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Abstract. Fitting a suitable covariance function for the correlation struc-
ture of spatial-temporal data requires de-trending the data. In this article,
some potential models for spatial-temporal trend are presented. Eventually
the best model will be announced for de-trending tropospheric ozone con-
centration data for the city of Tehran (Capital city of Iran). By using the
selected trend model, some features of the covariance function of de-trended
data will be specified.
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1 Introduction
Many environmental and geophysical processes such as atmospheric pollu-
tant concentrations, precipitation fields and surface winds, involve variability
over space and time, which are named as spatial-temporal processes. Sta-
tistical analysis of spatial-temporal data requires the determination of the
correlation structure using the covariance function. This function is usu-
ally unknown and should be estimated. Since the trend of the data may
cause bias in the covariance function estimation (Cressie, 1993), it is neces-
sary to model the possible trend which may exist in the data, and use the
de-trended data for fitting a valid covariance function. However, there are
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various methods for trend modeling. Certainly, the de-trended data set de-
rived from various trend models induces different covariance functions, which
have different effects on the accuracy of data analysis.

In recent researches, more attention has been paid on the modeling of
spatial-temporal trend. Cox and Chu (1992) used a generalized linear model
approach, by assuming a conditional Weibull distribution for ozone concen-
trations along with meteorology, to estimate trends in daily maximum ozone
levels. Porter et al. (2001) reported on the estimation of trends in ozone con-
centrations, which were adjusted for meteorological variables at individual
monitoring sites. However, Stroud et al. (2001) modeled the mean function
at each time-period as a locally weighted mixture of linear regressions. In
order to incorporate temporal variation, they allowed the regression coeffi-
cients to change through time. Huerta et al. (2004) applied a dynamic linear
model for ambient ozone, whilst McMillan et al. (2005) proposed a nearest-
neighbor spatial model. Also, Zheng et al. (2007) used a dynamic linear
model and generalized additive model to explain ozone trends and Sahu et
al. (2007) proposed a space-time model for 8-hour maximum ozone levels
to provide input to regulatory activities, detection, evaluation, and analy-
sis of spatial patterns of ozone summaries and temporal trends. However,
Fuentes et al. (2008) introduced spatial-temporal models, using covariates
that have dynamic coefficients in the space-time model. Finally, Behshad
and Mohammadzadeh (2011) evaluated different separability and symmetry
tests for spatial-temporal covariance function.

In this paper, we focus on the effect of four linear models in formulat-
ing the spatial-temporal trends on the features of covariance structure for
cases where the data are spatial-temporal. To summarize, the structure of
this article is as follows: in Section 2, four linear models are introduced for
modeling the mean structure of a space-time process. In Section 3, we assess
the effect of different models on the features of spatial-temporal covariance
function. Initially a case study has been carried out on the ozone concen-
tration of the data collected from the city of Tehran, with consideration of
the suitable features of the spatial-temporal covariance function. Finally,
conclusions are given in Section 4.

2 Spatial-Temporal Trend Modeling
Let {Z(s, t); s ∈ Rd, t ∈ R} denotes a spatial-temporal random field, where
s represents a site in d-dimensional space and t represents time. In general,
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a spatial-temporal random field can be decomposed as
Z(s, t) = µ(s, t) + δ(s, t),

where µ(s, t) represents the mean surface or spatial-temporal trend, also it
corresponds to large scale variations and δ(s, t) is a zero mean space-time
correlated error that explains the spatial-temporal small scale variations.
There are different ways to define a model for the large scale structure,
i.e. trend. In this article, four linear space-time models are considered for
modeling the spatial-temporal trend.

Suppose z = (z(s1, t1), . . . , z(sm, tn)) is a realization vector of a Gaussian
random field observed at spatial locations s1, . . . , sm and temporal points
t1, . . . , tn. Assume Z ∼ Nmn(µ(s, t),Σ), Z = (Z(s1, t1), . . . ,Z(sm, tn)),
where Σ is a mn ×mn positive definite covariance matrix. Also X ′(s, t) =
(X1(s, t), . . . , Xk(s, t)) is vector of known functions including the values of
covariates and location variables. A simple model is referred to the linear
regression model with constant coefficients and independent errors. The
development of trend modeling is described systematically in the following
section.

