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On a New Bimodal Normal Family

Sayed Mohammad Reza Alavi

Shahid Chamran University

Abstract. The unimodal distributions are frequently used in the theorical
statistical studies. But in applied statistics, there are many situations in
which the unimodal distributions can not be fitted to the data. For example,
the distribution of the data outside the control zone in quality control or
outlier observations in linear models and time series may required to be a bi-
modal. These situations, occur when the recorded data have the probability
proportional to an increasing function of absolute value of deviations. In this
paper a new family of distributions called double normal family of distribu-
tion is introduced and characterized. This symmetric family is a subclass of
the univariate Kotz type distributions. The normal distribution is a special
case of this family. Estimation of location and scale parameters by moment
and maximum likelihood methods are given. Some pivotal quantity are in-
troduced. Confidence intervals for some parameters by numerical methods
are given.

Keywords. double normal family; standard double normal; confidence in-
terval; point estimation; pivotal quantity.
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1 Introduction
The unimodal distributions are frequently used in the theorical statistical
studies. But in applied statistics, there are many situations in which the
unimodal distributions can not be fitted to the data. For example, the dis-
tribution of the data outside the control zone in quality control or outlier
observations in linear models and time series may required to be a bimodal.
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These situations, occur when the recorded data have the probability propor-
tional to an increasing function of absolute value of deviations. In this paper
a new family of distributions is introduced as a generalized normal distribu-
tion. This family which is a subclass of the univariate Kotz type distributions
(see Fang and et al., 1999; and Nadarajah, 2003 ) is called by double normal
family and denoted by DN(µ, σ, β) with the following probability density
function (pdf)

f(x;µ, σ, β) =
|x− µ|β

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
−1

2σ2
(x− µ)2

}
−∞ < x <∞, (1)

where −∞ < µ <∞, σ > 0 and β > 0.
The µ, σ and β are location, scale and shape parameters, respectively. When
β = 0, this distribution reduces to the normal distribution. When β > 0,
this family has two symmetric mode about µ. This family can be used
for the ballistic data which the observations with more far from the target
are interested to researchers. This family can be considered as a weighted
normal distribution with weight function w(x) = |x − µ|β. The weighed
distributions have been studied comprehensively by Patil (2002) and Patil
and Rao (1977), (see also Alavi and Chinipardaz, 2009). The double normal
distribution discussed by Alavi and Chinipardaz (2011) is a special case of
this family when β = 2. The outline of this paper is as follows. In Section
2 common properties of DN(µ, σ, β) are studied. The point estimations and
confidence intervals are discussed in Sections 3 and 4. The confidence interval
of parameters using numerical study is given in Sections 5 and 6.

2 Common Properties of Double Normal
Family

In this section some properties of double normal family are studied. Suppose
that X ∼ DN(µ, σ, β), pdf’s of X for µ = 0, σ = 1 and β = 0, 1, 2 are shown
in Figure 1. From this figure, One can realize that this family is symmetric.

The distributions are all bimodal except for β = 0. When µ = 0 and σ =
1, we call it as standard double normal of order β and denote it by SDN(β).
The mean, variance and cdf are obtained from the following theorem.
Theorem 1. Suppose that X ∼ DN(µ, σ, β). Then
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Figure 1. pdf′s of standard normal and standard double normalwith β = 1 and β = 2

a) The mean and variance of X are µ and (β + 1)σ2, respectively.

b) The cumulative distribution function of X is given by

FX(x) =


1
2 − 1

2FT

(
(x−µ)2

σ2

)
x < µ

1
2 + 1

2FT

(
(x−µ)2

σ2

)
x > µ

where FT (·) is cdf of random variable T distributed as gamma distribution
(β+1

2 , 12) denoted by Gamma(β+1
2 , 12).

