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Abstract. In this paper, we discuss different predictors of times to failure
of units censored in a hybrid censored sample from exponential distribu-
tion. Bayesian and non-Bayesian point predictors for the times to failure
of units are obtained. Non-Bayesian prediction intervals are obtained based
on pivotal and highest conditional density methods. Bayesian prediction in-
tervals are also proposed. One real data set has been analyzed to illustrate
all the prediction methods. Finally, different prediction methods have been
compared using Monte Carlo simulations.
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1 Introduction

The two most common censoring schemes are termed as Type-I and Type-
IT censoring schemes. Consider a sample of n units placed on a lifetime
experiment at time 0. In Type-I censoring scheme, the lifetime experiment
is terminated when a pre-fixed censoring time T arrives. In Type-II censoring
scheme, the experiment may instead be terminated when the rth (r < n is
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12 Prediction of Times to Failure of Censored Units in Hybrid Censored ...

fixed) failure is observed. Hybrid censoring scheme is a mixture of Type-
I and Type-II censoring schemes. In this censoring scheme, the lifetime
experiment terminates as soon as either the rth (r < n is fixed) failure
or the pre-determined censoring time 71" occurs. Thus, in this censoring
scheme one observes i.,...,Zq, wWhen x4, < min{z,,,T}, d < r and
Tgr1m > min{z,.,,T}. Here x1.,, < X9, -+ < Tp., denote the observed
ordered failure times of n units. It is clear that Type-I and Type-II censoring
schemes can be obtained as special cases of hybrid censoring scheme by taking
r =n and T = oo, respectively.

Epstein (1954) introduced hybrid censoring scheme, and considered life-
time experiments assuming that the lifetime of each unit follows an exponen-
tial distribution. In the recent years, many authors have discussed statistical
inference problems for various distributions under hybrid censoring scheme.
Gupta and Kundu (1998) obtained confidence and credible intervals for the
exponential mean lifetime #. Based on the distribution of the Maximum
likelihood estimator (MLE), Chen and Bhattacharya (1988) obtained exact
confidence intervals for the exponential parameter . Later, using gamma
prior distribution, Draper and Guttman (1987) obtained Bayes estimates
and credible intervals for . Recently, Kundu (2007) obtained the MLES,
the approximate MLEs and Bayes estimates of shape and scale parameters
of a Weibull distribution. We also refer to Fairbanks et al. (1982), Draper
and Guttman (1987), Ebrahimi (1986, 1992), Jeong et al. (1996), Childs et
al. (2003), Kundu and Banerjee (2008) and Kundu and Howlader (2010) for

some more work under hybrid censoring.

Prediction of future failures given a record of observed failures is an in-
teresting topic, especially in medical and engineering sciences. Information
regarding future observations can tell us at an early stage of testing how
costly the testing is and whether actions should be taken to redesign the test.
Extensive work on prediction problem can be found in the literature. Lawless
(1971) derived prediction intervals for future failures under Type-II censor-
ing scheme. Dunsmore (1983) discussed the prediction of the future records
through tolerance regions and Bayesian predictive distributions. Kaminsky
and Rhodin (1985) applied the principle of maximum likelihood to the joint
prediction and estimation of a future random variable and an unknown pa-
rameter. An excellent review of development on prediction problems can be
found in Kaminsky and Nelson (1998). See also the work of Awad and Ragab
(2000), Basak et al. (2006) and Ren et al. (2006).

Let X = (X1, ..., Xgn) denote a hybrid censored sample from an ex-
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ponential model. The aim of this paper is to discuss the prediction of the

future failures times Y = X1 4.n(s = 1,2,...,n —d) based on observed data
X = (T1my ..., Tam). We study this problem via non-Bayesian and Bayesian
approaches and present several predictors of Y = X1 4.,(s =1,2,...,n—d).