2.1 Linear Model with Constant Coefficients and Indepen-
dent Errors

A simple linear model for spatial-temporal trend is as follows
µ(s, t) = β0 + β1X1(s, t) + · · ·+ βkXk(s, t), (s, t) ∈ Rd ×R, (1)

which can be restated as µ = Xβ, where µ = (µ(s1, t1), . . . , µ(sm, tn)),
X = (x(si, tj)) is a mn × (k + 1) matrix and β = (β0, . . . , βk) represents
(k+1)×1 parameter vector specifying the effect of each covariate and locative
variable. For the iid errors the ordinary least square estimator of β is given
by β̂ = (X ′X)−1X ′Z, where Z = (Z(s1, t1), . . . , Z(sm, tn)).

For Bayesian estimation of β, it is assumed that var(Z) = var(δ) = Σ =
σ2Imn, where Z ∼ Nmn(Xβ, σ2Imn), and Imn is an mn × mn identity
matrix. Suppose prior distribution for (β, σ2) is the multivariate Normal-
inverse Gamma, that it is a conjugate distribution and is given by

(β, σ2) ∼ NIG(µβ,V β, a, b),

which can be expressed as the product of a multivariate Normal distribution
for β and an inverse Gamma prior for σ2 given by

(β|σ2) ∼ N(µβ, σ
2V β), σ2 ∼ IG(a, b).
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The resulting posterior is also a multivariate Normal-inverse gammaNIG(µ̃β,

Σ̃β, ã, b̃), where

µ̃β = Σ̃β(X
′z + V −1

β µβ), Σ̃β = (X ′X + V β
−1)−1,

ã = a+
mn

2
, b̃ = b+

z′z − µ̃′
βΣ̃

−1
β µ̃β + µ′

βV
−1
β µβ

2
.

The conditional posterior distribution of β and marginal posterior of σ2
are given as follows (see Bernardo and Smith, 1994; Ntzoufras, 2009):

(β|z, σ2) ∼ Nk+1(µ̃β, σ
2Σ̃β), σ2 ∼ IG(ã, b̃).

Using Gibbs algorithm, the Bayesian estimates of β and σ2 can be derived.
One of the major advantages of the Bayesian approach lies in the ease

with subjective information and model/data information are combined. Dis-
advantage of this model is that the parameters are constant, therefore they
do not consider their spatial and temporal dependency. Also it is assumed
that the errors are not spatially and temporal dependent.

2.2 Linear Model with Spatial-temporal Coefficients and In-
dependent Errors

If the coefficients of the linear model (1) depends on the locations (s1, t1), . . . ,
(sm, tn), then the following assumption holds;

µ(s, t) = β0(s, t) + β1(s, t)X1(s, t) + · · ·+ βk(s, t)Xk(s, t), (s, t) ∈ Rd ×R,
(2)

which is a new linear model, that can be rewritten as µ = Xβ, where µ and
X are similar to previous subsection, but β is a (k + 1) ×mn dimensional
matrix of regression parameters as follows;

β =

β0(s1, t1) . . . β0(sm, tn)
... . . . ...

βk(s1, t1) . . . βk(sm, tn)


For estimating β, the matrix Normal distribution is supposed with (k +

1)×mn-dimensional mean matrix M and (k+1)mn× (k+1)mn covariance
matrix Ω, as prior for β. For ease, Ω is considered to be the Kronecker
product of two smaller matrices, as Ω = Σ1 ⊗ Σ2, where Σ1 and Σ2 are
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(k + 1)× (k + 1)- and mn×mn-dimensional matrices (Rowe, 2003). So the
following;

π(β|M ,Σ1,Σ2) =(2π)−
(k+1)mn

2 |Σ1|−
(k+1)

2 |Σ2|−
mn
2

× exp

{
−1

2
trΣ−1

1 (β −M)Σ−1
2 (β −M)′

}
,

is a prior distribution for β. If Σ1 = I(k+1)×(k+1) and Σ2 = Imn×mn, then
Ω = I. Therefore rows and columns of the matrix β are independent, that
is β includes k + 1 constant parameters (β0, . . . , βk) and can be estimated
similar to Subsection 2.1.

Advantage of the model 2 is that the parameters and covariates have
spatial and temporal dependency. Its disadvantage is that the errors are
independent.

2.3 Linear Model with Spatial-Temporal Errors
Considering model (1), if var(Z) = var(δ) = Σ is known, the generalized least
square (GLS) estimator of β is given by

β̂gls = (X ′Σ−1X)X ′Σ−1Z.

