is organized as follows. Section 2 is related to the
shape of the pdf and the hazard function. The density and moments of order
statistics are calculated in Section 3. In Section 4 MLEs of the parameters
are derived. We discuss the properties of MLEs in Section 5. Section 6
will deal with certain characterizations of EU distribution. Applications to
real data sets are discussed in Section 7 and some conclusions are drawn in
Section 8.

2 Shape

Consider the shape of (3) and (4). From (3), f(a) = λ
(b−a)(1−e−λ)

, f(b) =

λe−λ

(b−a)(1−e−λ)
. For λ > 0, f(x) is a decreasing function and for λ < 0, f(x) is

an increasing function.
From (4), h(a) = λ

(b−a)(1−e−λ)
and h(x) −→ +∞ as x −→ b. It is also clear
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that h(x) is an increasing function. Plots of the density (3) and hazard
function (4) for a = 5, b = 1000 and some values of λ are given in Figure 1.

 
Figure 1. Plots of (a) the density function and (b) the hazard function for a = 5, b = 1000 and some
values of λ.

If V is a random variable with an exponential distribution with parameter
λ, then X = a− (b−a)

λ ln{e−λ + e−λV (1− e−λ)} follows EU distribution with
parameters λ, a and b.

3 Order Statistics
Here we obtain fi:n(x), the density of the ith order statistic Xi:n, in a random
sample of size n from EU distribution. Let F (x) be an absolutely continuous
distribution function with respect to the Lebesgue measure and with pdf
f (x). It is well known that

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)F (x)i−1{1− F (x)}n−i,

for i = 1, . . . , n. Using equations (2) and (3) we have

fi:n(x) =

n!λ e−
nλ(x−a)

b−a

{
e

λ(x−a)
b−a − 1

}i−1{
1− e

−λ(b−x)
b−a

}n−i

(i− 1)! (n− i)! (b− a)(1− e−λ)n
. (5)
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Barreto-Souza and Simas (2013) showed that the mean of Xi:n is given by

E(Xi:n) =

(
1− e−λ

)−n

B(i, n− i+ 1)

×
i−1∑
j=0

n−i∑
k=0

(−1)n+j−k−1

j + k + 1

(
i− 1

j

)(
n− i

k

)
e−λ(n−k−i)

×
{
1− e−λ(j+k+1)

}
E(Zj,k), (6)

where Zj,k has EU(λ(j+k+1), a, b) distribution. Now we give an alternative
expression to (6) by the following theorem.

Remark 1. It is easy to see that if X ∼ EU(λ, 0, 1) then Y = (b−a)X+a ∼
EU(λ, a, b).

Theorem 1. Let X1, X2, . . . , Xn be i.i.d. EU (λ, a, b), then

(i) E(X1:n) = (b− a)

 1

(1− eλ)n
+

n∑
k=1

1

kλ
+

n−1∑
j=1

n−j∑
k=1

eλ

jλ(1− eλ)k

+ a,

(ii) E(Xi:n) = (b− a)

{
n∑

k=n−i+1

(
k−1

k−1−n+i

)
e(k−n+i−1)λ(−1)k−n+i−1

(1− eλ)k

+

i−1∑
j=2

n−j∑
k=i−j

(−1)i+je(i−j)λ
(

k−1
k−i+j

)
jλ(1− eλ)k

+
(−1)i−1

(
n−1
n−i

)
e(i−1)λ

λ(1− eλ)n−1

+

n∑
k=i

1

kλ

}
+ a,

where i = 2, . . . , n and n = 2, 3, . . . .

Proof. We take a = 0 and b = 1. For general a and b, the results follow
from Remark 1.
(i) : By equation (5) we have

f1:n(x) =
nλe−nλx

{
1− e−λ(1−x)

}n−1

(1− e−λ)n
,

so ∫ 1

0
e−nλx

{
1− e−λ(1−x)

}n−1
dx =

(1− e−λ)n

nλ
. (7)
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On taking derivative of both sides of equation (7) with respect to λ , we have

−(1− e−λ)n

λ
E(X1:n) +

e−λ(1− e−λ)n−1

λ
{1− E(X1:n−1)} =

(1− e−λ)n−1

λ

×
(
e−λ − 1− e−λ

nλ

)
,

and hence
E(X1:n) =

1

1− eλ
E(X1:n−1) +

1

nλ
.

