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Abstract. This paper considers the simple step-stress model from the
Marshall-Olkin generalized exponential distribution when there is time con-
straint on the duration of the experiment. The maximum likelihood equa-
tions for estimating the parameters assuming a cumulative exposure model
with lifetimes as the distributed Marshall-Olkin generalized exponential are
derived. The likelihood equations do not lead to closed form expressions
for the maximum likelihood estimators (MLEs), and they need to be solved
by using an iterative procedure. We then evaluate the properties of MLEs
through the mean squared error, relative absolute bias and relative error.
We also derive confidence intervals for the parameters using asymptotic dis-
tributions of the MLEs and the parametric bootstrap methods. Finally, an
example is presented to illustrate the discussed methods of asymptotic and
bootstrap confidence intervals.
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1 Introduction

In most life-testing experiments, we can not continue the experiment until the
last failure is observed based on cost, time and some other considerations. So,
the experiment is usually terminated when either a pre-fixed censoring time t
arrives (Type-I censoring scheme) or when the rth failure is observed (Type-
II censoring scheme); see, for example, Harter and Balakrishnan (1996). In
many situations, it may be difficult to collect data on life-time of a product
under normal operating conditions as the product may have a high reliability
under normal conditions. For this reason, accelerated life-testing (ALT)
experiments can be used to force these products (systems or components)
to fail more quickly than under normal operating conditions. Some key
references in the area of accelerated testing include Nelson (1980, 1990),
Meeker and Escobar (1998), and Bagdonavicius and Nikulin (2002).

A special class of the ALT is called the step-stress testing which allows
the experimenter to choose one or more stress factors in a life-testing exper-
iment. Stress factors can include humidity, temperature, vibration, voltage,
load or any other factors that directly affect the life of the products. In such
a life-testing experiment, n identical units are placed on an initial stress
level s0 under a m-step-stress model, and only the successive failure times
are recorded. The stress levels are changed to s1, . . . , sm at pre-fixed times
t1, . . . , tm, respectively. The most common model used to analyse these
times-to- failure data is the cumulative exposure model.

We consider here a simple step-stress model with only two stress levels.
This model has been studied extensively in the literature; Sedyakin (1966) in-
troduced the cumulative exposure model in the simple step-stress case which
has been further discussed and generalized by Bagdonavicius (1978) and Nel-
son (1980), while Miller and Nelson (1983) and Bai et al. (1989) discussed
the determination of optimal time at which to change the stress level from
s0 and s1. Xiong (1998), Xiong and Milliken (1999), and Balakrishnan et
al. (2007) have all considered inferences for the step-stress model assum-
ing exponential lifetimes based on complete, and Type-II censored samples.
Balakrishnan et al. (2009) discussed exact inference for step-stress models
under exponential distribution when the available data are Type-I censored.
Balakrishnan and Iliopoulos (2010) established stochastic monotonicity of
the MLEs of parameters in exponential simple step-stress models. Chen and
Lio (2010) obtained the maximum likelihood estimation of the parameters
in the generalized exponential distribution under progressive type-I interval

c⃝ 2012, SRTC Iran



F. L. Bagheri and H. Torabi 63

censoring; Also Abdel-Hamid and AL-Hussaini (2009) estimated the parame-
ters of the step-stress accelerated life tests for the exponentiated exponential
distribution with Type-I censoring.

In the next section, we introduce a Marshall-Olkin generalized exponen-
tial distribution and then, we consider a simple step-stress model with two
stress levels based on the Marshall-Olkin generalized exponential distribu-
tion when there is time constraint on the duration of the experiment. The
model is described with details in Section 3. we derive maximum likelihood
equations for estimating the parameters. But the likelihood equations do not
lead to closed form expressions for the MLE, and they need to be solved by
using an iterative procedure. In Section 4, asymptotic confidence intervals
of the estimators are presented. In Section 5, asymptotic variance covari-
ance matrix of the estimators are given. Simulation studies and properties
of maximum likelihood estimators are given in Section 6. we discuss the
bootstrap methods in Section 7. Finally, we state some results in Section 8.

2 Marshall-Olkin Generalized Exponential Distri-
bution

The probability distribution function (PDF) of the Marshall-Olkin general-
ized exponential (MOGE) distribution with the parameters p and θ is defined
by

f(x) =
pe−

x
θ

θ
{
1− (1− p)e−

x
θ

}2 , x > 0, (1)

where 0 < p 6 1 and θ > 0. The corresponding cumulative distribution
function (CDF) is

F (x) =
1− e−

x
θ

1− (1− p)e−
x
θ

, x > 0. (2)

If p = 1, then the MOGE distribution reduces to the exponential distribu-
tion with the scale parameter θ. This model was first proposed by Marshall
and Olkin (1997) and extensively discussed by Alice and Jose (1999). Figure
1 illustrates the pdf of the MOGE distribution for some values of p and θ.
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Figure 1. The pdf of the MOGE distribution for some values of p and θ.

