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Abstract. The unified hybrid censoring is a mixture of generalized Type-I
and Type-II hybrid censoring schemes. This article presents the statistical in-
ferences on Generalized Exponential Distribution parameters when the data
are obtained from the unified hybrid censoring scheme. It is observed that the
maximum likelihood estimators can not be derived in closed form. The EM
algorithm for computing the maximum likelihood estimators is proposed. We
calculated the observed Fisher information matrix using the missing infor-
mation principle which is useful for constructing the asymptotic confidence
intervals. Simulations studies are performed to compare the performances
of the estimators obtained under different schemes. Finally, a real data set
has been analyzed for illustrative purposes.
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1 Introduction
Consider a life-testing experiment in which n identical units are placed on a
life-test. Let X1:n 6 X2:n 6 · · · 6 Xn:n denote the corresponding lifetimes
∗ Corresponding author
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from a generalized exponential (GE) distribution with probability density
function (pdf) fθ(x) and cumulative distribution function (cdf) Fθ(x). Gen-
eralized Type-I and Type-II hybrid censoring schemes (HCS) can be briefly
described as follow:
Suppose n units are put on a life test. In generalized Type-I HCS, one fixes
r, kϵ{1, 2, . . . , n} and Tϵ(0,∞) such that k < r. If the k-th failure occurs
before time T , the experiment is terminated at min {Xr:n, T}; if the k-th
failure occurs after time T , the experiment is terminated at Xk:n. Thus, in
generalized Type-I HCS, a minimum number k of failures are guaranteed.
In generalized Type-II HCS, one fixes rϵ{1, 2, . . . , n} and T1, T2ϵ(0,∞) such
that T1 < T2. If the r-th failure occurs before time T1, the experiment is ter-
minated at T1; if the r-th failure occurs between T1 and T2, the experiment
is terminated at Xr:n; otherwise, the experiment is terminated at T2. This
hybrid censoring scheme guarantees that the experiment will be completed
by time T2, (see Chandrasekar et al., 2004).

A mixture of generalized Type-I and Type-II HCS is known as the uni-
fied HCS and it can be described as follows. Suppose n identical units are
put to test under the same environmental conditions and the lifetime of each
unit is independent and identically distribution (i.i.d) random variables. Fix
k, rϵ{1, 2, . . . , n} and T1 < T2ϵ(0,∞) such that k < r. If k-th failure oc-
curs before time T1, the experiment terminate at min{max{Xr:n, T1}, T2};
if the k-th failure occurs between T1 and T2, the experiment terminate at
min{Xr:n, T2} and if the k-th failure occurs after time T2, then the exper-
iment terminate at Xk:n. Under this censoring scheme, we can guarantee
that the experiment would be completed at most in time T2 with at least k
failure and if not, we can guarantee exactly k failures.

Balakrishnan et al. (2008), first introduced the unified HCS and ana-
lyzed the data under the assumption of exponential lifetime distribution of
the experimental units. They also obtained exact confidence intervals for the
mean of the exponential distribution under the unified HCS.
Thus, under the unified HCS, we have the following six cases:

(1) 0 < Xk:n < Xr:n < T1 < T2 the experiment terminate at T1,

(2) 0 < Xk:n < T1 < Xr:n < T2 terminate at Xr:n,

(3) 0 < Xk:n < T1 < T2 < Xr:n terminate at T2,

(4) 0 < T1 < Xk:n < Xr:n < T2 terminate at Xr:n,

(5) 0 < T1 < Xk:n < T2 < Xr:n terminate at T2,
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(6) 0 < T1 < T2 < Xk:n < Xr:n terminate at Xk:n,

where X1:n < X2:n < · · · < Xn:n denote the observed failure times of the
experimental units. Based on the observed unified HCS data, the likelihood
function for six cases can be combined and written as follow:

L(θ, x) =
n!

(n− d)!

d∏
i=1

f(xi:n)[1− F (c)](n−d), (1)

where c (cϵ{T1, T2, xr:n, xk:n}) is the stopping point and d (dϵ{D1, D2, k, r})
is the number of failures until time c. So that

for case (1) : d = D, and c = T1,

for cases (2), (4) : d = r, and c = xr:n,

for cases (3), (5) : d = D2, and c = T2,

for case (6) : d = k, and c = xk:n,

and Dj denote the number of failures until time Tj , j = 1, 2 and for case (1)
D = D1 = D2.