The above equation is a recursive equation, from which we have

E(X1:n) =
1

(1− eλ)n
+

n∑
k=1

1

kλ
+

n−1∑
j=1

n−j∑
k=1

eλ

jλ(1− eλ)k
.

(ii): From (5) we have∫ 1

0

n!

(n− i)!(i− 1)!
e−λxn(eλx−1)i−1

{
1− eλ(x−1)

}n−i
dx =

(1− e−λ)n

λ
. (8)

Differentiating (8) with respect to λ, we have

E(Xi:n) =
−eλ

1− eλ
E(Xi−1:n−1) +

1

1− eλ
E(Xi:n−1) +

1

nλ
. (9)

If i = 2 we obtain

E(X2:n) =
−eλ

1− eλ
E(X1:n−1) +

1

1− eλ
E(X2:n−1) +

1

nλ
.

Substituting E(X1:n−1) from (i), we arrive at

E(X2:n) =
−eλ

(1− eλ)n
−

n−1∑
k=1

eλ

kλ(1− eλ)n−k
+

1

1− eλ
E(X2:n−1) +

1

nλ
.

The above equation is a recursive equation, from which we derive

E(X2:n) =
−(n− 1)eλ

(1− eλ)n
− (n− 1)eλ

λ(1− eλ)n−1
+

1

(1− eλ)n−1
+

n∑
k=2

1

kλ
. (10)

If in (9) i = 3, we have

E(X3:n) =
−eλ

1− eλ
E(X2:n−1) +

1

1− eλ
E(X3:n−1) +

1

nλ
.
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By substituting E(X2:n−1) from (10), we deduce

E(X3:n) =
(n− 2)e2λ

(1− eλ)n
+

(n− 2)e2λ

λ(1− eλ)n−1
− eλ

(1− eλ)n−1
− eλ

1− eλ

n−1∑
k=2

1

kλ

+
1

1− eλ
E(X3:n−1) +

1

nλ
.

The above equation is a recursive equation, from which we derive

E(X3:n) =
(n− 2)(n− 1)e2λ

2(1− eλ)n
+

(n− 2)(n− 1)e2λ

2λ(1− eλ)n−1
− (n− 2)eλ

(1− eλ)n−1

+
1

(1− eλ)n−2
−

n−2∑
k=1

eλ

2λ(1− eλ)k
+

n∑
k=3

1

kλ
.

Similarly, we obtain

E(X4:n) =
−(n− 3)(n− 2)(n− 1)e3λ

6(1− eλ)n
− (n− 3)(n− 2)(n− 1)e3λ

6λ(1− eλ)n−1

+

n−2∑
k=2

(k − 1)e2λ

2λ(1− eλ)k
−

n−3∑
k=1

eλ

3λ(1− eλ)k
+

(n− 3)(n− 2)e2λ

2(1− eλ)n−1

− (n− 3)eλ

(1− eλ)n−2
+

1

(1− eλ)n−3
+

n∑
k=4

1

kλ
,

and thus

E(Xi:n) =
n∑

k=n−i+1

(
k−1

k−1−n+i

)
e(k−n+i−1)λ(−1)k−n+i−1

(1− eλ)k

+

i−1∑
j=2

n−j∑
k=i−j

(−1)i+je(i−j)λ
(

k−1
k−i+j

)
jλ(1− eλ)k

+
(−1)i−1

(
n−1
n−i

)
e(i−1)λ

λ(1− eλ)n−1
+

n∑
k=i

1

kλ
.
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4 Parameter Estimation

Suppose X1, . . . , Xn constitute a random sample from an EU distribution
with density (3). The likelihood function is given by

L(λ, a, b) =
λne

−λ
b−a

∑n
i=1(xi−a)

(b− a)n(1− e−λ)n
, a < x1:n < x2:n < · · · < xn:n < b,

so, the log-likelihood function is

ℓ(λ, a, b) =

{
n ln

(
λ

1− e−λ

)
− n ln(b− a)− λn(x̄− a)

b− a

}
× I(−∞,x1:n)(a)I(xn:n,+∞)(b). (11)