3 Step-stress Accelerated Life Tests under Cen-
soring

The term “Accelerated life test” applies to the type of study where failure
times can be accelerated by applying higher “stress” to the component. This
implies that the failure time is a function of the so called ”stress factor”
and higher stress may bring quicker failure. For example, some component
may fail quicker at a higher temperature however, it may have a long life
at lower temperatures. At low “stress” conditions, the time required may
be too large for its reliability estimation which may be tested under higher
stress factors terminating the experiment in a relatively shorter time, by
this process failures which under normal conditions would occur only after
a long testing can be observed quicker and the size of data can be increased
without a large cost and long time. This type of reliability testing is called
“Accelerated life testing”. Accelerated life testing methods are also useful
for obtaining information on the life of products or materials over a range
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of conditions, which are encountered in practice. Some information can be
obtained by testing over the range of conditions of interest or over more severe
conditions and then extrapolating the results over the range of interest. This
type of test conditions are typically produced by testing units at high levels
of temperature, voltage, pressure. vibration, cyclic rate, load etc. or some
combination of them. Stress variables are used in engineering practice for
many products and materials. In other fields similar problems arise when the
relationship between variables could affect its life time. Therefore the models
formulated are based on either past studies or theoretical development that
could relate the distribution of failure time to stress or other variables. Such
models are also useful in survival analysis where dependence of the life time
of individuals on concomitant variables is analyzed (Sen, 1999); see for more
details Nelsen (1980, 1990).

Suppose that the data come from a cumulative exposure model, and we
consider a simple step-stress model with only two stress levels s0 and s1.
The lifetime distributions at s0 and s1 are assumed to be the MOGE with
parameters θ1 and θ2, respectively; and a common parameter p. The PDF
and CDF are given by

fk(x; p, θk) =
pe

− x
θk

θk
{
1− (1− p)e

− x
θk

}2 , (3)

and

Fk(x; p, θk) =
1− e

− x
θk

1− (1− p)e
− x

θk

, (4)

respectively, where x > 0, 0 < p 6 1 , θk > 0, k = 1, 2. We then have the
cumulative exposure distribution (CED) G(x) as

G(x) =

{
G1(x) = F1(x; θ1), 0 6 x < t1,

G2(x) = F2(x− t1 +
θ2
θ1
t1; θ2), t1 6 x <∞,

(5)

where Fk(·) is given in (4). The corresponding PDF is

g(x) =


g1(x) =

pe
− x

θ1

θ1
{
1−(1−p)e

− x
θ1

}2 , 0 6 x < t1,

g2(x) =
pe

−x−t1
θ2

− t1
θ1

θ2
{
1−(1−p)e

−x−t1
θ2

− t1
θ1

}2
t1 6 x <∞.

(6)
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Based on the Type-I censored data, we have n identical units under an initial
stress level s0. The stress level is changed to s1 at time t1, and the life-testing
experiment is terminated at time t2, where 0 < t1 < t2 < ∞ are fixed in
advance. Let N1 be the number of units that fail before t1, and N2 be the
number of units that fail before t2 at stress level s1, then, we will observe
the following observations:

x1:n < x2:n < · · · < xN1:n 6 t1 < xN1+1:n < · · · < xN1+N2:n 6 t2 (7)

The likelihood of the observed failure times is then given by

L(p, θ1, θ2) =



n!
(n−N1)!

{
N1∏
i=1

g1(xi:n)

}
{1−G1(t1)}n−N1 ,

1 6 N1 6 n,N2 = 0,

n!
(n−N2)!

{
N2∏
i=1

g2(xi:n)

}
{1−G2(t2)}n−N2 ,

1 6 N2 6 n,N1 = 0,

n!
(n−N)!

{
N1∏
i=1

g1(xi:n)

}{
N1+N2∏
i=N1+1

g2(xi:n)

}
× {1−G2(t2)}n−N ,

1 6 N1 6 n− 1, 1 6 N2 6 n−N1.
(8)

From (7) and (8), we observe the following:

1. If N1 = 0 and N2 = 0 in (7), the MLEs of p, θ1 and θ2 do not exist.

2. If 1 6 N1 6 n and N2 = 0 in (7), the MLE of θ2 does not exist, since
there are no failures observed after t1.

3. If N1 = 0 and 1 6 N2 6 n in (7), no failures could be observed before
t1. Therefore, the MLE of θ1 does not exist.

4. If 1 6 N1 6 n− 1 and 1 6 N2 6 n−N1 in (7), the MLEs of p, θ1 and
θ2 exist.
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From (5) and (6), when 1 6 N1 6 n − 1 and 1 6 N2 6 n − N1 the log-
likelihood function is given by

l(p, θ1, θ2) = const+ n log(p)−N1 log(θ1)−N2 log(θ2)−
1

θ1

N1∑
i=1

xi:n

− 2

N1∑
i=1

log
{
1− (1− p)e

−xi:n
θ1

}
− 1

θ2

N1+N2∑
i=N1+1

(
xi:n − t1 +

θ2
θ1
t1

)

− 2

N1+N2∑
i=N1+1

log

{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}
− (n−N1 −N2)

t2 − t1
θ2

− (n−N1 −N2)
t1
θ1

− (n−N1 −N2) log

{
1− (1− p)e

− t2−t1
θ2

− t1
θ1

}

Our objective now is to determine the maximum likelihood estimates
(MLE) of the parameters p, θ1 and θ2, based on the observed failure times.
These estimates have to be viewed as conditional MLE because we are work-
ing under the condition that 1 6 N1 6 n− 1 and 1 6 N2 6 n−N1.

