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Abstract. Normal residual is one of the usual assumptions of autoregressive
models but in practice sometimes we are faced with non-negative residuals
case. In this paper we consider some autoregressive models with non-negative
residuals as competing models and we have derived the maximum likelihood
estimators of parameters based on the modified approach and EM algorithm
for the competing models. Also, based on the simulation study, we have
compared the ability of some model selection criteria to select the optimal
autoregressive model. Then we consider a set of real data, level of lake Huron
1875-1930, as a data set generated from a first order autoregressive model
with non-negative residuals and based on the model selection criteria we
select the optimal model between the competing models.
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1 Introduction
Let n×1 random vector Xt = (Yt,Zt), t = 1, . . . , n are i.i.d with common un-
known true distribution H(·) on a complete probability space (X, σX), where
X is the Euclidean space ℜm and σX is the Borel σ -field on X. Let (Y, σY )
and (Z, σZ) be the measurable spaces associated with Yt and Zt. We shall be

∗ Corresponding author



84 Statistical Inference in Autoregressive Models with Non-negative Residuals

interested in the true conditional distribution HY |Z(·|V ) of Yt given Zt. Let
HZ be the true marginal distribution of Zt, and νY be a σ -finite measure on
(Y, σY ). For HZ-almost all z, HY |Z(·|z) has a Radon-Nikodym density h(·|z)
relative to νY , which is strictly positive for νY -almost all y.
We now consider two competing parametric families of conditional distribu-
tion defined on σY × Z for Yt given Zt:

G =
{
gβ(y|z), β ∈ B ⊆ ℜp

}
and F = {fγ(y|z), γ ∈ Γ ⊆ ℜq} .

A known measure of divergence is Kullback-Leibler (1951), KL, measure
which is defined in term of conditional densities as:

KL{hY |Z , g
β
Y |Z} = Eh

{
log

h(Y |Z)
gβ(Y |Z)

}
,

where Eh denotes the expectation with respect to the true joint distribution
of (Y, Z). The so-called reduced model approach, Commenges et al. (2008),
is more satisfactory to define this measure. Consider a sample of i.i.d cou-
ples of variables (Yi, Zi), i = 1, . . . , n having joint pdf h(y, z) = h(y|z)h(z).
Consider the model G such that gβ(y, z) = gβ(y|z)h(z); the model is called
“reduced” because hZ(·) is assumed known. So the Kullback-Leibler diver-
gence is:

KL{h, gβ} = Eh
{
log hY |Z(Y |Z)

}
− Eh

{
log gβY |X(Y |Z)

}
,

that is the term in hZ(·) disappears (so that we do not need to know it in fact)
and we get the same definition as in Vuong (1989) using only the conventional
Kullback-Leibler divergence. In the literature of the model selection theory
we have the following definition:

Definition 1. The model G is well-specified if there is β0 ∈ B and g ∈ G
such that, h(·|·) = gβ0(·|·); otherwise it is misspecified.

Definition 2. (i) F and G are nonoverlapping if F ∩G = ∅; (ii) F is nested
in G if F ⊂ G; (iii) Two models G and F are non-nested if and only if
G ∩ F = ∅.

If G, is conditional model, its distance from the true conditional density
h(y|z), as measured by the minimum Kullback-Leibler risk criterion, equal
KL{h(·|·), gβ∗(·|·)}, where β∗ is the pseudo-true value of β, see e.g White
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(1982). Thus, an equivalent selection criterion can be based on the quantity
Eh
{
log gβ∗(Y |Z)