Taking partial derivative of the log-likelihood in (11) with respect to a, b and
λ, respectively,

∂ℓ

∂a
=

{
n(b− a)− λn(x̄− b)

(b− a)2

}
I(−∞,x1:n)(a) (12)

∂ℓ

∂b
=

{
−n
b− a

+
nλ(x̄− a)

(b− a)2

}
I(xn:n,+∞)(b), (13)

∂ℓ

∂λ
=
n

λ
− ne−λ

1− e−λ
− n(x̄− a)

b− a
= 0. (14)

From (12) and (14), ℓ is increasing in a when a < x1:n and is 0 otherwise.
So the MLE of a is X1:n. Also (14) and (13) yield ℓ is decreasing in b when
b > xn:n and is 0 otherwise. Hence the MLE of b is Xn:n. Substituting
a = X1:n and b = Xn:n into equation (14) follows

h(λ) =
x̄− x1:n
xn:n − x1:n

, (15)

where h(λ) = 1
λ − 1

eλ−1
. Note that h(λ) is a decreasing continuous function,

limλ→−∞ h(λ) = 1 and limλ→+∞ h(λ) = 0. Hence equation (15) has a unique
solution. Since ∂2ℓ

∂λ2 is negative, this unique solution is the MLE of λ. The
solution of equation (15) can be evaluated numerically by Newton-Raphson
method.
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5 Properties of MLEs
In this section we will consider the asymptotic properties of the MLEs.
First, we examine the consistency of estimators. In view of

lim
n→+∞

P {| X1:n − a |> ϵ} = lim
n→+∞

{
e

−λϵ
b−a − e−λ

1− e−λ

}n

= 0,

lim
n→+∞

P {| Xn:n − b |> ϵ} = lim
n→+∞

{
1− e−λ(1− ϵ

b−a
)

1− e−λ

}n

= 0,

we conclude that X1:n and Xn:n are consistent for a and b, respectively.
If the suitable regularity conditions hold and the likelihood equation has a
unique root, the solution of the likelihood equation is the MLE which is
consistent (Lehmann and Casella, 1998). When a and b are known, the
regularity conditions hold and from Section 4, the MLE of λ is unique and
hence consistent. This is also true when a and b are unknown, since X1:n

and Xn:n are consistent.
Next, we derive asymptotic distributions of the MLEs. From

P{n(X1:n − a) 6 t} = 1−

{
1− 1− e

−λt
n(b−a)

1− e−λ

}n

d→ 1− e
−λt

(b−a)(1−e−λ)

P{n(b−Xn:n) 6 t} = 1−

1 + e−λ
{
1− e

−λt
n(b−a)

}
1− e−λ


n

d→ 1− e
−e−λλt

(b−a)(1−e−λ)

as n → +∞, we conclude that n(X1:n − a)
d→ exp

{
λ

(b−a)(1−e−λ)

}
and n(b−

Xn:n)
d→ exp

{
λe−λ

(b−a)(1−e−λ)

}
. So X1:n and Xn:n are asymptotically biased.

If a and b are known, the regularity conditions hold and
√
n(λ̂ − λ)

d→
N
(
0, λ2(eλ−1)2

(eλ−1)2−λ2eλ

)
. This is also true when a and b are unknown, since X1:n

and Xn:n are consistent.

6 Characterizations
The problem of characterizing a distribution is an important problem which
has recently attracted the attention of many researchers. Thus, various char-
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acterizations have been established in many different directions. An investi-
gator will be vitally interested to know if their model fits the requirements
of the EU distribution. To this end, one will depend on the characterizations
of this distribution which provide conditions under which the underlying
distribution is indeed an EU distribution. In this section, several character-
izations of EU distribution are presented. These characterizations are based
on: (i) a simple relationship between two truncated moments, (ii) condi-
tional expectation of certain functions of the random variable, (iii) hazard
function.

