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Abstract. In this paper, for the Stratified Median Ranked Set Sampling
(SMRSS), proposed by Ibrahim et al. (2010), we examine the proportional
and optimum sample allocations that are two well-known methods for sam-
ple allocation in stratified sampling. We show that the variances of the
mean estimators of a symmetric population in SMRSS using optimum and
proportional allocations to strata are smaller than the corresponding vari-
ances in Stratified Random Sampling (STRS). It is also shown that for a
fixed value of sampling cost in strata, the variance of mean estimator with
optimum allocation is less than or equal to the variance of mean estimator
with proportional allocation in SMRSS. In addition, we develop the results
obtained by Ibrahim et al. (2010) for proportional allocation in SMRSS for
some symmetric and non-symmetric distributions when the parameters of
distributions are varying.
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1 Introduction

Ranked Set Sampling (RSS) was first suggested by McIntyre (1952) to esti-
mate mean pasture and forage yields. Takahasi and Wakimoto (1968) pro-
vided the necessary mathematical theory. They proved that the sample mean
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of RSS is an unbiased estimator of the population mean with smaller vari-
ance than the sample mean of a Simple Random Sample (SRS) of the same
sample size. Dell and Clutter (1972) showed that the mean of the RSS is an
unbiased estimator of the population mean, whether or not there are errors
in ranking, and is at least as efficient as the SRS estimator with the same
number of quantifications. Muttlak (1997) suggested the Median Ranked
Set Sampling (MRSS) which reduce the errors in ranking and increase the
efficiency over RSS with perfect ranking for some probability distribution
functions.

In recent years, RSS has been used in conjunction with other sampling
designs, as the last stage of sampling in multi-stage designs, or in strati-
fied sampling designs. For example, Samawi (1996) introduced the concept
of Stratified Ranked Set Sampling (SRSS) and Nematollahi et al. (2008)
employed Ranked Set Sampling in the second stage of a two-stage cluster
sampling design to improve the precision of the population mean estimate.

Ibrahim et al. (2010) suggested Stratified Median Ranked Set Sampling
(SMRSS) for estimating the population mean. They indicate that under
symmetric distributions, the mean of SMRSS is an unbiased estimator of the
population mean with greater efficiency than SRS and STRS estimators.

When stratified sampling designs are to be employed, one key question
which has to be immediately addressed is how many observations should
be taken in each stratum? The answer to this question is very important,
because the sample size is an important feature for making inferences about
the population based on sample data.

In this paper, for the SMRSS designs, we examine the proportional and
optimum sample allocations. In Section 2, we review some sampling methods
considered in this study as well as the estimation of the population mean and
its properties. In Section 3, the results of using proportional and optimal
sample allocation methods in SMRSS are described. In Section 4, we develop
the Ibrahim et al. (2010) results for some symmetric and non-symmetric
distributions by a simulation study when the parameters of distributions are
varying. Some conclusions are given in Section 5.

2 Sampling Methods

In the following subsections we describe some sampling methods considered
in the paper.
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2.1 Ranked Set Sampling

To select a sample of size ng = m x n units from a population using RSS
method, we proceed as follows:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

2

Randomly select a sample of size n* units from the population.

Allocate the n? selected units as randomly as possible into n sets,
each of size n.

Without knowing any values for the variable of interest, rank the
units within each set based on perception of relative values for this
variable. This may be based on personal judgment or done with
measurements of a covariate that is correlated with the variable
of interest.

Choose a sample for actual measurement including the smallest
ranked unit in the first set, the second smallest ranked unit in the
second set, continuing in this fashion until the largest ranked unit
is selected in the last set.

Repeat steps 1 to 4 for m cycles until desired sample size, ng =
m X n, is obtained for measurement.

Since in some situations ranking n units for a large sample size is difficult,
we select a ranked set sample with small n and then repeat the sampling
scheme m times (Step 5). So if the ranking wasn’t difficult and would be
done with high precision, we can consider m = 1 and eliminate the Step 5
from sampling scheme.

Estimation of the Population Mean

Let XZ-(;) be the ith (i = 1,2,...,n) order statistic of ith sample from jth
cycle (j =1,2,...,m) in RSS. The estimator of population mean (u) using
RSS method and a sample of size ng = m x n with m cycles is given by:

m n

o 1 (0)
Xpog = — xW,
RsS = — ; X
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Variance of this estimator is given by

= o? 1 9
Var(Xgrss) = propng s (1) — 1)
i—1

1 n
_ 2
= 2 P
=1

where p ;) and 0'(2Z-) are mean and variance of the ith order statistic of a
random sample of size n, respectively. See Takahasi and Wakimoto (1968)
for more details.