In this paper, we consider the analysis of the unified HCS lifetime data
when the lifetime of each experimental units follows two-parameter GE dis-
tribution.
The GE distribution is one of the most common distribution which is used
to analyze several lifetime data. The two-parameter GE was originally pro-
posed by Gupta and Kundu (1999) and it has received considerable attention
in the recent years because of its flexibility and wide scale applicability. See,
for example, the review article by Gupta and Kundu (2007) on recent de-
velopment of the GE distribution. The two-parameter GE distribution with
the shape parameter α > 0 and scale parameter λ > 0 has the pdf for x > 0
as:

fGE(x;α, λ) = αλe−λx(1− e−λx)α−1; (2)

and the corresponding cdf is

FGE(x;α, λ) = (1− e−λx)α.

The aim of this article is the point and interval estimating of the unknown pa-
rameters based on the frequentist approach. It is observed that the maximum
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likelihood estimates can not be obtained in closed form. Newton-Raphson
algorithm is one of the standard methods to determine the maximum likeli-
hood estimates of the parameters (Izanlo and Habibi, 2009). To employ the
algorithm, the second derivatives of the log-likelihood are required. Some-
times the calculations of the derivatives based on the unified HCS censored
samples are complicated. Unfortunately it does not converge all the time
even from good starting values To avoid such computation, we propose to
use the EM algorithm instead, similary as in Ng et al. (2002) to compute
the MLEs. Also, by using the missing information principle we calculate the
observed Fisher information matrix, which can be used for constructing the
asymptotic confidence intervals of the unknown parameters. Simulations are
performed to compare the performances of the different schemes and a real
data set has been analyzed for illustrative purposes.

The rest of the paper is organized as follows. The maximum likelihood
estimators and EM algorithm are provided In Section 2. The Fisher infor-
mation matrix is in Section 3. Simulation results and analyzed of one data
set are presented in Section 4. Finally conclusions appear in Section 5.

2 Maximum Likelihood Estimators

In this section based on the observed data in (2), ignoring the additive con-
stant, the log-likelihood function for six cases is given by

l(α, λ|x) = d lnα+ d lnλ− λ

d∑
i=1

xi:n + (α− 1)

d∑
i=1

ln(1− e−λxi:m)

+ (n− d) ln{1− (1− e−λc)α}, (3)

where c and d have defined in (1).
Taking derivatives with respect to α and λ of (3) and putting them equal to
zero we obtain

∂l

∂α
=
d

α
+

d∑
i=1

ln(1− e−λxi:m)− (n− d)
ln(1− e−λc)(1− e−λc)α

1− (1− e−λc)α
= 0,
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∂l

∂λ
=
d

λ
−

d∑
i=1

xi:n + (α− 1)
d∑

i=1

xi:ne
−λxi:n

1− e−λxi:n

− (n− d)
αce−λc(1− e−λc)α−1

1− (1− e−λc)α
= 0. (4)

It is clear that the equations in (4) are implicit, we need some numerical
techniques to solve the simultaneous equations. We suggest to use the EM
algorithm to compute the MLEs and it is described below.

2.1 EM Algorithm
The EM algorithm, originally proposed by Dempster et al. (1977), is a
very powerful tools in handling the incomplete data problem. We treat this
problem as a missing value problem similarly as in Ng et al., (2002). Let
us denote the observed and the censored data by X = (X1:n, X2:n, . . . , Xd:n)
and Z = (Z1, Z2, . . . , Zn−d) respectively. Here for a given d, Z1, Z2, . . . , Zn−d

are not observable. The censored data vector Z can be thought of as missing
data. The combination of W = (X,Z) forms the complete data set. The
log-likelihood function based on the complete log-lifetime W and ignoring
the additive constant is

lc(α, λ;W ) = n lnα+ n lnλ− λ

(
d∑

i=1

xi:n +

n−d∑
i=1

zi

)

+ (α− 1)

{
d∑

i=1

ln(1− e−λxi:n) +

n−d∑
i=1

ln(1− e−λzi)

}
. (5)

In E-step one needs to compute the pseudo log-likelihood function as E(l(α, λ;
W )|X). Therefore,

E(lc(α, λ;W )|X) = n lnα+ n lnλ− λ

d∑
i=1

xi:n + (α− 1)

d∑
i=1

ln(1− e−λxi:n)

− λ
n−d∑
i=1

E(Zi|Zi > c) + (α− 1)

×
n−d∑
i=1

E
{
ln(1− e−λZi)|Zi > c

}
. (6)
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We know the conditional pdf of Zi, for i = 1, . . . , n − d, when X1:n =
x1:n, . . . , Xd:n = xd:n is (Ng et al. 2002)

fZ|X(zi|X1:n = x1:n, . . . , Xd:n = xd:n) =
fW (zi;α, λ)