The log-likelihood function can be written as

∂l

∂p
=
n

p
− 2

N1∑
i=1

e
−xi:n

θ1

1− (1− p)e
−xi:n

θ1

− 2

N1+N2∑
i=N1+1

e
−xi:n−t1

θ2
− t1

θ1

1− (1− p)e
−xi:n−t1

θ2
− t1

θ1

− (n−N1 −N2)
e
− t2−t1

θ2
− t1

θ1

1− (1− p)e
− t2−t1

θ2
− t1

θ1

(9)

∂l

∂θ1
= −N1

θ1
+

1

θ21

N1∑
i=1

xi:n +
2

θ21

N1∑
i=1

(1− p)xi:ne
−xi:n

θ1

1− (1− p)e
−xi:n

θ1

+
N2t1
θ21

+
2

θ21

N1+N2∑
i=N1+1

(1− p)t1e
−xi:n−t1

θ2
− t1

θ1

1− (1− p)e
−xi:n−t1

θ2
− t1

θ1

+ (n−N1 −N2)
t1
θ21

+
n−N1 −N2

θ21
· (1− p)t1e

− t2−t1
θ2

− t1
θ1

1− (1− p)e
− t2−t1

θ2
− t1

θ1

(10)
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∂l

∂θ2
= −N2

θ2
+

1

θ22

N1+N2∑
i=N1+1

(xi:n − t1) +
2

θ22

N1+N2∑
i=N1+1

(1− p)(xi:n − t1)e
−xi:n−t1

θ2
− t1

θ1

1− (1− p)e
−xi:n−t1

θ2
− t1

θ1

+ (n−N1 −N2)
t2 − t1
θ22

+
n−N1 −N2

θ22
· (1− p)(t2 − t1)e

− t2−t1
θ2

− t1
θ1

1− (1− p)e
− t2−t1

θ2
− t1

θ1

(11)

Numerical methods are applied for simultaneously solving the nonlinear
equations to obtain parameters. The required numerical evaluations were
implemented using the R Software through the package (stats 4), command
mle with the L-BFGS-B method.

4 Interval Estimates

Because the MLE of the model parameters are not in closed form expressions,
it is not possible to derive their distributions, and therefore the corresponding
exact confidence intervals (CI). Hence, we will discuss here the asymptotic
confidence intervals.

For large sample size n, the derivation of the asymptotic confidence inter-
vals (ACI) for the parameters p, θ1 and θ2 will be based on the pivotal quan-
tities (p̂−E(p̂))/

√
V (p̂), (θ̂1−E(θ̂1))/

√
V (θ̂1) and (θ̂2−E(θ̂2))/

√
V (θ̂2), re-

spectively. The maximum likelihood estimates, under appropriate regularity
conditions (A1-A6 conditions stated in Casella and Berger (2002), Page 516)
are consistent and asymptotically normally distributed. Therefore, we end
up with the asymptotic two-sided 100(1−α)% CI of the form p̂±zα/2

√
V (p̂),

θ̂1± zα/2
√
V (θ̂1) and θ̂2± zα/2

√
V (θ̂2), where zp is the p-th upper percentile

of the standard normal distribution. Here, V (p̂), V (θ̂1) and V (θ̂2) are the
diagonal elements of the inverse of the observed Fisher information matrix
presented in next section.
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5 Asymptotic Variances and Covariances of Esti-
mates

The asymptotic variances and covariances of maximum likelihood estimators
are given by the elements of the inverse of the Fisher information matrix

Iij(ψ) = E{−∂2l/∂ψi∂ψj}, i, j = 1, 2, 3

where ψ = (ψ1, ψ2, ψ3), ψ1 = p, ψ2 = θ1 and ψ3 = θ2.

Unfortunately, the exact mathematical expressions for the above expecta-
tions are very difficult to obtain. Therefore, the observed Fisher information
matrix is given by Iij(ψ) = {−∂2l/∂ψi∂ψj}, which is obtained by dropping
the expectation operator E; for more details, see Cohen (1965).

The second partial derivatives of the maximum likelihood function are
given as the following:

∂2l

∂p2
=− n

p2
+ 2

N1∑
i=1

e
−2xi:n

θ1{
1− (1− p)e

−xi:n
θ1

}2

+ 2

N1+N2∑
i=N1+1

(
e
−xi:n−t1

θ2
− t1

θ1

)2

{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}2

+ (n−N1 −N2)

(
e
− t2−t1

θ2
− t1

θ1

)2

{
1− (1− p)e

− t2−t1
θ2

− t1
θ1

}2 (12)
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∂2l

∂p∂θ1
= − 2

θ21

N1∑
i=1

xi:ne
−xi:n

θ1{
1− (1− p)e

−xi:n
θ1

}2

− 2t1
θ21

N1+N2∑
i=N1+1

e
−xi:n−t1

θ2
− t1

θ1{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}2

− (n−N1 −N2)t1
θ21

· e
− t2−t1

θ2
− t1

θ1{
1− (1− p)e

− t2−t1
θ2

− t1
θ1

}2 (13)

∂2l

∂p∂θ2
=− 2

θ22

N1+N2∑
i=N1+1

(xi:n − t1)e
−xi:n−t1

θ2
− t1

θ1{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}2

− (n−N1 −N2)
t2 − t1
θ22

× e
− t2−t1

θ2
− t1

θ1{
1− (1− p)e

− t2−t1
θ2

− t1
θ1

}2 (14)