Based on the observed hybrid sample x = (z1m,...,%4y), Ebrahimi

(1992) discussed the maximum likelihood predictor (MLP) of Y. The main
difference of our work with the existing work (Ebrahimi, 1992) is that our
proposed methods are quite general. We have considered different classical
point and interval predictors which have not been considered before. More-
over, we have also used Bayesian approach to compute the predictive density
and also to compute the corresponding Bayesian interval.

Rest of the paper is organized as follows. Section 2 contains some pre-
liminaries. The different point predictors are considered in Section 3 under
non-Bayesian and Bayesian approaches. In Section 4, we provide three types
of prediction intervals (PI's) for Y = Xgign(s = 1,2,...,n —d). One real
data set has been analyzed in Section 5. Section 6 includes an extensive
simulation study to illustrate all the prediction methods and a discussion of
the results. Finally in Section 7, we conclude the paper.

2 Preliminaries

Let X = (X1, - .., X4:n) denote a hybrid censored sample from an exponen-
tial distribution (denoted by exp(#)) with the density function

f(z;0) =0e7% >0, 6>0. (1)

For notation simplicity, we will write (X1, Xo, ..., Xg) for (X1.0, Xowm, -« .y Xan)-
Based on the observed data, the likelihood function for 8 without the nor-
malizing constant is given by

L(H) _ gde—G[Zle a:i—i-(n—d)To] (2)
where d denotes the number of failures and Ty = min{z,.,,T}. From (2),
the maximum likelihood estimator (MLE) of 6 is derived to be

d

7o — |
Zi:l x; + (n — d)TO

3)

Due to the Markovian property of censored-order statistics, it is well-
known that the conditional density of ¥ = X 4., given X = x is the same
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14 Prediction of Times to Failure of Censored Units in Hybrid Censored ...

as the density of the sth order statistic out of n — d units from the popu-
lation with density f(y)/(1 — F(Tp)),y = To (left truncated density at Tp).
Therefore, the conditional density of Y = X 4., given X = x, for y > Ty, is
given by

flylx) = s (n . d) FW [Fy) — FTO) 1 — F)]" 4 [1 — F(Tp)]" " .

(4)
For model (1), (4) reduces to

fylx,0) = 8(71 ; d> ge—0l(n—d—s+1)y—(n—d)To] [6—9% _ e—@y:| s—1 Y=

(5)
The predictive likelihood function (PLF) of Y and 6, is given by
L(y, 0:x) = f(ylx;0)f(x; 0). (6)

Consequently, for the exponential model (1), the PLF of ¥ and 6 can be
obtained as

—d s—1
L(y,0) =s (n >6’d+1 [ef‘gTO — efey}

d
X exp [—H{in—}—(n—d—s—l—l)y}] : (7)
=1

By differentiating the predictive log-likelihood function In L(y,#) with
respect to y and 6, respectively, and equating them to zero, one can obtain
the maximum likelihood predictor (MLP) of ¥ and the predictive maximum
likelihood estimator (PMLE) of 6 as (see Ebrahimi, 1992)

n—d ) Z?Zlmi—}—(n—d)To

Yurp =Ty +1
MLE 0+n<n—d—s+1 d+1 ’

(8)

and
~ d+1
Opvre = . 9)
Yoiixi+ (n—d)To
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3 Point Predictors

In this section, based on the observed hybrid sample x = (z1,...,x4), we pro-
vide several point predictors of Y = X, 4., using non-Bayesian and Bayesian
approaches.

3.1 Non-Bayesian Predictors

The maximum likelihood predictor is a non-Bayesian predictor which is ob-
tained using the likelihood prediction method. In this subsection, we use the
conditional prediction method to obtain two conditional predictors namely
best unbiased predictor (BUP) and conditional median predictor (CMP).

A statistic YV = d(x) which is used to predict Y = X 4., is said to be a
predictor of Y. The predictor Y is a BUP of Y, if the predictor error Y-V
has a mean zero and its prediction error variance Var(Y —Y) is less than or
equal to that of any other unbiased predictor of Y.