1− FW (c;α, λ)
; zi > c, (7)

Zi and Zj for i ̸= j are conditionally independent. Based on (7), we can
write

A(c;α, λ) = E(Zi|Zi > c) =
αλ

1− FGE(c;α, λ)
×
∫ ∞

c
xe−λx(1− e−λx)α−1 dx,

= − α

λ(1− FGE(c;α, λ))
u(λc, α),

where

u(λc, α) =

∫ e−λc

0
(1− z)α−1 ln z dz,

and

B(c;α, λ) = E(ln(1− e−λzi)|Zi > c),

=
αλ

1− FGE(c;α, λ)
×
∫ ∞

c
e−λx(1− e−λx)(α−1) ln(1− e−λx) dx,

=
1

α{1− FGE(c;α, λ)}
[(1− e−λc)α{1− α ln(1− e−λc)} − 1].

Now the M-step involves the maximization of (6), if at the k-th stage
the estimate of (α, λ) is (α(k), λ(k)), then (α(k+1), λ(k+1)) can be obtained by
maximizing

g(α, λ) = n lnα+ n lnλ− λ

d∑
i=1

xi:n + (α− 1)

d∑
i=1

ln(1− e−λxi:n)

− λ(n− d)A(c;α(k), λ(k)) + (α− 1)(n− d)B(c;α(k), λ(k)). (8)

Taking derivatives with respect to α and λ of (8) and putting them equal to
zero, first find λ(k+1) by solving a fixed point type equation as

h(λ) = λ,

c⃝ 2011, SRTC Iran



A. Habibi Rad and M. Izanlo 221

so that the function h(λ) is defined as follow;

h(λ) =

[
1

n

d∑
i=1

xi:n +
n− d

n
A(c;α(k), λ(k))− 1

n
{α̂(λ)− 1}

d∑
i=1

xi:ne
−λxi:n

1− e−λxi:n

]−1

,

where
α̂(λ) = − n∑d

i=1 ln(1− e−λxi:n) + (n− d)B(c;α(k), λ(k))
.

Then, α(k+1) is obtained as α(k+1) = α̂(λ(k+1)).

3 Fisher Information Matrices

In this section we present the observed Fisher information matrix obtained
using the missing value principle of Louis (1982). The observed Fisher infor-
mation matrix can be used to construct the asymptotic confidence intervals.
The idea of missing information principle is as follows;

Observed information = Complete information - Missing information.

Let us use the following notation; θ = (α, λ), X = the observed data, W =
the complete data, IX(θ) = the observed information, IW (θ) = the complete infor-
mation, IW |X = the missing information, then

IX(θ) = IW (θ)− IW |X(θ). (9)

The complete information IW (θ) is given by

IW (θ) = −E
[
∂2l(W ; θ)

∂θ2

]
.

The Fisher information matrix of the censored observations can be written
as

IW |X(θ) = −(n− d)EZ|X

[
∂2 ln fZ|X(z|X, θ)

∂θ2

]
,
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The elements of the matrix for complete data set are available in Gupta and
Kundu (2001). They are as follow;

a11 =
n

α2
.

a22 =
n

λ2
+
nα(α− 1)

λ2

∫ ∞

0
x2e−2x(1− e−x)α−3dx.

a12 = a21 = −nα
λ

∫ ∞

0
xe−2x(1− e−x)α−2dx.

Using (7), we present IW |X . If

IW |X(θ) = (n− d)

[
b11(c;α, λ) b12(c;α, λ)

b21(c;α, λ) b22(c;α, λ)

]
,

then

b11(c;α, λ) =
1

α2
− [ln(1− e−λc)]2

(1− e−λc)α

{1− (1− e−λc)α}2
,

b22(c;α, λ) =
1

λ2
+ (α− 1)h1(c;α, λ)

− αc2e−λc(1− e−λc)α−2{αe−λc − 1 + (1− e−λc)α}
{1− (1− e−λc)α}2

,

b12(c;α, λ) = h2(c;α, λ)

− ce−λc(1− e−λc)α−1{1 + α ln(1− e−λc)− (1− e−λc)α}
{1− (1− e−λc)α}2

,

b21(c;α, λ) = b12(c;α, λ),

where

h1(c;α, λ) =
1

λ2{1− (1− e−λc)α}

×
∫ 1

(1−e−λc)α
{ln(1− u1/α)}2

{
1− u

1
α

}
u

−2
α du,

h2(c;α, λ) =
1

λ{1− (1− e−λc)α}

×
∫ 1

(1−e−λc)α
{ln(1− u1/α)}

{
1− u

1
α

}
u

−1
α du.
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Naturally, the asmptotic variance covariance matrix of θ̂ can be obtained by
inverting IX(θ̂).