∂2l

∂θ21
=
N1

θ21
− 2

θ31

N1∑
i=1

xi:n −
4

θ31

N1∑
i=1

(1− p)xi:ne
−xi:n

θ1

1− (1− p)e
−xi:n

θ1

+
2

θ41

N1∑
i=1

(1− p)x2i:ne
−xi:n

θ1{
1− (1− p)e

−xi:n
θ1

}2

− 2N2t1
θ31

− 4t1
θ31

N1+N2∑
i=N1+1

(1− p)e
−xi:n−t1

θ2
− t1

θ1

1− (1− p)e
−xi:n−t1

θ2
− t1

θ1

+
2

θ41

N1+N2∑
i=N1+1

(1− p)t21e
−xi:n−t1

θ2
− t1

θ1{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}2 − (n−N1 −N2)
2t1
θ31

− 2(n−N1 −N2)

θ31
· (1− p)t1e

− t2−t1
θ2

− t1
θ1

1− (1− p)e
− t2−t1

θ2
− t1

θ1
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+
n−N1 −N2

θ41
· (1− p)t21e

− t2−t1
θ2

− t1
θ1{

1− (1− p)e
− t2−t1

θ2
− t1

θ1

}2 (15)

∂2l

∂θ1∂θ2
=

2t1
θ21θ

2
2

N1+N2∑
i=N1+1

(1− p)(xi:n − t1)e
−xi:n−t1

θ2
− t1

θ1{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}2

+
n−N1 −N2

θ21θ
2
2

· (1− p)t1(t2 − t1)e
− t2−t1

θ2
− t1

θ1{
1− (1− p)e

− t2−t1
θ2

− t1
θ1

}2 (16)

∂2l

∂θ22
=
N2

θ22
− 2

θ32

N1+N2∑
i=N1+1

(xi:n − t1)

− 4

θ32

N1+N2∑
i=N1+1

(1− p)(xi:n − t1)e
−xi:n−t1

θ2
− t1

θ 1

1− (1− p)e
−xi:n−t1

θ2
− t1

θ1

+
2

θ42

N1+N2∑
i=N1+1

(1− p)(xi:n − t1)e
−xi:n−t1

θ2
− t1

θ1{
1− (1− p)e

−xi:n−t1
θ2

− t1
θ1

}2

− 2(n−N1 −N2)
t2 − t1
θ32

− (n−N1 −N2)
2

θ32
· (1− p)(t2 − t1)e

− t2−t1
θ2

− t1
θ1{

1− (1− p)e
− t2−t1

θ2
− t1

θ1

}2

+ (n−N1 −N2)
(t2 − t1)

2

θ42
· (1− p)e

− t2−t1
θ2

− t1
θ1{

1− (1− p)e
− t2−t1

θ2
− t1

θ1

}2 (17)

Consequently, the maximum likelihood estimators of p, θ1 and θ2 have an
asymptotic variance covariance matrix defined by inverting the Fisher infor-
mation matrix and then substituting p, θ1 and θ2 by p̂, θ̂1 and θ̂2.
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6 Simulation Study

In order to obtain the MLEs of parameters and study the properties of their
estimates through the mean squared errors (MSE), relative absolute biases
(RAB) and relative errors (RE), we describe the algorithm to obtain the
Type-I censored sample. A simulation study is performed according to the
following steps:

For given values of t1, t2 and the parameters p, θ1 and θ2,

Step 1. we generate a random sample of size n from Uniform (0, 1) dis-
tribution, and obtain the order statistics (U1:n, . . . , Un:n).

Step 2. Find N1 such that

UN1:n < P (X 6 t1) = G1(t1) 6 UN1+1:n

⇔ UN1:n <
e
− t1

θ1

1− (1− p)e
− t1

θ1

6 UN1+1:n.

The values x1:n, x2:n, . . . , xN1:n construct a simulated random sample
from the MOGE distribution in stress level s0, since using the probability
integral transformation theorem, the solution of the equation Ui:n = G1(xi:n)
with respect to xi:n, 1 6 i 6 N1, is a simulated value from the distribution
with the CDF G1(·). But

Ui:n = G1(xi:n) ⇔ Ui:n =
e
−xi:n

θ1

1− (1− p)e
−xi:n

θ1

⇔ xi:n = θ1 log
1− (1− p)Ui:n

1− Ui:n
, i = 1, . . . , N1,

Note that G1(·) is an one-to-one function, so its inverse function, xi:n is the
unique solution of the equation.

Step 3. Next, we generate a random sample of size m = n − N1 from
Uniform (0, 1) distribution, and obtain the order statistics (V1:m, . . . , Vm:m).
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Step 4. Find N2 such that

VN2:m < P (X 6 t2|X > t1) =
G2(t2)−G1(t1)

1−G1(t1)
6 VN2+1:m

⇐⇒ VN2:m <
1− e

− t2−t1
θ2

1− (1− p)e
− t2−t1

θ2
− t1

θ1

6 VN2+1:m.

The values xN1+1:n, . . . , xN1+N2:n construct a simulated random sample from
the MOGE distribution in stress level s1, since using the probability integral
transformation theorem, for 1 6 j 6 N2,

Vj:m = P (X 6 xN1+j:n|X > t1) =
G2(xN1+j:n)−G1(t1)

1−G1(t1)

⇐⇒ Vj:m =
1− e

−
xN1+j:n−t1

θ2

1− (1− p)e
−

xN1+j:n−t1

θ2
− t1

θ1

xN1+j:n = t1 − θ2 log
1− Vj:m

1− Vj:m(1− p)e
− t1

θ1

.