In view of (5), the BUP of Y is

Ypup = E(Y|X) = /T°° yf(ylx, 0)dy.
0
Substituting f(y|x, ) and using the binomial expansion
[e—GTo B 6—9yr’1 _ § (S - 1> (—1)s7i=1 =0iTo (—0(s—i~1)y
i=0 ’ ’
we obtain the BUP as

ﬁwpzz<n;d)§icgi>«{yil Mﬂ;i;?ﬁyﬂ. (10)

=0

When the parameter 6 is unknown, it has to be estimated. Thus in this case,
one would replace it by its MLE in (3) and obtain the BUP of Y.

Conditional median predictor (CMP) is another conditional predictor
which is suggested by Ragab and Nagaraja (1995). A predictor Y is called
the CMP of Y, if it is the median of the conditional distribution of Y given
X = x, that is

Py(Y <V[X=x)=Py(Y > V|X =x). (11)
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Using the relation

R o—0Y o0V
and using the fact that the distribution of 1 — ::TG;O given X = x is a

Beta(s,n —d — s + 1) distribution, we obtain the CMP of Y as
N 1
YCMPIT()— éln([l—Med(B)]), (13)

where B has Beta(s,n—d—s+1) distribution and Med(B) stands for median
of B. When 6 is unknown, we can substitute § with its MLE and obtain the
CMP of Y.

3.2 Bayesian Predictors

In this section, our interest is to predict Y = Xs14 (s =1,2,...,n—d) based
on the observed hybrid censored sample x = (x1,...,24) from a Bayesian
approach.

Under the assumption that the parameter 6 is unknown, we consider the
gamma prior gamma(a, b), with the density function

a—1_—bl
= ) 04 e,

0>0, (a>0,b>0),

for 8. When a = b = 0, it is the non-informative prior of 8. The posterior
density function of # given the data can be written as

70 | @) oc grFIle= 0L, @it (n—d)Totb]

which is also gamma(a + d, Z?:l zi + (n—d)Ty + b).
The Bayes predictive density function of Y given x is given by

2l = /0 " F(ylx 8y (B]x)db. (14)

Combining the posterior density function and the conditional density
given in (5), and using the binomial expansion, we obtain the predictive
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density function of Y as

S

. _ (n—d a+d _1(8—1> ysie1
fs(yl)—s< 3 >z;‘1xi+< P z;

) Z?:l 25+ (n— d)Tp+b a+d+1 s
(n—d—i)ly—Tol + Xy xi+ (n— d)To + b

Bayesian point predictors can be obtained from the predictive density
function f¥(y|x) and given the loss function. The Bayesian point predictor
of Y under a squared error loss, Ysgp, is

?SEP:/T yfs (ylza)dy

Using (15) and after some algebra, we obtain the Bayesian point predictor
Ysep as

Yspp = s<n ; d) z <S ; 1) (=1t (n_d1_Z)Q

d
a+d
i d)T; i+ 1T
a+d—1{zm 0+b} (Zx +20+b>

=1

(16)

4 Prediction Intervals

In this section, we consider several methods for obtaining prediction intervals
(PIs) for Y = X¢yq4, s = (1,2, -+ ,n—d) based on the hybrid censored sample
X - (X17X27 e 7Xd>'

4.1 Non-Bayesian Pls

Here we use the conditional distribution of ¥ given X = x to obtain two
non-Bayesian Pls of Y. Let us fist consider the pivotal method to obtain a
PI of Y. Consider the random variable Z as

676’Y
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18 Prediction of Times to Failure of Censored Units in Hybrid Censored ...

As mentioned before, the conditional distribution of Z given X = x is a
Beta(s,n — d — s + 1) distribution. Thus, we can consider Z as a piv-
otal quantity to obtain a PI for Y. From this, a (1 —+)100% PI for Y is
(L1(x), Uy (x)) where
1 1

Li(x) = Tp - 5 In ([1 - B%}) , Ui(x) = Tp - 5 In ([1 - Bl,%]) . (17)
where B, stands for 100yth percentile of Beta(s,n —d — s+ 1) distribution.
When 6 is unknown, the parameter in (17), has to be estimated. For example,
by replacing 6 with its MLE, the prediction limits for Y can be obtained.