Proof. (a) It is sufficient to show that E(X − µ) = 0. We have

E(X − µ) =

∫ ∞

−∞
(x− µ)

|x− µ|β

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
−1

2σ2
(x− µ)2

}
dx

=

∫ ∞

−∞
z

|z|β

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
−1

2σ2
(z)2

}
dz

where z = x−µ
σ . Since, the intergrand is an odd function in term of z, the
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intergral becomes zero. Similarly, for the variance term, we have

E(X − µ)2 =

∫ ∞

−∞
(x− µ)2

|x− µ|β

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
−1

2σ2
(x− µ)2

}
dx

=

∫ ∞

−∞

|z|β+2

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
−1

2σ2
z2
}
dz

=2

∫ ∞

0

zβ+2

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
−1

2σ2
z2
}
dz.

Using the transformation Y = Z2

σ2 and after some algebra calculations, E(X−
µ)2 = (β + 1)σ2.
(b) We set

FX(u) =

∫ u

−∞

|x− µ|β

Γ(β+1
2 )2

β+1
2 σβ+1

exp

{
− 1

2σ2
(x− µ)2

}
dx

=


∫ u−µ

σ
−∞

|z|β

Γ(β+1
2

)2
β+1
2

exp
{
− 1

2z
2
}
dz u < µ

1
2 +

∫ u−µ
σ

0
|z|β

Γ(β+1
2

)2
β+1
2

exp
{
− 1

2z
2
}
dz u > µ

=


1
2

∫∞
(u−µ

σ
)2

y
β−1
2

Γ(β+1
2

)2
β+1
2

exp
{
− 1

2y
}
dy u < µ

1
2 + 1

2

∫ (u−µ
σ

)2

0
y
β−1
2

Γ(β+1
2

)2
β+1
2

exp
{
− 1

2y
}
dy u > µ.

Thus, the proof is completed.

The following theorem explains that any liner combination of double
normal distribution is also a double normal.

Theorem 2. Suppose that X ∼ DN(µ, σ, β), then for a ̸= 0, aX + b ∼
DN(aµ+ b, |a|σ, β), a, b ∈ R.

Proof. Trivial.
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Theorem 3. Suppose that X ∼ DN(µ, σ, β). Let Z = X−µ
σ , then

a) Z ∼ SDN(β).

b) Z2 ∼ Gamma(β+1
2 , 12).

c) |Z| ∼ HSDN(β), where HSDN(β) denoted Half-Double Normal dis-
tribution with pdf given by

fY (y) =
2yβ

2
β+1
2 Γ(β+1

2 )
exp{−1

2
y2}

Proof. (a) The proof is resulted from Theorem 2.
(b) Using the transformation Y = Z2, then the cumulative distribution func-
tion (cdf) of Y is given by

FY (y) = 2FZ(
√
y)

where FZ(·) is cdf of SDN(β). Thus pdf of Y is given by

fY (y) =
fZ(

√
y)

√
y

=
1

2
β+1
2 Γ(β+1

2 )
y

β−1
2 exp

{
−1

2
y

}
which is a Gamma(β+1

2 , 12).
(c) It is trivial.

The moment generating function (mgf) of SDN(β) is given in the follow-
ing theorem.

Theorem 4. Suppose that Z ∼ SDN(β). Then

a) mgf of Z, MZ(t), is

MZ(t) =

√
2π

2
β+1
2 Γ(β+1

2 )
exp

{
1

2
t2
}
E|Z∗|β

where Z∗ ∼ N(t, 1).

b) The q-th quantile of Z is

F−1
Z (q) =


−
√
F−1
T (1− 2q) q<0.5√

F−1
T (2q − 1) q > 0.5
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Proof. (a) We have

MZ(t) =

∫ ∞

−∞

1

2
β+1
2 Γ(β+1

2 )
exp{tz}|z|β exp

{
−1

2
z2
}
dz

=

√
2π

2
β+1
2 Γ(β+1

2 )
exp

{
1

2
t2
}∫ ∞

−∞

|z|β√
2π

exp

{
−1

2
(z − t)2

}
dz

=

√
2π

2
β+1
2 Γ(β+1

2 )
exp

{
1

2
t2
}
E|Z∗|β.