However, when Σ is unknown; the method of estimated generalized least
square (EGLS) is applied, in which Σ̂ is used instead of Σ, so another esti-
mator of β would be given by

β̂egls = (X ′Σ̂
−1

X)X ′Σ̂
−1

Z

For Bayesian approach, we assume that spatial-temporal covariance matrix
Σ is separable, that is Σ = ΣS⊗ΣT , where ΣS is purely a spatial covariance
matrix and ΣT is a pure temporal covariance matrix. The conjugated prior
distribution for β is Nk+1(µ0,Σ0), where µ0 and Σ0 are known. Assuming
the random field Z(·, ·) is Gaussian, the conditional posterior distribution of
β is Nk+1(µ̃, Σ̃), where

µ̃ = Σ̃(X ′(Σ−1
S ⊗Σ−1

T )z +Σ−1
0 µ0), Σ̃ = (X ′(Σ−1

S ⊗Σ−1
T )X +Σ−1

0 )−1.

Disadvantage of this model is that the parameters are constant, therefore
their spatial and temporal dependency is not assumed.
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2.4 Dynamic Spatial Linear Model
Let the m-dimensional vector Z(t) = (Z(s1, t), . . . , Z(sm, t)) observed at
time point t, (t = 1, . . . , n), have multivariate Normal distribution Nm(µ(t),
V t). The dynamic spatial linear model for each t is defined by observation
and evolution equations as follows:

Observation equation : µ(t) = F ′
tθ(t) + ϵ(t), ϵ(t) ∼ Nm(0,V t), (3)

Evolution equation : θ(t) = Gtθ(t− 1) + ω(t), ω(t) ∼ N q(0,W t), (4)

where F t is the q ×m design matrix, θ(t) is the q × 1 state vector, ϵ(t) is
the observational error vector with m ×m covariance matrix V t, Gt is the
evolution matrix related to the state vector and ω(t) is the evolution error
vector with q× q covariance matrix W t, also ϵ(t) and ω(t) are independent.
Therefore at each time (t), the dynamic linear model (DLM) is characterized
by a set of known quadruples {F t,Gt,V t,W t}. This model is completed
with a prior on the initial state vector, θ0|D0 ∼ N(m0,C0), where D0

denotes the initial information set, and m0 and C0 are known (West and
Harrison, 1997). Assuming that the spatial-temporal observations have cycli-
cal behavior, the state vector can be defined as θ(t) = (θ′

1(t),θ
′
2(t))

′, where
q = r + 2k, θ′

1(t) is the r × 1 spatial process and the 2k × 1 dimensional
vector θ′

2(t) describes cyclicality of the data with cycle 2k. Covariates of the
spatial process denoted by X, include variables such as length, width, height
and other covariates. Corresponding to the partitioning of θ(t), design ma-
trix is considered as F t = (X,F 1, . . . ,F k), where each of F h, h = 1, . . . , k,
are m × 2 matrices that the entire elements of the first column are 1 and
second column are 0. Therefore, the evolution matrix Gt can be used as
a block structure with Gt = blockdiag (Irr,Gt1, . . . ,Gtk), where each block
Gth, h = 1, . . . , k, is a 2× 2 harmonic matrix of the form

Gth =

[
cos(2πh/p) sin(2πh/p)
− sin(2πh/p) cos(2πh/p)

]
, h = 1, . . . , k

For modeling the spatial dependency of the observations, the covariance
matrix V t = σ2V λ is considered in which V λ = exp(−V /λ) and elements
of V are determined by a known spatial correlation function. The evolution
variance W t can be specified either explicitly or through a discount factor
α ∈ [0,∞), which defines W t = αP t, where P t = var(Gtθ(t − 1)|Dt−1). A
discount factor of α = 0 gives a static model, with the same coefficients for
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all time periods, whereas α → ∞ implies coefficients which are independent
over time, i.e. no temporal smoothing at all (Stroud et al., 2001).

Using Kalman filtering theorem (West and Harrison, 1997) under models
(3) and (4), together with the initial state information θ0|D0 ∼ N(m0,C0),
for t = 2, . . . , n, we have:

(a) Posterior at t − 1: (θ(t − 1)|Dt−1) ∼ N(mt−1,Ct−1), where, Dt =
{D0,µ(1), . . . ,µ(t)}.