Another prediction interval can be obtained as follows. Since the condi-

tional distribution of Z given X = x is a Beta(s,n —d — s + 1) distribution
with density function

Zs—l — n—d—s
o) = o 022

= 0<zxl1
Beta(s,n—d—s+1)’ s

the (1 — v)100% highest conditional density (HCD) prediction limits for Y
are given by

Lo(x) = T — %m(u —w]),  Us(x)=Tp— %111([1 “wl)),  (18)

where w; and wsy are the simultaneous solutions of the following equations:
w2
/ g(z)dz=1—-« (19)
w1

and
g(w1) = g(w2). (20)
We can simplify Equations (19) and (20) as

By,(s,n—d—s+1)—By,(s,n—d—s+1)=1-—a, (21)

1 wo n—d—s wy s—1
= 22
(1 - w1> <w2) ’ 22)

1 z
B.(a,b) = “l1-a)td
(@) = g |, =0 da,

is the incomplete beta function.

and

where
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4.2 Bayesian Pls

Bayesian PIs are obtained from the Bayes predictive density f*(y|x). Bayesian
prediction bounds are obtained be evaluating

P(Y > Al = /A Py,

for some positive . Now, the 100(1 — )% Bayesian prediction interval for
Y is given by (L3(x),Us(x)), where the prediction limits Ls(x) and Us(x) can
be obtained by solving the follow nonlinear equations simultaneously

PV > L) = [ “; iy =17, (23)
and -
P > Uso) = [ 7 ooy = 3. (24)

Substituting f*(y|x) in (15) into (23) and (24), one can obtain numerically
the prediction limits for Y.

5 Real Data Analysis

In this section, one real data set has been analyzed for illustrative purposes.
The following ordered data represent the time to breakdown of a type of
electronic insulating material subject to a constant-voltage stress:

0.35 059 096 099 1.69 197 2.07 2.58
271 290 3.67 399 535 13.77 25.50

These data are taken from Nelson (1970), and have been used earlier by
Tiku and Akkaya (2004). Here, we checked the validity of the exponential dis-
tribution based on the parameter § = 0.4080 using the Kolmogorov-Smirnov
(K-S) test. It is observed that the K-S distance is K-S=0.2315 with a cor-
responding p-value=0.3431. This indicates that the exponential distribution
provides a good fit to the above data.

Now, suppose we use the following two sampling schemes:

Scheme 1 : r =10 and 1T =3
Scheme 2: r=10 and T =2.

For Scheme 1, since x;.,, < T', the observed hybrid sample x = (1.5, - ., Tgun)
are

J. Statist. Res. Iran 9 (2012): 11-30
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0.35 059 096 099 1.69 197 2.07
2,58 2.71 290

In this case, n = 15, d = r = 10 and Ty = min{z,.,, T} = 2.90. From the
above sample, we obtain

d
> ai+ (n—d)Ty = 31.31,
=1

which yields
d

Z?:l x; + (n—d)Ty

For Scheme 2, we have z,.,, > T', thus the observed hybrid sample are

0 = —0.3194.

0.35 0.59 0.96 0.99 1.69 1.97.