(b) The proof is resulted from Theorem 1.

For example, the mgf of SDN(1) is

MZ(t) = 1 +

√
2π

2
t exp

{
1

2
t2
}
{1− 2Φ(−t)}

where Φ(·) is cdf of standard normal distribution. As an another example,
the mgf of SDN(2) is given by

MZ(t) = (1 + t2) exp

{
1

2
t2
}
.

The pdf, cdf, and quantiles of SDN(β) are calculated numerically using
SPLUS-2000 software as the programmig tool. We also generate a sample
from SDN(β) from the above written codes. In the next section, the point
estimation of parameters will be illustrated.

3 Point Estimation of Parameters
For the specified β, the moment estimator of µ and σ2 are X̄ =

∑n
i=1 Xi

n

and
∑n

i=1(Xi−X̄)2

n(β+1) , respectively. When β is unknown the moment estimator
of µ is X̄ =

∑n
i=1 Xi

n but the moment estimator of σ2 and β are very com-
plicated. The maximum likelihood estimator (mle) of σ2 when β and µ are
known is

∑n
i=1(Xi−µ)2

n(β+1) , for other cases mle of parameters are obtained from
the following equations.

β

n∑
i=1

1

(xi − µ)
=

1

σ2

n∑
i=1

(xi − µ) (2)
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σ2 =

∑n
i=1(xi − µ)2

n(β + 1)
(3)

n∑
i=1

log |xi − µ| = n
∂

∂β
log ν (4)

where ν = Γ(β+1
2 )2

β+1
2 σβ+1. Such equations are usually solved by Newton-

Raphson iterative method

θ̂
(k+1)

= θ̂
(k) −

[
∂2 logL

∂θi∂θj

]−1

θ̂
(k)

[
∂ logL

∂θ

]
θ̂
(k)
,

where L is likelihood function and θ̂
(j)

= (µ̂(j), σ̂(j), β̂(j))′ is the jth step
of estimation of (µ, σ, β)′. The procedure continue to |θ̂(k+1)

i − θ̂
(k)
i | < εi,

i = 1, 2, 3, where εi is an arbitrary small value chosen by the researcher.
Thus we have [

∂ logL

∂θ

]
θ̂
(k)

= (T1, T2, T3)
′ (5)

and

[
∂2 logL

∂θi∂θj

]
θ̂
(k)

=

 A −2
∑ (xi−µ̂(k))

σ̂3(k) D

−2
∑ (xi−µ̂(k))

σ̂3(k) B − 4n
σ̂(k)

D − 4n
σ̂(k) C

 (6)

where
T1 = −β̂(k)

∑ 1

(xi − µ̂(k))
+

∑
(xi − µ̂(k))

σ̂2(k)
,

T2 = −n(β̂
(k) + 1)

σ̂(k)
+

∑
(xi − µ̂(k))2

σ̂3(k)
,

T3 =
∑

log(xi − µ̂(k))2 −
nΓ′( β̂

(k)+1
2 )

Γ( β̂
(k)+1
2 )

− n log 2− 4n log σ̂(k),

A = −β̂(k)
∑ 1

(xi − µ̂(k))2
− n

σ̂2(k)
,

B =
n(β̂(k) + 1)

σ̂2(k)
− 3

n∑
i=1

(xi − µ̂(k))2

σ̂4(k)
,
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C = −
nΓ′′( β̂

(k)+1
2 )Γ( β̂

(k)+1
2 )

(Γ( β̂
(k)+1
2 ))2

and
D = −2

∑ 1

(xi − µ̂(k))
.