6.1 Characterization Based on Two Truncated Moments
In this subsection we present characterizations of cdf given by (2) in terms of a
simple relationship between two truncated moments. We like to mention here
the works of Glänzel and Hamedani (2001) and Hamedani (1993, 2002, 2006,
2010) as well as references therein, in this direction. Our characterization
results presented here will employ an interesting result due to Glänzel (1987)
(Theorem 2 below).
Theorem 2. Let (Ω,F , P) be a given probability space and let H = [a, b] be
an interval for some a < b (a = −∞, b = +∞ might as well be allowed). Let
X : Ω −→ H be a continuous random variable with the distribution function
F and let g and h be two real functions defined on H such that

E{g(X)|X > x} = E{h(X)|X > x}η(x), x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1(H), η ∈ C2(H)
and F is twice continuously differentiable and strictly monotone function on
the set H. Finally, assume that the equation hη = g has no real solution in
the interior of H. Then F is uniquely determined by functions g, h and η,
particularly

F (x) =

∫ x

a
C
∣∣∣∣ η′(u)

η(u)h(u)− g(u)

∣∣∣∣ exp{−s(u)}du,
where the function s is a solution of the differential equation s′ =

η′h

ηh− g
and C is a constant, chosen to make

∫
H dF = 1.

Remark 2. (a) In Theorem 2, the interval H need not be closed. (b) The
goal is to have the function η as simple as possible. For a more detailed
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discussion on the choice of η, we refer the reader to Glänzel and Hamedani
(2001) and Hamedani (1993, 2002, 2006, 2010).

Proposition 1. Let X : Ω −→ (a, b) be a continuous random variable and

let h(x) = 1 and g(x) = exp

{
−λ(x− a)

b− a

}
for x ∈ (a, b). The pdf of X is

(3) if and only if the function η defined in Theorem 2 has the form

η(x) =
1

2

{
e−λ

(x−a)
b−a + e−λ

}
, x ∈ (a, b).

Proof. Let X have pdf (3), then

{1− F (x)}E{h(X)|X > x} =

e−λ
(x−a)
b−a − e−λ

1− e−λ

 , x ∈ (a, b),

and

{1− F (x)}E {g (X) | X > x} =
1

2

e−2λ
(x−a)
b−a − e−2λ

1− e−λ

 , x ∈ (a, b) ,

and finally

η(x)h(x)− g(x) =
1

2

{
e−λ − e−λ

(x−a)
b−a

}
< 0, x ∈ (a, b).

Conversely, if η is given as above, then

s′(x) =
η′(x)h(x)

η(x)h(x)− g(x)
=

λe−λ
(x−a)
b−a

(b− a)

{
e−λ

(x−a)
b−a − e−λ

} , x ∈ (a, b)

and hence

s (x) = − ln

{
e−λ

(x−a)
b−a − e−λ

}
+ C1, x ∈ (a, b) ,

where C1 is a constant. Now, in view of Theorem 2, X has cdf (2) and pdf
(3).
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Corollary 1. Let X : Ω −→ (a, b) be a continuous random variable and let
h(x) be as in Proposition 1. The pdf of X is (3) if and only if there exist
functions g and η defined in Theorem 2, satisfying the differential equation

η′(x)

η(x)− g(x)
=

λe−λx−a
b−a

(b− a)
(
e−λx−a

b−a − e−λ
) , x ∈ (a, b).

Remark 3. (c) The general solution of the differential equation in Corollary
1 is

η(x) = (b− a)−1
(
e−λx−a

b−a − e−λ
)−1

{
−
∫
g(x)λe−λx−a

b−a dx+D

}
,

for x ∈ (a, b), where D is a constant. One set of appropriate functions is given
in Proposition 1 with D =

b− a

2
e−2λ. (d) clearly there are other triplets of

functions (h, g, η) satisfying the conditions of Theorem 2. We presented one
such triplet in Proposition 1.

6.2 Characterization Based on Conditional Expectation of
Certain Function of the Random Variable

In this subsection we employ a single function ψ of X and characterize the
distribution of X in terms of the conditional expectation of ψ(X). The
following propositions have already appeared in our previous work (as a
technical report), so we will just state them here for the sake of completeness.