Step 5. Based on n, N1, N2, t1, t2 and ordered observations {x1:n, . . . ,
xN1:n, xN1+1:n, . . . , xN1+N2:n}, we can obtain the MLEs (p̂, θ̂1, θ̂2) by solving
system of nonlinear Equation (9), (12) and (13).

Step 6. Repeat Steps 1 − 5, r times representing r different samples. The
value of r has been taken to be 1000.

Step 7. If ψ̂kl is a MLE of ψl, l = 1, 2, 3 (where ψl is a general notation
that can be replaced by p, θ1 and θ2 i.e. ψ1 ≡ p, ψ2 ≡ θ1 and ψ3 ≡ θ2),
based on sample k, k = 1, . . . , r then the average estimate, MSE, RAB and
RE of ψ̂l over the r samples are given, respectively by

¯̂
ψl =

1
r

r∑
k=1

ψ̂kl,

MSE(ψ̂l) =
1
r

r∑
k=1

(ψ̂kl − ψl)
2,

RAB(ψ̂l) =
| ¯̂ψl−ψl|
ψl

,
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RE(ψ̂l) =

√
MSE(ψ̂l)
ψl

.

Step 8. From Step 7 compute ¯̂p, ¯̂
θ1, ¯̂

θ2, MSE(p̂), MSE(θ̂1), MSE(θ̂2),
RAB(p̂), RAB(θ̂1), RAB(θ̂2), RE(p̂), RE(θ̂1) and RE(θ̂2).

7 Bootstrap Confidence Intervals
In this section, we present several parametric bootstrap methods to construct
CIs for p, θ1 and θ2, studentized-t interval, percentile interval, and adjusted
percentile (BCa) interval; see Efron (1982) and Hall (1988) for more details.

The following steps are followed to obtain a bootstrap sample,

Step 1. Based on the original type-I censored sample,{x1:n, . . . ,
xN1:n, xN1+1:n, . . . , xN1+N2:n}, we obtain p̂, θ̂1 and θ̂2.

Step 2. Based on n, we generate a random sample of size n from Uniform
(0, 1) distribution, and obtain the order statistics (U1:n, . . . , Un:n).

Step 3. For a given value of the stress change time t1, Find N∗
1 such that

UN∗
1 :n

<
e
− t1

θ̂1

1− (1− p̂)e
− t1

θ̂1

6 UN∗
1+1:n.

For 1 6 i 6 N∗
1 , we set

x∗i:n = θ̂1 log
1− (1− p̂)Ui:n

1− Ui:n
.

Step 4. Next, we generate a random sample of size m = n − N∗
1 from

Uniform (0, 1) distribution, and obtain the order statistics (V1:m, . . . , Vm:m).

Step 5. For a given value of censoring time t2, Find N∗
2 such that

VN∗
2 :m

<
1− e

t2−t1
θ̂2

1− (1− p̂)e
− t2−t1

θ̂2
− t1

θ̂1

6 VN∗
2+1:m.
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For 1 6 j 6 N∗
2 , we then set

x∗N1+j:n = t1 − θ̂2 log
1− Vj:m

1− Vj:m(1− p̂)e
− t1

θ̂1

.

Step 6. Based on n, N∗
1 , N∗

2 , t1, t2 and ordered observations {x∗1:n, . . . ,
x∗N1:n

, x∗N1+1:n, . . . , x
∗
N1+N2:n

}, we can obtain the bootstrap estimates (p̂∗, θ̂∗1, θ̂∗2)
by solving system of nonlinear Equation (9), (12) and (13).

Step 7. Repeat Steps 2 − 6, B times and arrange all p̂∗, θ̂∗1, θ̂∗2 in ascend-
ing to obtain the bootstrap sample {ψ̂∗[1]

l , ψ̂
∗[2]
l , . . . , ψ̂

∗[B]
l }, l = 1, 2, 3, where

ψ̂∗
1 ≡ p̂∗, ψ̂∗

2 ≡ θ̂∗1, ψ̂
∗
3 ≡ θ̂∗2.

7.1 Studentized-t Interval

First, find the order statistics T ∗[1]
l < T

∗[2]
l < · · · < T

∗[B]
l , where

T
∗[j]
l =

ψ̂
∗[j]
l − ψ̂l√
var(ψ̂∗[j]

l )

, j = 1, . . . , B, l = 1, 2, 3

where ψ̂1 = p̂, ψ̂2 = θ̂1 and ψ̂3 = θ̂2.
A two-sided 100(1 − α)% studentized-t bootstrap confidence interval

(TBCI) for ψl is(
ψ̂l − T

∗[(1−α/2)B]
l

√
var(ψ̂l), ψ̂l − T

∗[(α/2)B]
l

√
var(ψ̂l)

)
,

where var(ψ̂l) is estimated as the asymptotic variance, obtained from Section
5.