The scoring method (Knight, 2000; and Stuart et al., 1999) is an alterna-
tive method. However, they provide better results, but, its convergence
rate is slower. Based on this method ∂2 logL

∂θi∂θj
is replaced with E

(
∂2 logL
∂θi∂θj

)
=

−
(
var(θ̂)

)−1
. Furthermore

θ̂
(k+1)

= θ̂
(k) −

[
var(θ̂)

]
θ̂
(k)

[
∂ logL

∂θ

]
θ̂
(k)
.

where
[
∂ logL
∂θ

]
θ̂
(k) is given in (5) and

[
var(θ̂)

]−1

θ̂
(k) =



n(2β̂(k)−1)

(β̂(k)−1)σ̂2(k)
0 0

0 n(2β̂(k)−7)

σ̂2(k)
4n
σ̂(k)

0 4n
σ̂(k)

nΓ′′
(

β̂(k)+1
2

)
Γ

(
β̂(k)+1

2

)
(
Γ( β̂

(k)+1
2

)

)2

 . (7)

These procedures need the initial values, θ̂(0)
= (µ̂(0), σ̂(0), β̂(0))′. One appro-

prate suggestion can be estimators µ and σ2 based on the moment method
with an initial value for β̂(0). As the result, θ̂(0)

=
(
x̄,

√∑
(xi−x̄)2

n(β̂(0)+1)
, β̂(0)

)′
.

The asymptotic distribution based on the maximum likelihood estimators is

µ̂σ̂
β̂

 ∼ N3

µσ
β

 ,Σ

 (8)

where

Σ−1 =


n(2β−1)
(β−1)σ2 0 0

0 n(2β−7)
σ2

4n
σ

0 4n
σ

nΓ′′(β+1
2

)Γ(β+1
2

)

(Γ(β+1
2

))2

 .
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However, for known β > 1, which applied in the weighted sampling form nor-
mal distribution, one important problem for the mle’s is their asymptotically
properties. For large n we have

(
µ̂
σ̂

)
∼ N2

((
µ
σ

)
,

(
(β−1)σ2

n(2β−1) 0

0 σ2

2n(β+1)

))
. (9)

For example, if β = 2 (see Alavi and Chinipardaz, 2011)(
µ̂
σ̂

)
∼ N2

((
µ
σ

)
,

(
σ2

3n 0

0 σ2

6n

))
. (10)

In the next section, the exact and asympototic confidence intervals for µ and
σ are derived when β is known.

4 Confidence Interval of Parameters
Suppose that X1, X2, . . . , Xn is a random sample from DN(µ, σ, β). When
µ is known, one explicit CI can be drawn for σ using the following theorem.
Theorem 5. Suppose X1, X2, . . . , Xn be a random sample from DN(µ, σ, β).
Then ∑

(Xi − µ)2

σ2
∼ Gamma

(
n

(
β + 1

2

)
,
1

2

)
(11)

Proof. Proof can be constructed from Theorem 3.

The pivotal quantity in (11) leads to the following CI for σ √
(β + 1)nσ̂√

G(n(β+1
2 ), 12 , 1−

α
2 )
,

√
(β + 1)nσ̂√

G(n(β+1
2 ), 12 ,

α
2 )

 (12)

where σ̂ is mle of σ obtained from (3) and G(n(β+1
2 ), 12 , q) is the q-th quantile

of Gamma(n(β+1
2 ), 12).

When n is large, using (9), the approximated CI’s at level (1− α) for µ
and σ are (

µ̂− z1−α
2

√
β − 1

n(2β − 1)
σ̂, µ̂+ z1−α

2

√
β − 1

n(2β − 1)
σ̂

)
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and ( √
2n(β + 1)σ̂√

2n(β + 1) + z1−α
2

,

√
2n(β + 1)σ̂√

2n(β + 1)− z1−α
2

)
,

respectively, where zq is the q-th quantile of standard normal distribution.
When β is unknown, the asymptotic confidence intervals can be obtained
from (8). However, in practice, the sample size is usually small and distri-
bution of the estimators are complex. In the following section we introduce
the numerical method to obtain the CI for parameters.