(b) Prior at t (Evolution): (θ(t)|Dt−1) ∼ N(at,Rt), where E(θ(t)|Dt−1) =
at = Gtmt−1 and V (θ(t)|Dt−1) = Rt = GtCt−1G

′
t +W t.

(c) Prediction Distribution: (µ(t)|Dt−1) ∼ N(f t,Qt), where, E(µ(t)|Dt−1)
= f t = F ′

tat−1 and V (µ(t)|Dt−1) = Qt = F ′
tRt−1F t + V t.

(d) Posterior at t: (θ(t)|µ(t),Dt−1) ∼ N(mt,Ct), where mt = at +
At(µ(t)− f t), Ct = Rt −AtQtA

′
t, At = RtF tQ

−1
t .

In this stage, a closed form for p(µn,θn, λ, σ
2|z) does not exist which is

encountered as a problem, where µn = (µ(1), . . . ,µ(n)) and θn = (θ(1), . . . ,
θ(n)). Therefore; the Metropolis-Hastings algorithm is used in order to get
the results of posterior and prediction distribution based on DLM.

Considering

µ(t) ∼ (0, σ2V λ), θ(t) ∼ (0, σ2Wλ),

where λ is a non-negative parameter that defines the covariance matrices V λ

and W λ, and σ2 is a common scale factor. Sample from conditional posterior
distributions can be drawn as follows:

a) Sampling from p(θn, λ, σ
2|µn): The joint posterior distribution of θn, λ

and σ2 is given by

p(θn, λ, σ
2|µn) = p(λ, σ2)p(θ(0)|D0)

n∏
t=1

p(µ(t)|θ(t), λ, σ2)p(θ(t)|θ(t−1), λ, σ2).

Suppose p(λ, σ2) = p(λ)p(σ2), that is, λ and σ2 are independent. Using
Bayes’ theorem and the Markov structure of the model, the joint posterior
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can be written as

p(θn, λ, σ
2|µn) = p(λ)p(σ2)

n∏
t=1

p(µ(t)|µt−1, λ, σ
2)

× p(θ(n− t)|θ(n− t+ 1), λ, σ2,µn)

= p(θn|λ, σ2,µn)p(σ
2|λ,µn)p(λ|µn).

The joint posterior distribution of λ and σ2 can be expressed as

p(λ, σ2|µn) ∝ p(λ)p(σ2)p(µ(t)|µt−1, λ, σ
2)

∝ p(λ)p(σ2)

(
1

σ2

)−n
2

n∏
t=1

|Qt|−
1
2 exp

{
− 1

2σ2

n∑
t=1

e′tQ
−1
t et

}
.

If σ2 has an inverse Gamma prior distribution with shape parameter α and
scale parameter β, then its posterior distribution is also an inverse Gamma
with shape parameter α+ n

2 and scale parameter β+ 1
2

∑n
t=1 e

′
tQ

−1
t et. Hence,

the posterior density of λ can be written as

p(λ|µn) =
p(λ, σ2|µn)

p(σ2|λ,µn)
∝ p(λ)

n∏
t=1

|Qt|−
1
2

[
β +

1

2

n∑
t=1

e′tQ
−1
t et

]−(α+n
2
)

.

Then, the posterior density of θn is also given by

p(θn|λ, σ2,µn) = p(θ(n)|λ, σ2,µn)

n∏
t=1

p(θ(n− t)|θ(n− t+ 1), λ, σ2,µn),

where each term in the product sign is a Normal distribution. A sample of
θn can be obtained recursively moving backwards from θ(n) to θ(1) (Huerta
et al., 2004; Dou, 2008).

In Metropolis-Hasting algorithm, the transition kernel is a mixed dis-
tribution for the new state of the chain: q(·, ·), the proposal density and
α(·, ·) , the acceptance probability. Since the parameter space is bounded
by 0, lognormal distribution is chosen as proposed density. As Moller (2002)
notes, the alternative to the random walk Metropolis considers the proposal
move to be a random multiple of the current state. From the current state
λ(j−1), (j > 1), the proposed move is given by λ∗ = λ(j−1)eZ , where Z is
drawn from a symmetric distribution, such as Normal. In other words, at
iteration j, a new λ∗ is sampled from this proposal, centered at the pre-
viously sampled λ(j−1), with a tuning parameter τ2 as the variance of the
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distribution of Z. Gamerman and Lopes (2006) suggests that the acceptance
rate, i.e. the ratio of accepted λ∗ to the total number of iterations, should
be around 50%. So τ2 is tuned to attain this rate. If the acceptance rate is
too high, for example; 70% to 100%, then τ2 is increased. Similarly, if the
acceptance rate is too low, for example, 0 to 20%, then τ2 is decreased to
narrow down the search area for λ∗.