7.2 Percentile Bootstrap Confidence Interval (PBCI)

A two-sided 100(1− α)% percentile bootstrap confidence interval for ψl is(
ψ̂
∗[(α/2)B]
l , ψ̂

∗[(1−α/2)B]
l

)
, l = 1, 2, 3.
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7.3 Adjusted Percentile (BCa) Interval
A two-sided 100(1− α)% BCa bootstrap confidence interval for ψl is(

ψ̂
∗[α1lB]
l , ψ̂

∗[(1−α2l)B]
l

)
, l = 1, 2, 3.

where

α1l = Φ

(
ẑ0l +

ẑ0l + zα/2

1− âl
(
ẑ0l + zα/2

)) ,
and

α2l = Φ

(
ẑ0l +

ẑ0l + z1−α/2

1− âl
(
ẑ0l + z1−α/2

)) .
Here, Φ(·) is the CDF of the standard normal distribution. The value of the
bias correction ẑ0l can be computed as

ẑ0l = Φ−1

(
ψ̂
∗[j]
l < ψ̂l
B

)
, j = 1, . . . , B, l = 1, 2, 3,

while the acceleration al is estimated by

âl =

N1+N2∑
i=1

(
ψ̂
(.)
l − ψ̂

(i)
l

)3
6

(
N1+N2∑
i=1

(
ψ̂
(.)
l − ψ̂

(i)
l

)2)3/2
, l = 1, 2, 3,

where ψ̂(i)
l is the MLE of ψl based on the simulated Type-I censored sample

with the ith observation deleted (i.e., the jackknife estimate), and

ψ̂
(·)
l =

1

N1 +N2

N1+N2∑
i=1

ψ̂
(i)
l , l = 1, 2, 3.

8 Numerical Results
All simulation results are summarized in Tables 1-3 , based on 1000 simula-
tions. Tables 1-3 show the average MLEs, MSEs, RABs and REs of p, θ1 and
θ2 for different values of t1 and t2. The values of the population parameters
are arbitrary chosen to be p = 0.5, θ1 = 12.18 and θ2 = 4.48. The results are
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based on n = 35 in Table 1, n = 50 in Table 2 and n = 100 in Table 3. The
values of t2 range from 7 to 10 by Step 1 and the values of t1 are 6, 7 and 8.

Table 1. Average estimate of p, θ1 and θ2 with their MSE, RAB and RE for different
stress change times and different censoring values based on 1000 simulations.
Population parameter values: p = 0.5, θ1 = 12.18, θ2 = 4.48 with n = 35.

t1 t2 N̄1
¯̂p MSE(p̂) RAB(p̂) RE(p̂)

N̄2
¯̂
θ1 MSE(θ̂1) RAB(θ̂1) RE(θ̂1)
¯̂
θ2 MSE(θ̂2) RAB(θ̂2) RE(θ̂2)

6 7 19.721 0.553 0.170 0.106 0.825
4 36.402 2153.315 1.989 3.810

14.170 424.729 2.163 4.600

8 19.521 0.551 0.164 0.103 0.810
6.924 35.362 2052.228 1.903 3.719

11.337 234.32 1.531 3.417

9 19.702 0.568 0.165 0.135 0.811
8.82 32.992 1853.139 1.709 3.534

9.875 155.086 1.204 2.780

10 19.671 0.587 0.157 0.174 0.793
10.442 29.183 1491.811 1.396 3.171

8.191 90.181 0.828 2.120

7 8 21.274 0.541 0.161 0.082 0.801
3.662 35.447 2042.395 1.910 3.710

13.341 428.105 1.978 4.618

9 21.26 0.559 0.167 0.117 0.818
6.061 33.980 1903.377 1.790 3.582

10.799 210.932 1.411 3.242

10 21.345 0.563 0.156 0.127 0.791
7.798 31.715 1717.846 1.604 3.403

9.546 149.380 1.131 2.728

8 9 22.703 0.557 0.156 0.113 0.790
3.255 32.566 1796.857 1.674 3.480

11.313 257.157 1.525 3.579

10 22.814 0.552 0.156 0.104 0.790
5.234 32.753 1806.050 1.689 3.489

11.112 249.385 1.480 3.525
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Table 2. Average estimate of p, θ1 and θ2 with their MSE, RAB and RE for different
stress change times and different censoring values based on 1000 simulations.
Population parameter values: p = 0.5, θ1 = 12.18, θ2 = 4.48 with n = 50.

t1 t2 N̄1
¯̂p MSE(p̂) RAB(p̂) RE(p̂)

N̄2
¯̂
θ1 MSE(θ̂1) RAB(θ̂1) RE(θ̂1)
¯̂
θ2 MSE(θ̂2) RAB(θ̂2) RE(θ̂2)