Proposition 2. Let X : Ω −→ (a, b) be a continuous random variable with
cdf F . Let ψ(x) be a differentiable function on (a, b) with limx−→bψ(x) = 1.
Then for δ ̸= 1,

E[ψ(X) | X > x] = δψ(x), x ∈ (a, b),

if and only if
ψ(x) = {1− F (x)}

1
δ
−1 , x ∈ (a, b).
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Proposition 3. Let X : Ω −→ (a, b) be a continuous random variable with
cdf F . Let ψ1(x) be a differentiable function on (a, b) with limx−→a ψ1(x) = 1.
Then for δ1 ̸= 1,

E{ψ1(X) < x} = δ1ψ1(x), x ∈ (a, b),

if and only if
ψ1(x) = {F (x)}

1
δ1

−1
, x ∈ (a, b).

Remark 4. (e) For ψ(x) =

{
e
−λ

(x−a)
b−a −e−λ

1−e−λ

} 1−δ
δ

, x ∈ (a, b), Proposition

2 will give a cdf F (x) given by (2). (f) For ψ1 (x) =

{
1−e

−λ
(x−a)
b−a

1−e−λ

} 1−δ1
δ1

,

x ∈ (a, b) , Proposition 3 will give a cdf F (x) given by (2).

6.3 Characterization Based on Hazard Function
For the sake of completeness, we state the following definition.

Definition 1. Let F be an absolutely continuous distribution with the
corresponding pdf f . The hazard function corresponding to F is denoted
by ηF and is defined by

ηF (x) =
f (x)

1− F (x)
, x ∈ SuppF, (16)

where SuppF is the support of F .
It is obvious that the hazard function of a twice differentiable distribution
function satisfies the first order differential equation

η′F (x)

ηF (x)
− ηF (x) = q (x) , (17)

where q (x) is an appropriate integrable function. Although this differential
equation has an obvious form since

f ′ (x)

f (x)
=
η′F (x)

ηF (x)
− ηF (x) , (18)
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for many univariate continuous distributions (16) seems to be the only dif-
ferential equation in terms of the hazard function. The goal of the charac-
terizations based on hazard function is to establish a differential equation in
terms of hazard function, which has as simple form as possible and is not of
the trivial form (16). For some general families of distributions this may not
be possible. Here we present a characterization of a EU distribution based
on a nontrivial differential equation in terms of the hazard function.

Proposition 4. Let X : Ω → (0,∞) be a continuous random variable. The
pdf of X is (3) if and only if its hazard function ηF (x) satisfies the differential
equation

η′F (x) = e
λ(x−b)
b−a η2F (x) , a < x < b, (19)

with boundary condition ηF (a) = λ
b−a

(
1− e−λ

)−1
.

Proof. If X has pdf (3), then clearly (19) holds. Now, if (19) holds, then

η
′
F (x)

η2F (x)
= e

λ(x−b)
b−a ,

from which we have
d

dx

{
1

ηF (x)

}
=

d

dx

[
b− a

λ

{
1− e

λ(x − b}
b − a

}]
,

or

ηF (x) =
b− a

λ

{
1− e

λ (x − b)
b − a

}−1

=
b− a

λ

 e
−λ (x − a)

b − a

e
−λ (x − b)

b − a − e−λ

 . (20)

Integrating both sides of (20) from a to x, we arrive at

− ln {1− F (x)} =

∫ x

a

b−a
λ e

−λ (u − a)
b − a

e
−λ (u − b)

b − a − e−λ
du

= − ln

{
e

−λ (x − a)
b − a − e−λ

}
+ ln

(
1− e−λ

)
.

From the last equality, we obtain

1− F (x) =
e

−λ (x − a)
b − a − e−λ

1− e−λ
, a 6 x 6 b.
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7 Applications

In this section we fit EU model to real data sets. We provide three applica-
tions.

Application 1. Proschan (1963) provides the times, in hours of operation,
between successive failures of air conditioning equipment in 13 aircraft. The
data for plane number 3 are: 90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44,
59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62, 130, 208, 70, 101, 208. Lawless
(2003, page 477) showed a Weibull distribution fits to this data. Now, we
fit the GE, gamma, exponentiated Weibull (E-Weibull), generalized gamma
(G-gmma) and EU distributions to data. The MLEs of the parameters and
the maximized log-likelihood (ℓ̂) for this distributions are derived.
The results of goodness of fit tests based on bootstrap Kolmogorov�-Smirnov
test and the evaluation of the corrected Akaike information criterion (AICc)
(Sugiura, 1978; Hurvich and Tsai, 1989) are shown in Table 1.