Now if X1, Xo,.... X, is a sample of size ng = m X n units from the
population selected by using SRS method, the population mean estimator
would be Xgrgs = % er;nl X, and VaI(XSRs) = %.

Comparing the variance of mean estimators of RSS and SRS methods
shows that the precision of RSS is always more than SRS in estimating
the population mean based on the same sample size. The preference of
RSS is confirmed even if ranking were completely random and provided no
information.

2.2 Median Ranked Set Sampling

Median Ranked Set Sampling (MRSS) proposed by Muttlak (1997) is an
alternative RSS method that can be used to estimate the population mean
instead of RSS. The MRSS can be performed with less error in ranking in
practical applications. Since all we have to do is to find the element in
the middle of the sample and measure it, the MRSS method can be easily
employed in the field and will save some time in performing the ranking of
the units with respect to the variable of interest. The MRSS method can be
summarized as follows:

Select n random samples of size n units from the population and rank
the units within each sample.

From each sample of size n, select the median of sample for measurement.
If the sample size n, is odd, from each sample select for measurement the
("T‘H)th smallest rank i.e., the median of the sample. If the sample size is
even, select for measurement from the first § samples the (%)th smallest
rank and from the second 5 samples the (% + 1)th smallest rank. The cycle
may be repeated m times if needed to get a sample of size ng = m X n units.
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Estimation of the Population Mean

Suppose we select a sample of size n using MRSS from the population of
interest, with pdf f(-), mean u and variance o2, repeated in m cycles. The
estimator of population mean based on MRSS in the case of an odd sample
size, denoted as X/rss1 can be defined by

; L ooy (2
Xyrsst = mn ZZXij

j=1 i=1

and in the case of an even sample size, denoted as X/rgs2, is defined as

I3

m 2
XMRSS2:% ZZ +Z Z X 5+1)

j=11i=1 j= 11_7+1

where X i(jT) is the rth order statistic of the ¢th sample from jth cycle. Muttlak
(1997) showed that the variance of Xypss1 is given by

_ 1 9

Var (Xprss1) = O (a1
and when n is even, the variance of the estimator of population mean X/ rgg2
is given by .

% 2 2

Var (Sarwsse) = g |7ty + oty

Also he showed that, if the population distribution were symmetric about
u the MRSS estimators of the population mean in two cases of an odd and
an even sample size are unbiased and the variances of these estimators are
less than the variance of SRS estimator. He also showed that using MRSS
increases the efficiency of population mean estimator with respect to RSS
method with perfect ranking for some probability distribution functions.
Symmetric distributions are appearing in some situations in practice, for
example consider the distribution of floor area of housing units in a known
city that can be a variable with normal distribution if the floor areas of
housing units are not so big or so small.

2.3 Stratified Median Ranked Set Sampling

Suppose there are N units in the population, divided into L strata of Ny, Na,
., N1, units that are not overlapping, so that N = Zﬁ:l Np. In a strati-
fied sampling method a sample of size nj is drawn from hth stratum (h =
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1,2,...,L) to have a sample of size n = Z}LL:l ny, from the population. If
the SRS method is used for sampling in each stratum, we have the Stratified
Random Sampling (STRS). In this sampling method

XsTRs = Z ZXh]

h=1

is an unbiased estimator of population mean where W), = Nj,/N and X}; is
the jth sample unit in the hth stratum.

If the RSS or MRSS is performed in each stratum instead of SRS, the
method is known as Stratified Ranked Set Sampling (SRSS) or Stratified
Median Ranked Set Sampling (SMRSS) respectively.

Estimation of the Population Mean

Assume in each stratum h, a sample of size ng, = my X ny units is drawn
using MRSS where my, is the number of cycles and ny, is an odd sample size
of each cycle. The estimator of the population mean is given by:

mp Np n +1
XSMRSS1 = E § E Xh”
he mhnh —
Jj=11i=

where X }(L:J) is the measure of the variable of interest for rth order statistic
of ith random sample in jth cycle of hth stratum. The variance of this

estimator is
L

Var (X = 7 ( 1
ar( SMRSSI) ; mhnhgh(hTH) v

where ah( ) denotes the variance of rth order statistic of a random sample
of size np. If ny is even, the estimator of population mean using SMRSS is
given by