}
, the best model being the one for which this quantity is the

largest. KL is a non-negative quantity. By definition, the more gβ(·|·) agrees
with h(·|·) the smaller KL{h(·|·), gβ(·|·))} is. Then the closest member in G
to the h(·|·) is gβ∗(·|·) where β∗ ∈ B is the minimizer of KL{h(·|·), gβ(·|·))}.
For Kullback-Leibler divergence, gβ∗(·|·) is the best approximation to h(·|·)
under model G. It is important to notice that when the model is well-specified
we have β0 = β∗. The Quasi Maximum Likelihood Estimator (QMLE), β̂n,
is a consistent estimator of β∗, see White (1982).
If the model is misspecified, KL(h, gβ) > 0. Hence KL divergence takes its
value in [0,∞]. The KL divergence is not a metric, but it is additive over
marginal of product measures. KL(h, gβ) = 0 implies that h = gβ.
The Akaike Information Criterion, AIC, (Akaike, 1973) initially was pro-
posed as an estimate of minus twice the expected log-likelihood. We notice
that the important part of the KL divergence is Eh{log gβ(Y |Z)} which has
an consistent estimator as

1

n

n∑
i=1

log gβ̂n(Yi|Z).

It can be considered as an estimator of the divergence between the true den-
sity and the competing model. Now the stress is on β̂n because
1
n

∑n
i=1 log g

β̂n(Yi|Z) provides an overestimate and then the maximized like-
lihood function has a positive bias as an estimator of the expected log-
likelihood. Since β̂n corresponds to the empirical distribution, say, Fn which
introduces the estimator. In fact both of them depend on the same sample.
The AIC is defined as

AIC = −2 log likelihood+ 2 Number of estimated parameters.

It indicates that the bias of the log-likelihood approximately becomes the
number of free parameters contained in the model. The bias is derived un-
der the assumption that the true distribution is contained in the specified
parametric model. Hurvich and Tsai (1993) proposed a corrected Akaike
Information Criterion, AICc, for small sample, which can be expressed as

AICc = −2 log likelihood+ 2k
n

n− k − 1

where k is number of estimated parameters. The Bayesian Information Cri-
terion (BIC) or Schwarz’s Information Criterion (SIC) proposed by Schwarz
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(1978) is an evaluation criterion for models defined in terms of their posterior
probability. The SIC is actually defined as

SIC = −2 log likelihood+ k log(n)

where k is number of estimated parameters. De Gooijer et al. (1985) have
considered automatic model selection criteria such as AIC and Bayesian infor-
mation Criterion, SIC. Claeskens et al. (2007) proposed an adapted version
of the Focused Information Criterion that defined by Claeskens and Hjort
(2003).
In modelling the time series it is usually assumed that residual terms follow
normal distribution and noticed to order selection. We consider a model of
time series models such as autoregressive model

yt = ϕ1yi−1 + · · ·+ ϕpyi−p + ϵi

where ϕ = (ϕ1, . . . , ϕp) is autoregressive coefficients and ϵi’s are i.i.d random
variables with normal distribution, N(0, σ2). The conditional log-likelihood
function is

l(ϕ, σ2) = −n
2
log(2πσ2)− S(ϕ)

2σ2
,

where S(ϕ) =
∑n

i=p+1 ϵ
2
i . Determination of the model order is an important

step in autoregressive, AR, modelling. So we select optimal order based on
information criteria or hypotheses tests. In this case all competing models
are nested. During recent years, a number of non-normal models with AR-
type correlation structure have been proposed. In fact model selection for
residuals of autoregressive model is important as determination of the model
order. Here we consider the non-nested competing models.
Under autoregressive models with non-normal residuals, the maximum like-
lihood estimator, MLE, is not appropriate since explicit solutions from the
likelihood equations cannot be obtained. We can use some other method
such as modified maximum likelihood, MML, method and EM algorithm.

The modified maximum likelihood method has been developed by Tiku
(1967) and applied to some non-normal time series models. This method is
based on linearization of intractable terms of the log-likelihood function using
first-order Taylor series expansion. Bayrak and Akkaya (2010) studied the
multiple autoregressive model and estimated the parameters of this model
by the modified maximum likelihood.
In this paper the residual model selection is interested. We consider the true
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model as xi = ϕxi−1+εi, where ϕ is the autoregressive coefficient and εi’s are
i.i.d non-negative random variable. Also we consider autoregressive model
with Gamma, Weibull, Log-normal and skew normal as the four competing
models. The results in this paper are organized as follows. We estimate the
parameters of competing models in the Section 2. Using simulation study,
in Section 3, we provided that the information criteria such as AIC, AICc
and SIC are suitable criteria for autoregressive model selection with non-
negative residuals. In Section 4, to confirm the theoretical results the real
data is studied.