Table 1. Goodness-of-fit test based on bootstrap Kolmogorov-Smirnov test and AICc

for plane 3.

Model Estimated Parameters ℓ̂ P-value AICc

Weibull(α, λ) α̂ = 1.29, λ̂ = 90.65 -155.84 0.703 316.14
GE(λ, α) λ̂ = 0.017, α̂ = 1.8 -155.22 0.782 314.90
gamma(α, λ) α̂ = 1.67, λ̂ = 0.02 -155.35 0.781 315.15
E-Weibull(k, λ, α) k̂ = 0.555, λ̂ = 12.841, α̂ = 7.16 -154.75 0.745 316.45
G-gamma(a, b, k) â = 0.274, b̂ = 0.0013, k̂ = 19.312 -154.72 0.750 316.40
EU(λ, a, b) λ̂ = 3.7, â = 10, b̂ = 310 -153.04 0.943 313.03

From the Table 1, we see that EU distribution is a better fit, judging on
the basis of AICcs. The probability plots given in Figure 2, also show that
EU distribution gives a better fit than the other distributions.

We also consider the data for plane number 7: 97, 51, 11, 4, 141, 18, 142,
68, 77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163,
24. The similar results are shown in Table 2.
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Figure 2. Probability plots for the fit of the Weibull, gamma, GE, E-Weibull, Ggamma and EU
distributions to the data for plane 3.

Table 2. Goodness-of-fit test based on bootstrap Kolmogorov-Smirnov test and AICc

for plane 7.

Model Estimated Parameters ℓ̂ P-value AICc

Weibull(α, λ) α̂ = 1.12, λ̂ = 80.185 -143.96 0.843 292.41
GE(λ, α) λ̂ = 0.013, α̂ = 1.12 -144.12 0.975 292.73
gamma(α, λ) α̂ = 1.13, λ̂ = 0.014 -144.09 0.957 292.68
E-Weibull(k, λ, α) k̂ = 3.18, λ̂ = 166.62, α̂ = 0.237 -143.29 0.735 293.63
G-gamma(a, b, k) â = 3.28, b̂ = 186.87, k̂ = 0.231 -143.33 0.853 293.71
EU(λ, a, b) λ̂ = 1.87, â = 1, b̂ = 216 -141.39 0.809 289.82

From the Table 2, we see that in all cases the P-values are high, we
cannot reject the null hypothesis that data are coming from the Weibull, GE,
gamma, E-Weibull, G-gamma and EU distributions. We compare models
based on AICc. We prefer EU distribution, since its AICC is lowest. The
probability plots are given in Figure 3.
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Figure 3. Probability plots for the fit of the Weibull, gamma, GE, E-Weibull, G-gamma and EU
distributions to the data for plan 7.

Application 2. Crowder (2000) provides the lifetimes of steel specimens
tested at 14 different stress levels. The data for level 32 are: 60, 51, 83,
140, 109, 106, 119, 76, 68, 67, 111, 57, 69, 75, 122, 128, 95, 87, 82, 132.
We consider four possible models for the data set: the Weibull, GE, gamma,
E-Weibull, G-gamma and EU distributions. The results of goodness of fit
tests based on bootstrap Kolmogorov�-Smirnov test and AICc are shown in
Table 3.

Table 3. Goodness-of-fit test based on bootstrap Kolmogorov-Smirnov test and AICc.