~ L 7 Mmp nh ("—h-i-l)
e DELLY 5 3 DETHARD DI DRETH:
X -
h=1 j=1i=1 j=1 i:%”rl
with variance given by
v . WI% 2 2
X { . . } . 2
ar (Xsarnssz) = ; 2mpny, Th(%) + Th(+1) @
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Ibrahim et al. (2010) showed that if the distribution of population is sym-
metric about u, then

E (Xsmrss1) = E (Xsmrss2) = p

and )
ar (Xsgs),

ar (Xsps)

Var (Xsyrss1) < Var (Xsrrs)

<V
Var (Xsarss2) < Var (Xsrrs) <V

3 Sample Size Allocations

When designing a sample survey on a stratified population, one of the im-
portant considerations is how to allocate the total sample size n among the
L identified strata. If unit variances or costs of sampling differ among the
strata, sampling efficiency can be increased by over-sampling the more vari-
able or cheaper strata. So, the sample designer may decide to minimize the
variance of estimation for a specified cost of taking the sample or to minimize
the cost for a specified value of variance of the estimation. This allocation
method is described as optimum allocation.

If sampling fraction is the same in all strata, the stratification is de-
scribed as stratification with proportional allocation. This allocation is used
to ensure that the distribution of the sample in subpopulations (strata) is
proportional to their size.

By this background in mind, optimum and proportional allocations in
SMRSS for symmetric distributions are described in this section and a com-
parison is made between their variances.

3.1 Optimum Allocation

Let ¢y, h =1,2,..., L be the cost of sampling for a unit in stratum h. The
costs can differ substantially between strata. Assume ng, = mpn, be the
sample size from hth stratum in SMRSS with my, cycles in Ath stratum.

The total cost of the survey can be taken as C' = ¢g+ Zﬁzl cpympny,. This
relation is a linear cost function and ¢y is a fixed cost of sampling. Suppose
we want to minimize the variance of the mean estimator for a specified cost
C' and minimize the cost for a specified variance of the mean estimator. Let
us consider the two cases, whether an odd or even number of sample units
were selected from each stratum in each cycle.

J. Statist. Res. Iran 9 (2012): 87-102
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At the first case, for an odd sample size np, we minimize (C — cp)
Var (XSMR851)- The Cauchy-Schwarz inequality is used for this minimiza-
tion. According to this inequality

(E) (%) > (o)

and equality holds if and only if Z—Z is a constant for all h. This leads to

2
] )

MpNp

VCRTME TR

where k is a constant. From this equation we have:

=k

WhTh ()
kmp\/cn

So the total sample size n from the entire population is given by:

np =

L L Whgh(nh;rl)
n—};mhnh—zm. (4)

h=1

Equations (3) and (4) lead to the following equation.

WhT (i)

—e
Whoh(nh;l) X . (5)

np

L
LD - v
By substituting the value of nj of equation (5) in equation (1) we get the
variance of optimum allocation of the mean estimator, Xgy/rss1 as:

L Whah(nh+1>

— 1 L
Vargy (Xsnmrsst) = - {; Whah("hT“) \/a} Z TQ

h=1
In a special case, if the cost per unit is the same in all strata, i.e., ¢, = ¢ for
all h, then for a given fix sample size n, the nj can be written as:
WhU <nh+1) NhU (nh+1>

np = Xn = Xn
thh:l thh(%> thh 1Nh0 <nh+1)
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and the optimum variance can be summarized as:

2
Vargpt (XSMR531 {ZWhU nh+1 } . (6)

Now for an even number of ny,, we minimize (C' —c¢g)Var ()_( SM 3352) by using
the Cauchy-Schwarz inequality again, and define:

/ 1
2 _ 2 2
Op = =0, /np\ T 0, /n } ,
h 2{ h(3) T T h(F1)
so, np can be written as:

Whoy,
np=——Yr __op, (7)

W}LU}
MY r_ Vn

Substituting the nj of equation (7) in equation (2), the variance of optimum
allocation of the mean estimator, Xgp/rss2 is:

L L
S 1 , Whoy,
Vargp (XSMRSSQ) = ; (Z Whth/Ch> (Z ﬁ .
h=1 h=1
In a special case, when ¢, = ¢ for all h, for a given fix sample size n, the nj

can be written as:

Whoy, Nyoy,
np = I , X n = 17 ; Xn
mp, Zh:1 Whah mp Zh:1 NhUh

and the optimum variance can be summarized as:

2
Vargpt (Xsarrss2) <Z Wh%) .

3.2 Proportional Allocation

According to the description of proportional sample allocation in SMRSS, the
number of sample units in the hth stratum (h = 1,2,..., L) is proportional
to the stratum size, that is

mpnp  Np Npyn
n N

Nmy,~
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It can be shown that the variance of proportional allocation for an odd sample
size ny, in each cycle from hth stratum is given by:

L
— 1
Varprop (Xsamrsst) = - { E Who-i<nh+l)} (8)
h=1 2

and for an even sample size in each cycle from hth stratum, the variance of
the proportional allocation is given by:

L
_ 1 /
Varp,op (XSMRSSQ) = n <§ Wh0h2> .
h=1

The following theorem for symmetric distributions compares the variances
of mean estimators under STRS and SMRSS both with the optimum and
proportional allocations for the same sample size.

Theorem 1. If distribution of the population is symmetric and the cost per
unit cp, is the same in all strata, then the variance of the mean estimator in
SMRSS with sample size ngp, = mp X ny, from hth stratum using optimum and
proportional allocations in strata is smaller than the corresponding vartance
of the mean estimator in STRS.

See Ibrahim et al. (2010) for a proof of Theorem 1.
The next theorem helps us to compare the efficiency of SMRSS mean
estimator under optimum allocation and proportional allocation.

Theorem 2. In SMRSS, if c, = c (h=1,2,...,L) for all strata, then the
variance of mean estimator with optimum allocation is less than or equal to
the variance of mean estimator with proportional allocation.

Proof. We prove the theorem in the case of odd sample size. For even
sample size the proof is similar.
Using equations (6) and (8) we have

X - 1
Varpop (XSMRSS1) — Vargy (XSMRSS1) = [
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Now if we define:

L 2
_2: 1% . 7
*- )

then
1 (L
Varp,op (Xsamrsst) — Vargp (Xsampsst) = - {Z Wh0i<nh+l) - 02}
h=1 2
_! Wh{a S } >0
h( 2R )
"= ()
therefore
Vargpi (XSMR551) < Varprgp (XSMRSSI) )
that completes the proof. O

4 Simulation Study

In this section, the efficiency of population mean estimator using SMRSS
method is evaluated with respect to corresponding estimators in SRSS and
STRS methods by a simulation study. We consider the proportional allo-
cation method for sample allocation, so W}, is omitted from the estimation
formulas and with assuming a fixed number of cycles, results can be extended
to any population with same number of strata. For this study, three samples
are selected with the mentioned sampling methods for 100,000 times and
the estimators of population mean are calculated for each selected sample.
Then the efficiency of SMRSS is estimated. Sample selection and estimations
are done with SAS software. Results are obtained for the Normal and Beta
distributions with different parameters and samples with size 12 (n; = 5
and ng = 7), 14 (n; = 8 and ny = 6) and 18 (n; = 10 and ny = 8) for
a population with two strata and again 18 (n; = 4, no = 6 and ng = 8)
for a population with three strata, in each replication. Since the true value
of population mean, p is known in each distribution, the efficiency of pop-
ulation mean estimator using SMRSS method is calculated with respect to
corresponding estimators in SRSS and STRS methods by

— —_ . R m AS SS \751. ASRSS
RE1 = RE (ismrssliisrss) = —— (AH RSs) = /\(MA ) )
MSE (isprrss) MSE (fisarrss)
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MSE (jisrs) _ Var(fisTrs)
MSE (jismrss) MSE (fisyvrss)

REy = RE (Asarss|isTrs) =

In the above relations, for each mean estimator, ji:

MSE(j) = Var(f) + (i — p)’?

where
1 100000 .y
Var(i2) = 150000 Zl (i = )"

fi; is the estimate of population mean in the ith replication (i = 1,2,...,

100000) and fi = o5 Soror " fii-

Normal Distribution

The efficiency of population mean estimator using SMRSS method for the
Normal distributions with different parameters and different sample sizes are
presented in Table 1. As this table shows, the efficiency of population mean
estimator using SMRSS is more than corresponding estimators using SRSS
and STRS, but the efficiency is a constant value when the mean or variance
of Normal distribution is varying. In other words, the efficiency of population
mean estimator in Normal distribution is stable when mean or variance of
distribution is varying.