In this case, n = 15, d = 6 and Ty = min{z,.,, T} = 2. From the above
sample, we obtain

d
> @i+ (n— d)Ty = 24.55,
=1

which yields

~ d
0=— = 0.4073.
Zz‘:l €Ty + (n - d)To
For each case, our aim is that to predict Y = X1 4.,(s = 1,2,...,n—d) based
on observed data x = (Z1.,...,%qyp). Using different methods discussed in

Sections 3 and 4, we computed different point predictors and also the 95%
PIs. The results are displayed in Table 1. Note that for computing Bayesian
predictions, since we do not have any prior information, we assumed that
the prior on # is non-informative, i.e. a = b = 0.
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6 Simulation and Discussion

In this section, different prediction methods have been compared using a
Monte Carlo simulation. We have generated hybrid censored data for differ-
ent n,r, and T. The hybrid censored data can be easily generated. For a
given n,r, and T, we first generate the Type-II censored sample x1.p, . .., Tyuy.
If ., < T, then the above Type-II censored sample is also a hybrid censored
sample. If x,., > T, then we find d, such that x4, < T < x441.,. In this
case, the hybrid censored sample is 1.5, - .., Tgun-

In our simulation, we considered n = 30 and 7" = 1. We also used two
parameter values § = 1,2. We have generated 1000 hybrid censored sample
X1y - -+, Tqyn from the exponential model (1) and then obtained different
point and interval predictors for Y = X 4.,(s = 1,2,...,n —d). We then
compared the performances of the different point predictors MLP, BUP,
CMP, and the Bayes predictor SEP in terms of biases, and mean square
prediction errors (MSPEs).

For computing different Bayesian predictors, we assume two priors as
follows:

Prior 1: a =0, b=20
Prior 2: a =3, b=3.

For various choices of r and s, Table 2 presents the average biases, and
MSPEs of different point predictors from this simulation study. All the
computations are performed using Visual Maple (V16) package. For solving
the nonlinear equations, we used the function fsolve from this package.

From Table 2, we observe that the BUP is the best predictor. The CMP
is the second best predictor. We also observe that the MLP does not work
well. Comparing the two Bayesian predictors based on two priors 1 and 2
clearly shows that the Bayesian predictors based on prior 2 perform better
than the Bayesian predictors based on non-informative prior 1, in terms of
both biases and MSPEs. The Bayes predictors based on both priors perform
better than the MLPs.

We also compared different Pls in terms of the average confidence lengths,
and coverage percentages. Table 3 presents the average confidence lengths
and the corresponding coverage percentages. The nominal level for the con-
fidence intervals is 0.95 in each case.

From Table 3, it is clear that the HCD method is the best procedure to
obtain PI. It provides the shortest confidence length. The pivotal method
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is the second best procedure. Comparing the two Bayesian predictors based
on two priors 1 and 2, we observe that the Bayesian predictors based on
prior 2 perform better than the Bayesian predictors based on non-informative
prior 1, in term of the average confidence length. Bayesian Pls are wider
than the non-Bayesian Pls and they provide the highest simulated coverage
percentages.

From Tables 2 and 3, for fixed r, when s is increasing the biases, MSPEs
and the average confidence lengths are increasing which is reasonable since
in this case we move away from the available censored sample.

One of the referees mentioned that Bayesian predictors may not be robust
by changing the prior parameters a and b. In Table 4, we provided the value
of point predictors for different values of ¢ and b. In Table 5, we also provided
the average confidence lengths and coverage percentages of different Pls for
different a and b. From Tables 4 and 5, it is clear that the results are not
changed significantly. So, Bayesian predictors are almost robust by changing
the prior parameters a and b.

It is also important to discuss the behavior of point predictors when n
and r increase. Table 6 presents the MSPESs of point predictors for different
values of n and r. From this table we note that when n and r increase, the
MSPEs decrease.

7 Conclusions

In this paper, we have considered different predictors of times to failure of
units censored in a hybrid censored sample from exponential distribution
under non-Bayesian and Bayesian approaches. We compared the perfor-
mances of the different approaches by Monte Carlo simulations. We note
that Bayesian predictors based on informative prior perform better than the
Bayesian predictors based on non-informative prior. We also note that the
BUP and CMP compare very well in terms of both biases and MSPEs. Com-
paring different Pls, it is observed that the HCD PIs provide the shortest
confidence lengths. An important problem will be to extend these results for
other hybrid censoring schemes such as progressive hybrid censoring scheme.
This work is in progress and it will be reported later.
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