6 7 28.059 0.534 0.166 0.068 0.814
5.771 37.957 2308.284 2.116 3.945

13.380 339.406 1.987 4.112

8 27.944 0.559 0.159 0.118 0.797
9.872 33.437 1878.894 1.745 3.559

9.975 145.872 1.227 2.696

9 28.060 0.560 0.157 0.121 0.793
12.713 31.928 1733.627 1.621 3.418

9.329 122.167 1.082 2.467

10 28.270 0.593 0.147 0.186 0.767
14.765 26.349 1250.328 1.163 2.903

7.656 73.038 0.709 1.908

7 8 30.479 0.528 0.148 0.055 0.770
5.057 33.322 1807.009 1.736 3.490

12.065 287.003 1.693 3.782

9 30.407 0.552 0.150 0.105 0.774
8.659 31.491 1688.338 1.585 3.374

9.675 148.085 1.160 2.716

10 30.444 0.550 0.146 0.101 0.765
11.187 29.962 1513.144 1.460 3.194

8.687 97.935 0.939 2.209

8 9 32.347 0.541 0.146 0.082 0.764
4.437 31.857 1682.816 1.616 3.368

11.047 207.579 1.466 3.216

10 32.453 0.543 0.144 0.086 0.758
7.721 30.578 1571.722 1.510 3.255

9.113 122.445 1.034 2.470
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Table 3. Average estimate of p, θ1 and θ2 with their MSE, RAB and RE for different
stress change times and different censoring values based on 1000 simulations.
Population parameter values: p = 0.5, θ1 = 12.18, θ2 = 4.48 with n = 100.

t1 t2 N̄1
¯̂p MSE(p̂) RAB(p̂) RE(p̂)

N̄2
¯̂
θ1 MSE(θ̂1) RAB(θ̂1) RE(θ̂1)
¯̂
θ2 MSE(θ̂2) RAB(θ̂2) RE(θ̂2)

6 7 56.068 0.554 0.139 0.107 0.747
11.521 29.047 1432.920 1.385 3.108

9.556 130.639 1.133 2.551

8 56.008 0.553 0.137 0.105 0.740
19.806 28.445 1360.074 1.335 3.028

8.466 87.415 0.890 2.087

9 55.683 0.525 0.123 0.050 0.702
25.542 27.474 1206.766 1.256 2.852

8.014 70.589 0.789 1.875

10 56.232 0.564 0.126 0.127 0.709
29.601 24.083 962.639 0.977 2.547

6.992 45.530 0.561 1.506

7 8 60.682 0.529 0.125 0.058 0.707
10.211 27.969 1289.749 1.296 2.949

8.865 104.429 0.979 2.281

9 60.692 0.543 0.121 0.086 0.695
17.224 25.289 1050.936 1.076 2.662

7.760 68.393 0.732 1.846

10 60.878 0.534 0.113 0.069 0.672
22.327 24.017 913.168 0.972 2.481

7.043 43.645 0.572 1.475

8 9 65.057 0.516 0.109 0.031 0.662
8.767 25.703 1070.588 1.110 2.686

8.591 92.071 0.918 2.142

10 65.103 0.573 0.119 0.147 0.689
15.157 22.368 826.355 0.836 2.360

6.979 49.926 0.558 1.577

8.1 Real Data

In this section, we fit the MOGE model to one real data set. Data set is
given by Gupta and Kundu (2003) on the failure times of the air conditioning
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system of the air plane 7912. The data set is as follows:

1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 90,

95, 120, 120, 225, 246, 261.

Here we fit the MOGE model to the real data set and show that the
MOGE distribution is more flexible for analyzing of the data than the expo-
nentiated exponential distribution (EE) and exponential distribution (E).

In order to compare the models, we usually used two criteria: Akaike In-
formation Criterion (AIC) and BIC (Bayesian Information Criterion) which
are defined as follows:

AIC = −2 log L̂+ 2k, BIC = −2 log L̂+ k log(n),

where k is the number of free parameters in the model and n is the sample
size. For fitting a data set, the best model is a model with the smallest value
of AIC and BIC statistics.

We can also perform formal goodness-of-fit tests in order to verify which
distribution fits better to these data. We apply Kolmogorov-Smirnov (K-
S) statistics and the p-value from the chi-square goodness of fit test, where
the lower values of K-S statistic and the upper value of p-value for models
indicate that these models could be chosen as the best model to fit the data.

The K-S statistic and the corresponding p-value evaluations were imple-
mented using the R software through the command ks.test. MLEs of the
model parameters and the values of the K-S statistics, P-value, AIC and BIC
statistics are listed in Table 4.

Table 4. MLEs of the model parameters for Gupta and Kundu data,
K-S statistics, P-value and the measures AIC and BIC.

Model Parameters K-S P-value AIC BIC

NGE θ̂ = 0.10 0.1268 0.7207 306.841 309.644
p̂ = 0.389

EE α̂ = 0.810 0.1719 0.3382 308.401 311.204
λ̂ = 0.014

E θ̂ = 0.017 0.2129 0.1319 307.2594 308.661
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Hence, it is clear that the new generalized exponential distribution fits
quite well to this data set and is better than the exponentiated exponential
distribution with the parameters α and λ and the exponential distribution
with the parameter θ.

After analyzing the data, we found that the failure distribution of the
air-conditioning system for the air plane is well by the new generalized ex-
ponential distribution. Now, we suppose this data of size n = 30 and simple
step-stress model under type-I censoring with t1 = 35 and t2 = 90 had oc-
curred on this data. We then computed the MLEs of p, θ1 and θ2 and the
estimates of their standard deviations. The MLE of parameters p, θ1 and
θ2 are obtained as p̂ = 0.702, θ̂1 = 56.003 and θ̂2 = 81.909. Also, standard
deviations p, θ1 and θ2 are 0.985, 62.689 and 58.044, respectively.