The Metropolis-Hastings algorithm proceeds as follows. Given λ(j−1),
where j > 1,

• Draw λ∗ from LN(λ(j−1), τ2).

• Compute the acceptance probability α(λ(j−1), λ∗) = min
{
1, p(λ∗|µn)

p(λ(j−1)|µn)

× q(λ(j),λ∗)
q(λ∗,λ(j−1))

}
.

• Accept λ∗ with probability α(λ(j−1), λ∗). In other words, sample u ∼
U(0, 1) and let λ(j) = λ∗ if λ∗ < u and λ(j) = λ(j−1), otherwise.

This algorithm is iteratively performed until it converges. Next, σ2 is drawn
from the inverse Gamma distribution IG(α + n

2 , β + 1
2

∑n
t=1 e

′
tQ

−1
t et). We

now sample θn given the accepted λ, σ2 and µn by using the Kalman filter
algorithm (Dou, 2008).
b) Sampling from p(µn|θn, λ, σ

2): Use prior of µ(t) which has been specified
by observation equation, to create proposal distribution. Since the proposal
distribution for µ(t) in observation equation has been Nm(F ′

tθ(t),V t), by a
basic property of the multivariate Normal distribution; it can be transformed
to uni-variate Normal distribution.

An advantage of the dynamic spatial linear model is that any linear com-
bination of independent normal DLMs is a normal DLM. The important
consequence is that in most practical cases, a DLM can be composed into a
linear combination of simple canonical DLMs, the good news being that a
modeller only needs to master a very few simple DLMs in order to become
proficient at model building. Another advantage of the component structure
is robustness.

3 Application to Ozone Data
In this section, the proposed trend models influence on the covariance func-
tion features of ozone data will be evaluated. The data set considered in this
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study includes the daily averages of ozone concentration in scale parts per
billion (ppb), which were measured during year of 2009 at 9 different mon-
itoring stations scattered irregularly in Tehran city. The locations of the
monitoring stations are shown in Figure 1. This data are collected by partic-
ular and accurate systems by Air Quality Control Company (subsidiary of
Tehran’s municipality) and Tehran City Directorate of Environment. Since
the data are recorded hourly, there are 24 observations in each day and we
used their daily means.

Figure 1. Locations of 9 monitoring stations in the city of Tehran

For considering the normality of ozone data, two most common trans-
formations in the literatures are the square root and the natural logarithm.
Histogram and normal QQ plots were plotted in Figure 2 on three measure-
ment scales: original, square root and logarithmic. According to the Figure
2, The distributions of the original data and logarithmic data are not sym-
metric but the square root transformation converts them to a symmetric
distribution. Also using Shapiro-Wilk test for examination of normality, the
p-value only the square root transformation is more than 0.05.

Therefore a multivariate Normal distribution for the transformed data
is considered. Let Z(si, tj) denotes the square root of observed ozone con-
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Figure 2. Histograms and normal QQ plots for original, square root and logarithmic data

centration, at locations si, i = 1, . . . , 9 and time tj ∈ T = {1, . . . , 365}.
Ozone is formed by photochemical processes which involve nitrogen oxides
(NOX) and volatile organic compounds (VOCs), in other words, Sunlight +
VOC +NOX = Ozone. Since accessible covariates were only NO and NO2,
the trend of the data were modeled using the proposed models in previous
section.
Model 1. The trend of the data with two covariates is given by

µ(s, t) = β0 + β1NO(s, t) + β2NO2(s, t).