Model Estimated Parameters ℓ̂ P-value AICc

Weibull(α, λ) α̂ = 3.84, λ̂ = 101.79 -96.27 0.447 197.239
GE(λ, α) λ̂ = 0.044, α̂ = 31.02 -93.65 0.378 192.003
gamma(α, λ) α̂ = 11.37, λ̂ = 0.124 -93.52 0.575 191.740
E-Weibull(k, λ, α) k̂ = 0.507, λ̂ = 1.63, α̂ = 122.65 -93.92 0.277 195.34
G-gamma(a, b, k) â = 0.672, b̂ = 0.719, k̂ = 25.74 -93.51 0.417 194.52
EU(λ, a, b) λ̂ = 0.49, â = 51, b̂ = 140 -89.57 0.941 186.64
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From the Table 3, we see that in all cases, we cannot reject the null hy-
pothesis that data are coming from the Weibull, GE, gamma, E-Weibull,
G-gamma and EU distributions. We compare these models by Akaike’s
method. The AICc for EU model is lowest so we prefer EU model. The plots
of the estimated pdfs of the Weibull, GE, gamma, E-Weibull, G-gamma and
EU distributions fitted to data set and corresponding probability plots are
given in Figure 4 and Figure 5, respectively. These Figures show that EU
distribution gives a better fit than the other models. 

x

D
e

n
si

ty

60 80 100 120 140

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

EU
GE
Weibull
gamma
E−Weibull
G−gamma

Figure 4. Estimated pdfs of EU, GE, Weibull, gamma, E-Weibull and G-gamma distributions for
the data set.

●
● ●

● ● ●
● ●

● ●
●

●

●
● ●

● ●
● ●

●

0.2 0.4 0.6 0.8 1.0

0
.2

0
.6

1
.0

Weibull distribution

Observed Cumulative Probability

E
xp

e
ct

e
d

 C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

●
● ●

● ● ●

● ●

● ●
●

●

● ● ●
● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GE distribution

Observed Cumulative Probability

E
xp

e
ct

e
d

 C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

●
● ●

● ● ●

● ●

● ●
●

●

●
● ●

● ●
● ● ●

0.2 0.4 0.6 0.8 1.0

0
.2

0
.6

gamma distribution

Observed Cumulative Probability

E
xp

e
ct

e
d

 C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

●
●

●

● ● ●

● ●

● ●
●

●

● ● ●
● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

exponentiated Weibull distribution

Observed Cumulative Probability

E
xp

e
ct

e
d

 C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

●
● ●

● ● ●

● ●

● ●
●

●

●
● ●

● ●
● ● ●

0.2 0.4 0.6 0.8 1.0

0
.2

0
.6

generalized gamma distribution

Observed Cumulative Probability

E
xp

e
ct

e
d

 C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

●
●

●

● ● ●
● ●

● ●
●

●

● ● ●
● ●

●
●

●

0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

EU distribution

Observed Cumulative Probability 

E
xp

e
ct

e
d

 C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

Figure 5. Probability plots for the fit of the Weibull, gamma, GE, E-Weibull, G-gamma and EU
distributions to the data.

c⃝ 2013, SRTC Iran



Z. Javanshiri, A. Habibi Rad and G. G. Hamedani 103

Application 3. The following data set are the mean monthly precipitations
in one of the cities of Iran (Mashhad) in 2010 (www.climate-charts.com):
33.1, 36.4, 52, 48.8, 25.5, 3, 0.9, 0.7, 1.5, 11.2, 15.7, 26.9.

We would like to know what particular distribution can fit to the data.
The histogram and the empirical hazard function are shown in Figure 6.
Histogram is monotonically decreasing and the empirical hazard function is
increasing. On the basis of our second motivation that was explained in
the introduction, the Weibull, gamma and GE distributions are not suitable
and we fit EU distribution to the data. The fitted pdf with the empirical
histogram and the corresponding probability plot are shown in Figure 7.
Both figures suggest that the fit of EU distribution is reasonable. As a
further check, we performed a Kolmogorov-Smirnov test for the fit. This
test yielded a P-value of 0.3404.

8 Conclusion
We studied EU distribution and mentioned some of its properties. We dis-
cussed estimation of the parameters via the maximum likelihood method.
Various characterizations of this distribution were presented. Three appli-
cations of EU distribution were given to show that this distribution can be
used effectively in analysing lifetime data.
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Figure 6. Plots of histogram and Empirical hazard function for monthly precipitations in a city of
Iran (Mashhad) in 2010.
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Figure 7. The fitted pdf with the empirical histogram and the corresponding probability plot for
monthly precipitations in a city of Iran (Mashhad) in 2010.
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