4 Simulations and Data Analysis
4.1 Simulations
In this section, we present some simulation results to compare the perfor-
mances of the different schemes, in terms of their mean squared error (MSE)
and their coverage percentages. All the programs are written in R.

In each case, we generated a sample from GE distribution with α = 7,
λ = 0.05 and n = 50. The simulation is carried out for different choices of k,
r, T1 and T2 values. We have estimated the α and λ (Tables 1 and 2) using
the MLEs, we have used the EM algorithm for computing the MLEs, and
computed the coverage percentages of the confidence intervals using the ob-
served Fisher information matrix (Tables 4 and 6). For comparison purpose,
we replicated the process 10.000 times and report them in Tables 1-6.

The results from Tables 1-6 are as follows:

(i) for fixed r, T1 and T2 when k increase, estimation of the parameters
near to the real value, Tables 1 and 2.

(ii) for fixed r, k and T2 when T1 decrease, the MSEs increase and the
coverage percentages decrease, Tables 3 and 4.

(iii) for fixed r, k and T1 when T2 increase, the MSEs decreases and the
coverage percentages increase, Tables 5 and 6.

4.2 Data Analysis
For illustrative purposes, we present here a data analysis using the proposed
methods. The data set is taken from Lawless (1982, p. 228). The data
given here arose in tests on endurance of deep groove ball bearings. The
data are the numbers of million revolution before failure for each of the 23
ball bearings in the life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12,
45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,
93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.40. It has been observed
by Gupta and Kundu (2001) and Kundo and Pradhan (2009) that the two-
parameter GE distribution can be used quite effectively to analyze this data
set.
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Table 1. Estimation of the (α, λ) for unified HCS when T2 is 95.

r k T1

4 30 75 90

19 11 (1.529,0.0131) (1.529,0.0131) (7.146,0.0488) (7.651,0.0508)

33 11 (4.387,0.03707) (4.364,0.0370) (7.157,0.0488) (7.678,0.0509)
19 (4.367,0.03705) (4.374,0.0371) (7.168,0.0489) (7.708,0.0510)
27 (4.371,0.0370) (4.400,0.0372) (7.152,0.0489) (7.676,0.0509)

47 17 (7.701,0.0509) (7.689,0.0509) (7.717,0.0510) (7.699,0.0509)
29 (7.670,0.0508) (7.674,0.0510) (7.724,0.0511) (7.764,0.0511)
43 (7.721,0.0509) (7.705,0.0510) (7.724,0.0510) (7.716,0.0511)

Table 2. Estimation of the (α, λ) for unified HCS when T1 is 30.

r k T2

50 65 95 130

23 17 (1.884,0.0177) (1.901,0.0179) (1.899,0.0178) (1.902,0.0179)

33 27 (3.044,0.0281) (4.344,0.0369) (4.389,0.0372) (4.384,0.0371)

41 19 (2.897,0.0265) (6.072,0.0445) (6.902,0.0482) (6.918,0.0483)
25 (2.985,0.0274) (6.065,0.0445) (6.915,0.0483) (6.872,0.0481)
37 (5.812,0.0439) (6.299,0.0457) (6.9071,0.0457) (6.939,0.0483)

Table 3. MSEs of the (α, λ) for unified HCS when T2 is 95.

r k T1

4 30 75 90

19 11 (29.935,1.36×10−3) (29.935,1.36×10−3) (6.829,7.02×10−5) (7.1364,5.46×10−5)

33 11 (7.7710,1.92×10−4) (7.8837,1.92×10−4) (7.0425,7.13×10−5) (7.3515,5.63×10−5)
19 (7.8624,1.92×10−4) (7.8426,1.92×10−4) (6.9267,7.00×10−5) (7.2757,5.61×10−5)
27 (7.8810,1.94×10−4) (7.7310,1.89×10−4) (6.7423,6.99×10−5) (7.1615,5.48×10−5)

47 17 (7.144,5.28×10−5) (7.318,5.30×10−5) (7.665,5.52×10−5) (7.484,5.42×10−5)
29 (7.197,5.19×10−5) (6.850,5.31×10−5) (7.121,5.42×10−5) (7.597,5.33×10−5)
43 (7.411,5.39×10−5) (7.400,5.42×10−5) (7.429,5.45×10−5) (7.263,5.37×10−5)
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Table 4. Coverage percentages of the (α, λ) for unified HCS when T2 is 95.