Beta Distribution

As it known, the density function of Beta distribution takes different shapes
depending on the different values of the parameters. The probability density
function of Beta distribution is symmetric when o = 8 > 1, skewed unimodal
when a # 5, o« > 1, 8 > 1, U-shaped function when o« < 1, g < 1,
strictly increasing when o > 1,5 = 1, and strictly decreasing function when
a = 1,8 > 1. The efficiency of population mean estimator using SMRSS
method for the Beta distributions with different parameters and different
sample sizes are presented in Tables 2 to 4.

© 2012, SRTC Iran



S. Hajighorbani and R. Aliakbari Saba

Table 1. Efficiency of population mean estimator using SMRSS with
respect to SRSS and STRS in Normal distribution.

Sample Size Distribution ~ RE; RE,

N(0,1) 12801  4.1267

) 1.2801  4.1267
N(2,1) 12891  4.1267
N(20,1)  1.2891  4.1267

n:12, n1:5, ’I’L2:7

(0,1) 1.2966  4.6791
N(0,4) 1.2966  4.6791
(2,1) 1.2966  4.6791
N(20,1)  1.2966  4.6791

n:14, n1=8, 712:6

(0,1)  1.3625  6.0130
(0,4)  1.3625  6.0130
(2,1)  1.3625  6.0130

N
n =18, n1 =10, ng =8 ]]:][
N(20,1) 1.3625 6.0130
N
N
N
N(

(0,1)  1.2717  4.1085
3 B R (0,4)  1.2717  4.1085
n=18 n =4, ny =6, n3 =8 (2,1) 12717 4.1085

20,1) 1.2717 4.1085

Table 2. Efficiency of population mean estimator using SMRSS with respect to SRSS
and STRS in Beta distribution whena =8> 1lora# 3, a>1, 8> 1.

Sample Size a=02>1 aZzp, a>1 g>1

Distribution RE 1 ]/%Ez Distribution EEH EE'Q

Beta(1,1) 0.7637 2.6703  Beta(5,2) 0.8039 2.6068

n =12 Beta(2,2) 0.9327 3.2279 Beta(7,4) 1.0514 3.4710

ny =5 n2=7 Beta(4,4) 1.0725 3.6182  Beta(9,6) 1.1453 3.7506
Beta(6,6) 1.3245 3.7964 Beta(11,8) 1.1744 3.8389

Beta(1,1) 0.7674 3.0455  Beta(5,2) 0.7434 2.7629

n =14 Beta(2,2) 0.9346 3.6829  Beta(7,4) 1.0238 3.8236

ni =8, na=6 Beta(4,4) 1.0889 4.1182  Beta(9,6) 1.1378 4.2335
Beta(6,6) 1.1417 4.2804 Beta(11,8) 1.1757 4.3554

Beta(1,1) 0.7446 3.7389  Beta(5,2) 0.5735 2.5663

n=18 Beta(2,2) 0.9442 4.5683  Beta(7,4) 0.9608 4.3716

n1 = 10, ny =8 Beta(4,4) 1.1035 5.1965  Beta(9,6) 1.1112 5.0695
Beta(6,6) 1.1790 54110 Beta(11,8) 1.1932 5.3766

Beta(1,1) 0.7827 2.7838  Beta(5,2) 0.7282 2.3599

n=18 Beta(2,2) 0.9428 3.2760  Beta(7,4) 1.0092 3.3359
ni=4, np =6, ns =8 Beta(4,4) 1.0768 3.6341 Beta(9,6) 1.1118 3.7157
Beta(6,6) 1.1255 3.7591  Beta(11,8) 1.1504 3.7740
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Table 3. Efficiency of population mean estimator using SMRSS with respect to SRSS
and STRS in Beta distribution when a =1, §>1lora>1, g =1.

a=1,8>1 a>1, =1

Sample Size
Distribution }/{El ﬁg Distribution EE1 ﬁg

(1,2) 0.6241 2.0632  Beta(2,1) 0.6217 2.0632

n =12 Beta(1,4) 05170 15486  Beta(4,1) 05157 1.5485

ni =5 ng="7 Beta(1,6) 0.4972 14144  Beta(6,1) 0.4965 1.4144

Beta(1,10) 0.4900 1.3257  Beta(10,1) 0.4899 1.3257
2

(1,2) 0.5554 2.1061 Beta(2,1) 0.5648 2.1084
n=14 Beta(1,4) 04344 14713  Beta(4,1) 04415 14733
ny =8, ng =6 Beta(1,6) 0.4131 1.3187  Beta(6,1) 0.4197 1.3204
Beta(1,10) 0.4046 1.2197 Beta(10,1) 0.4112 1.2212