8.2 Illustrative Example

In this subsection, we present an example to illustrate the estimation pro-
cedure, the asymptotic confidence interval and bootstrap CI methods for
the parameters p, θ1 and θ2. In this example, we simulate a sample of size
n = 35, using the algorithm presented in Section 5, based on population
parameter values p = 0.5, θ1 = 12.18, θ2 = 4.48. The two stress levels used
in the simulation are θ1 = 12.18 and θ2 = 4.48. The stress change time t1
and the censoring time t2 are chosen to be equal 7 and 9, respectively. Un-
der type-I censoring, the simulated failure time data are presented in Table
5, while the MLE, MSE, RAB and RE of the parameters are presented in
Table 6. Using the asymptotic confidence intervals (ACI) and bootstrap CIs
presented in Sections 4 and 7, Table 7 shows 90%, 95% and 99% ACIs and
bootstrap CIs for the parameters p, θ1 and θ2.

It can be seen from the simulated data, presented in Table 5, that there
are 21 and 5 failure times in the intervals (0, 7] and (7, 9], respectively. From
the results of Table 6, the confidence interval length at 1−α = 0.90 is smaller
than the confidence interval length at 1− α = 0.95 and 1− α = 0.99. Also,
the confidence interval length at 1− α = 0.95 is smaller than the confidence
interval length at 1− α = 0.99.
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Table 5. Simulated data.

Stress Level θ1 = 12.18 Stress Level θ2 = 4.48

Failure times in the interval (0, 7] Failure times in the interval (7, 9]

0.0534, 0.6067, 0.7266, 0.7848, 1.1430, 1.1931,
1.2286, 1.6487, 1.9272, 2.0842, 2.0949, 2.3394, 7.3320, 7.4011, 7.8178, 8.3481, 8.7218,
2.5292, 2.9790, 4.0447, 4.2743, 4.8495, 4.8899,
5.5299, 5.6333, 6.6981,

Table 6 MLEs of p, θ1 and θ2 with their MSE, RAB and RE.
Population parameter values: p = 0.5, θ1 = 12.18 and θ2 = 4.48
with n = 35.

t1 t2 N1 p̂ MSE(p̂) RAB(p̂) RE(p̂)
N2 θ̂1 MSE(θ̂1) RAB(θ̂1) RE(θ̂1)

θ̂2 MSE(θ̂2) RAB(θ̂2) RE(θ̂2)

7 9 21 0.516 0.0002 0.032 0.032
5 12.142 0.001 0.003 0.003

5.917 2.066 0.321 0.321

Table 7. Asymptotic confidence intervals and bootstrap CIs of p, θ1 and θ2 based
on B = 1000 replications.

parameters Methods 90% 95% 99%

ACI (0,1) (0,1) (0,1)
p TBCI (0.0071,1) (0,1) (0, 1)

PBCI (0.0423,1) (0.038,1) (0.0307, 1)
BCa (0.0421,1) (0.0379,1) (0.0301, 1)

ACI (0,40.4356) (0,45.8559) (0,56.4494)
θ1 TBCI (5.5222,43.0002) (4.4028, 50.1454) (2.8538,69.9666)

PBCI (5.7641,100) (5.4154,100) (4.4354,100)
BCa (5.7126,100) (5.1652,100) (4.4109,100)

ACI (0,15.4026) (0,17.2197) (0,20.7712)
θ2 TBCI (2.6601,18.4992) (2.2923,23.9044) (1.8570,37.7206)

PBCI (2.7852,50.2819) (2.3384,67.5619) (1.7659,100)
BCa (1.8491,27.2998) (1.5657,35.5511) (0, 58.2719)
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9 Conclusions

In this paper, we considered a simple step-stress model with two stress levels
from the MOGE distribution when there was time constraint on the duration
of the experiment. We also obtained maximum likelihood equations for es-
timating the distribution parameters. In addition, asymptotic variance and
covariance of the estimators were given. We also evaluated the properties of
maximum likelihood estimation through the mean squared error, relative ab-
solute bias and relative error. Furthermore, asymptotic confidence intervals
of the estimators derived. We have also proposed several different procedures
for constructing bootstrap confidence intervals. Finally, some simulation re-
sults are presented.

From results of Tables 1-3, we observe that:

1. For fixed values of t1, by increasing t2 the value of N̄2, the average of
failures observed after t1 before termination, increases and MSE and
RAB of θ̂1 and θ̂2 decrease. The MSE of p̂ decreases and RAB of p̂
increases except for some cases. Also RE of p̂, θ̂1 and θ̂2 decrease.

2. For fixed values of t2, large values of t1 would provide more data under
low stress and less data under high stress, so the number of failures N̄1,
the average number of failures before t1, increases and N̄2 decreases.
The MSE and RE of p̂ decrease and also, RAB of p̂ decreases except
for some cases. The MSE, RAB and RE of θ̂2 increase.

3. For fixed values of t1 and t2, as n increases the MSE, RAB and RE of
θ̂1 and θ̂2 decrease. Also, the MSE and RE of p̂ decrease and the RAB
of p̂ decreases except for some cases.
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