r k T1

4 30 75 90

19 11 (0.0000,0.0000) (0.0000,0.0000) (0.8385,0.8154) (0.9067,0.8810)

33 11 (0.3159,0.3388) (0.3100,0.3332) (0.8424,0.8211) (0.9045,0.8789)
19 (0.3112,0.3371) (0.3080,0.3381) (0.8445,0.8208) (0.9087,0.8803)
27 (0.3092,0.3321) (0.3285,0.3485) (0.8464,0.8212) (0.9075,0.8798)

47 17 (0.9126,0.8840) (0.9104,0.8848) (0.9061,0.8791) (0.9072,0.8818)
29 (0.9116,0.8893) (0.9127,0.8895) (0.9167,0.8860) (0.9140,0.8877)
43 (0.9079,0.8859) (0.9140,0.8838) (0.9101,0.8845) (0.9134,0.8857)

Table 5. MSEs of the (α, λ) for unified HCS when T1 is 30.

r k T2

50 65 95 130

23 17 (26.193,1.05×10−3) (26.014,1.03×10−3) (26.029,1.04×10−3) (26.005,1.03×10−3)

33 27 (16.556,5.32×10−4) (8.029,1.99×10−4) (7.747,1.89×10−4) (7.779,1.90×10−4)

41 19 (18.324,6.40×10−4) (6.304,1.16×10−4) (5.268,5.21×10−5) (4.953,5.09×10−5)
25 (17.542,5.91×10−4) (6.338,1.17×10−4) (5.049,5.08×10−5) (4.911,5.09×10−5)
37 (4.271,7.66×10−5) (5.494,8.18×10−5) (4.893,5.04×10−5) (5.084,5.17×10−5)

Table 6. Coverage percentages of the (α, λ) for unified HCS when T1 is 30.

r k T2

50 65 95 130

23 17 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000)

33 27 (0.0691,0.1112) (0.3019,0.3305) (0.3273,0.3410) (0.3184,0.3382)

41 19 (0.0740,0.1116) (0.6794,0.6805) (0.8614,0.8695) (0.8671,0.8736)
25 (0.0815,0.1205) (0.6854,0.6825) (0.8669,0.8767) (0.8649,0.8742)
37 (0.7148,0.7472) (0.7487,0.7432) (0.8670,0.8772) (0.8690,0.8716)

We have created six artificially unified HCS data sets from the above
uncensored data set, using the following censoring schemes:
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(1): T1 = 80, T2 = 100, k = 10, r = 14

(2): T1 = 80, T2 = 100, k = 10, r = 17

(3): T1 = 80, T2 = 100, k = 10, r = 19

(4): T1 = 65, T2 = 100, k = 13, r = 18

(5): T1 = 65, T2 = 95, k = 13, r = 21

(6): T1 = 65, T2 = 85, k = 19, r = 22

In the all cases we have estimated the unknown parameters (α, λ) using
the MLEs, for computing the MLEs we have used the EM algorithm as
described in Section 2, and also computed 95% confidence intervals using
the observed Fisher information matrix as provided in Section 3. The results
are reported in Table 7.

table 7. The MLEs, 95% confidence intervals of the α and λ for six schemes.

Schemes (1) (2) (3) (4) (5) (6)

α 3.3795 4.0249 4.2837 4.3425 3.9359 4.6243
(1.106,5.653) (1.331,6.719) (1.439,7.129) (1.449,7.236) (1.315,6.557) (1.563,7.686)

λ 0.0239 0.0271 0.0282 0.0285 0.0266 0.0297
(0.0131,0.0347) (0.0162,0.0380) (0.0174,0.0391) (0.0176,0.0395) (0.0159,0.0374) (0.0188,0.0406)

Based on the complete data set (without censored data) the MLEs of α
and λ are 5.278 and 0.0323, respectively.

5 Conclusions
In this paper, we consider the classical inference procedure for the unified
HCS GE distribution parameters. It is observed that the maximum like-
lihood estimates can be obtained by solving two non-linear equation, but
they can not be obtained in closed form. Although, the standard Newton-
Raphson algorithm can be employed to solve the non-linear equation, but we
propose to use the EM algorithm to compute the MLEs. Using the missing
information principle we calculate the observed Fisher information matrix
for constructing the asymptotic confidence intervals of the unknown param-
eters. Also it is observed that for fixed r, k and T1 when T2 increases, and
for fixed r, k and T2 when T1 increases, the MSEs decrease and coverage
percentages increase.
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