(1,2) 04040 1.9130  Beta(2,1) 0.4058 1.9131
n=18 Beta(1,4) 0.2787 1.1630  Beta(4,1) 0.2803 1.1628
ni =10, no =8  Beta(1,6) 02596 1.0123  Beta(6,1) 0.2612 1.0120
Beta(1,10) 0.2520 09193  Beta(10,1) 0.2536 0.9190

1
(1,2) 05620 1.8999  Beta(2,1) 0.5627 1.8964
n=18 Beta(1,4) 0.4282 1.3106 Beta(4,1) 0.4293 1.3079
ni1 =4, na =6, ng =8 DBeta(1l,6) 0.4026 1.1689 Beta(6,1) 0.4039 1.1666

Beta(1,10) 0.3903 1.0768 Beta(10,1) 0.3918 1.0747

As Table 2 shows, the efficiency of population mean estimator using
SMRSS is more than corresponding estimator using SRSS for large values of
« and [. This superiority is increasing when « and f is increased, the case
that leads to lower amount of variance. The efficiency of population mean
estimator using SMRSS always is more than corresponding estimator using
STRS.

Table 3 shows that the efficiency of population mean estimator using
SMRSS is more than corresponding estimator using STRS, but this esti-
mator is not efficient than mean estimator using SRSS. It should be noted
that in both cases, the relative efficiencies are similar because the shape of
distributions are the same, of course in opposite directions.

The efficiency of mean estimator using SMRSS is less than corresponding
estimator using SRSS in Beta distribution when both a and f is less than 1.
This has been shown in Table 4. This table also shows that the efficiency of
mean estimator using SMRSS with respect to STRS corresponding estimator
is less than 1 when both « and S is very small, the case that is not very
pleasant in practice.
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Table 4. Efficiency of population mean estimator using SMRSS with
respect to SRSS and STRS in Beta distribution when @ < 1, 8 < 1.

Sample Size Distribution EEH EE'Q
Beta(0.2,0.1) 0.2348  0.6260

B B B Beta(0.4,0.3)  0.4597  1.4972
n=12 m =5 n2 =7 Beta(0.6,0.5) 0.5863  2.0161
Beta(0.8,0.7) 0.6749  2.3857

Beta(0.2,0.1)  0.1978  0.5801

B B B Beta(0.4,0.3)  0.4299  1.5740
n=14,m =8 n2=6 Beta(0.6,0.5) 05735  2.2467
Beta(0.8,0.7)  0.6698  2.6622

Beta(0.2,0.1)  0.1068  0.3758

B B B Beta(0.4,0.3) 0.3174  1.4366
n=18 n1 =10, n, =8 Beta(0.6,0.5) 0.4996  2.4045
Beta(0.8,0.7) 0.6173  3.0456
Beta(0.2,0.1)  0.2088  0.5597
B B B __ Beta(0.4,0.3) 04578  1.4837
n=18 =4 n2 =6 ms =8 B 06,05 06021 20732
Beta(0.8,0.7)  0.6996  2.4223

5 Conclusions

In this paper, we used proportional and optimum allocations to determine
sample size in each stratum for SMRSS under symmetric or nonsymmetric
distribution of population. Then, some results were obtained as follows:

1.

If the distribution of population is symmetric about pu, then the vari-
ance of the mean estimator in SMRSS with sample size ngp, = mp X
ny, from hth stratum, using optimum and proportional allocations in
strata, is smaller than the corresponding variance of the mean estima-
tor in STRS. This is an especial case of the study done by Ibrahim et
al. (2010).

If ¢, =c(h=1,2,...,L) for all strata, the variance of mean estimator
with optimum allocation is less than or equal to the variance of mean
estimator with proportional allocation in SMRSS.

For Normal distribution, by allocating samples to strata proportionally,
the efficiency of mean estimator in SMRSS with respect to correspond-
ing estimators in SRSS and STRS is a constant value when the mean
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or variance of Normal distribution is varying.

4. For Beta distribution, by allocating samples to strata proportionally,
the efficiency of mean estimator in SMRSS with respect to correspond-
ing estimators in SRSS and STRS is a function of variance of distri-
bution. If the density of distribution is a strictly monotone function,
efficiency of SMRSS is an increasing function of variance and if the
density of distribution is symmetric, skewed unimodal or U-shaped
function, efficiency of SMRSS is a decreasing function of variance.
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