5 Confidence Interval of Parameters Using the
Numerical Method

When σ and β are known, we can use the following pivotal quantity

Λ =

√
n(X̄ − µ)

σ

=
√
n ·

∑(
Xi−µ

σ

)
n

=
√
nZ̄, (13)

where Z̄ =
∑n

i=1 Zi

n and Zi = Xi−µ
σ ∼ SDN(β). The distribution of this

pivotal quantity is complicated but independent of parameter µ. One CI for
µ based on Λ is given by(

X̄ + Λ(n,α
2
,β)

σ√
n
, X̄ + Λ(n,1−α

2
,β)

σ√
n

)
(14)

where Λ(n,q,β) is the q-th quantile of Λ based on random sample of size n > 1.
This quantile can be obtained by the numerical method will be introduced
in Section 6.
When σ is unknown, we introduce the new pivotal quantity based on the
sample mean and standard deviation as

Λ′ =
X̄ − µ

S√
n

=
Z̄√∑
(Zi−Z̄)2

n(n−1)

. (15)

Note that S2

β+1 is an unbiased estimator of σ2. The distribution of this pivotal
value is also complicated but independent of µ and σ parameters. The q-th
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quantile of Λ′, Λ′
(n,q,β), based on random sample of size n > 1 is obtained by

numerical method given below.
However, in this case one CI for µ is given by(

X̄ + Λ′
(n,α

2
,β)

S√
n
, X̄ + Λ′

(n,1−α
2
,β)

S√
n

)
. (16)

We can also introduce the following pivotal quantity to obtain CI for σ

Q =
(n− 1)S2

σ2
=
∑((

Xi − µ

σ

)
−
(
X̄ − µ

σ

))2

=
∑

(Zi − Z̄)2.

The distribution of Q is also complicated but independent of µ and σ pa-
rameters. Based on Q the following CI for σ is introduced √

n− 1S√
Q(n,1−α

2
,β)

,

√
n− 1S√
Q(n,α

2
,β)

 (17)

where Q(n,q,β) denotes the q-th quantile of Q which is obtained by the nu-
merical method.
When β is unknown we have not yet obtained pivotal quantities to provide
such confidence intervals. In practice, µ and σ are more interested. There-
fore, we propose to replace β with its mle in the CI corresponding to µ and
σ and given in (16) and (17), respectively.

6 A Numerical Method to Calculate Λ, Λ′ and Q

Based on written program introduced in Section 2, a numerical method has
been carried out to find the quantiles of the distribution of Λ, Λ′ and Q which
are introduced in Section 5. For given n, we use the following algorithm:
Step 1: Draw a sample of size n from Z ∼ SDN(β).
Step 2: Calculate Λ, Λ′ and Q.
Both steps are repeated K times, then the α

2 -th and (1− α
2 )-th quantiles for

Λ, Λ′ and Q are drived and used for the CI’s introduced in (14), (16) and
(17).
A program in SPLUS-2000 is written by author to generate a sample from
DN(µ, σ, β). As a numerical example, we draw a sample of size n = 50 from
DN(µ, σ, β), where µ = 40, σ = 5 and β = 2. The sample mean and variance
are x̄ = 39.73 and S2 = 80.56 (S = 8.98), respectively.
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The histogram of data is shown in Figure 2. The mle of parameters can
be estimated from nlminb function in SPLUS-2000. The mle’s are µ̂=39.72,
σ̂=5.1 and β̂=1.9 (with start points 39.73, 5.68, 1.5 and 11 iterations). Thus
one CI for µ at level 95% based on β=1.9 is

(
39.72 − 8.98√

50
× 2.04, 39.72 +

8.98√
50

× 1.98
)
= (37.13, 40.23). Note that simulated quantiles by K = 10000

repeats are Λ′
(50,0.025,1.9) = −2.04 and Λ′

(50,0.975,1.9) = 1.98. Also at level 95%
one simulated CI for σ based on Q with β=1.9 is given by (4.64, 5.85). Note
that simulated quantiles by K = 10000 repeats are Q(50,0.025,1.9) = 183.5 and
Q(50,0.075,1.9) = 115.4.

30 40 50 60

0
2

4
6

8
10

12
14

x

Figure 2. Histogram of the sample data
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