In many applications a Normal prior centered at zero with very large stan-
dard error, which is a non-informative prior distribution, is used for β. So the
prior distributions β ∼ N(0, 100I) and 1

σ2 ∼ Gamma(0.01, 0.01) are chosen.
The parameterization of the Gamma(a, b) distribution is chosen so that its
mean is a/b = 1 and its variance is very large. Using Gibbs sampling the esti-
mates of the parameters are obtained as β̂′

= (−1.069×10−4,−0.356, 0.109),
σ̂ = 1.0583 and R2 = 0.28, respectively.
Model 2. In this model β is a 3× (365× 9) dimensional matrix. Choosing
multivariate Normal priorN(0, 100I) for β and inverse Gamma IG(0.01, 0.01)
for σ2, 5000 values were sampled by Gibbs algorithm, then the β and σ were
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estimated, σ̂ = 0.3098. For the fitted model, R2 = 0.83 was obtained, which
is much more than the corresponding R2 value for Model 1, that shows the
dependency of the regression parameters to space locations and time points.
Model 3. To consider constant regression parameters and dependent errors,
we assume the prior β ∼ N(0, 100I), and δ(s, t) to have separable spatial-
temporal covariance function given by

C(h, u) = exp

(
−||h||
ϕs

)
exp

(
− t

ϕt

)
, ϕs, ϕt > 0,

where, ϕs is the range of the purely spatial covariance and ϕt is the range
of purely temporal covariance. Usually a Uniform prior U(a, b) is selected
for these parameters, where a and b are minimum and maximum values of
spatial (or temporal) lags, respectively. Since minimum and maximum values
of space lag are 4914 and 24749 meters, by using Lambert transformation,
we consider U(0.051, 0.315) for ϕs. Since this data set is for 365 days, a
Uniform prior U(1, 364) is used for ϕt. Bayes estimate of the parameters are
obtained as β̂

′
= (−1.721,−0.261, 0.1272), ϕ̂s = 0.1472, ϕ̂t = 182.7008 and

R2 = 0.59. The decrease of R2 value in this model is likely for assuming that
the regression coefficients are fixed.
Model 4. For ozone data, the number of days, stations and regression
coefficients are n = 365, m = 9 and q = 3, respectively. In DLM trend
model, we consider Gt = I3×3 and

F ′
t =

1 NO(s1, t) NO2(s1, t)
...

...
...

1 NO(s9, t) NO2(s9, t)

 , θ(t) =

θ1(t)θ2(t)
θ3(t)


where by noting the evolution equation, each member of θ(t) is simulated

from autoregressive model given by

θi(t) = θi(t− 1) + ωi(t), i = 1, 2, 3.

The prior distributions θ(0)|D0 ∼ N3(0, 100I), σ2 ∼ IG(0.01, 0.01) and
λ ∼ U(0.051, 0.315) are chosen. Next the MCMC algorithm was run for
10000 iterations. After a burn in period of 5000 iterations, the Bayes esti-
mates of the parameters were obtained as θ̂0(t) = −0.0295, θ̂1(t) = 1.3067,
θ̂2(t) = 0.1083, σ̂ = 0.158, λ̂ = 0.1584, and R2 = 0.94. The comparison
between the coefficients of determinations for four models, shows that the
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DLM is the best model for trend modeling of the ozone concentration in
Tehran.

For considering stationarity in correlation structure of de-trended data,
were plotted H-scatter plot and accepted stationary covariance function of
de-trended data. The Shao and Li nonparametric method is used to test
the symmetry and separability of space-time dependency of de-trended data
(Shao and Li, 2009). Results of this test for different models summarized in
Table 1.

Table 1. Results for the symmetry and separability tests for ozone
data, “ + ” signifies the significance of the test

Trend Test

Model R2 Symmetry Separability

1 0.28 + +
2 0.83 + +
3 0.59 + +
4 0.94 + -

Taking care of the coefficients of determinations obtained in this table,
are realized that the model 4 is better than other, because it’s coefficient of
determination is more than other models. Therefore a symmetric, nonsepa-
rable and stationary covariance function is the more appropriate model for
ozone data. Furthermore differences of the results for symmetry and sep-
arability tests among model 4 with previous three models show that each
model may have different effect on the features of covariance function of the
spatial-temporal data.

4 Conclusion

Since spatial-temporal data depend upon spatial locations and time points
of observations, the models which consist constant coefficients or are inde-
pendent from space and time cannot remove the trend of the data truly.
Therefore, estimates of spatial-temporal covariance functions include large
bias and these models could not be suitable for modeling the trend of spatial-
temporal data. By comparing the coefficients of determinations obtained
from de-trended ozone data, the inclusive model of dynamic regression co-
efficients and dependent spatial-temporal errors, is the most suitable model
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for formulating the trend of data. The results of the symmetry and sepa-
rability test for correlation structure of the de-trended data from different
models show that a symmetric and nonseparable spatial-temporal covari-
ance function characterizes the correlation structure of ozone concentration
in Tehran.
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