2 Model and Parameter Estimation
Bayrka and Akkaya (2010) have studied multiple autoregressive model with
non-normal residuals. They consider three different types of non-normal
distribution (i) long-tailed symmetric, (ii) skew distributions represented by
the Generalized Logistic and (iii) short-tailed symmetric and only derived the
modified maximum likelihood estimators for these models. In this paper,
we obtain the MMLE of parameters of three competing models and EM
estimator of parameters of autoregressive model with skew normal residuals.
We select optimal model based on information criteria. Here we compute
the MML and EM estimator of parameters.

2.1 Autoregressive Model with Gamma Residual

Consider the first order Gamma autoregressive model

xi = ϕ1xi−1 + εi

where ϕ1 is the autoregressive coefficient and the εi’s are i.i.d error terms
with Gamma distribution, G(α,β). We get the log-likelihood of ϵ1, . . . , ϵn, as

l(ϕ1, α, β) = −n log(β)− n log(Γ(α)) + (α− 1)
n∑
i=2

log(zi)−
n∑
i=2

zi

where zi = (xi − ϕ1xi−1)/β. The differentiating log-likelihood function with
respect to ϕ1 is functions in terms of z−1

i and it has no explicit solutions. To
obtain the explicit solution, we order εi (for a given ϕ) in order of increasing
magnitude. So we obtain modified maximum likelihood estimators by solving
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the estimating equations

∂

∂α
l(ϕ1, α, β) = −n ∂

∂α
log(Γ(α)) +

n∑
i=2

log(z(i)) = 0

∂

∂β
l(ϕ1, α, β) = −n

β
− (α− 1)

n

β
+

n∑
i=2

x[i] − ϕ1x[i]−1

β2
= 0

∂

∂ϕ1
l(ϕ1, α, β) = −(α− 1)

β

n∑
i=2

x[i]−1z
−1
(i) +

∑n
i=2 x[i]−1

β
= 0

where the z(i) are ordered zi-values and (x[i], x[i]−1) is that pair of (xi, xi−1)
observations which corresponds to the ordered ε(i). Define t(i) = E{z(i)}
which will be obtain from

1

Γ(k)

∫ t(i)

0
exp(−z)zk−1dz =

i

n+ 1

to more illustrations, see Akkaya and Tiku (2007). We use two terms of the
Taylor series expansion,

z−1
(i) =

2

t(i)
−
z(i)

t2(i)
+ o(|z(i) − t(i)|)

so

z−1
(i) ≃ αi − βiz(i) (1)

where αi = 2
t(i)

and βi =
1
t2
(i)

. Incorporated Eq.(1) in estimating equations.
We can obtain MMLE of α, β and ϕ1 as

Γ̂D =
1

n

n∑
i=2

log(z(i))

where ΓD is ∂
∂α log(Γ(α)),

β̂ =
1

nα

n∑
i=2

(x[i] − ϕ1x[i]−1)

and

ϕ̂1 =

β
α−1

∑n
i=2 x[i]−1 +

∑n
i=2 βix[i]x[i]−1 − β

∑n
i=2 αix[i]−1∑n

i=2 βix
2
[i]−1

.

c⃝ 2015, SRTC Iran



S. Zamani Mehreyan and A. Sayyareh 89

2.2 Autoregressive Model with Weibull Residual
Consider the first order Weibull autoregressive model xi = ϕ2xi−1+εi where
the i.i.d residuals ϵi’s have the Weibull distribution, W(γ,τ)

f(ϵi) =
γ − 1

τγ
ϵ
(γ−1)
i exp(−(

ϵi
τ
)γ).

The log-likelihood of ϵ1, . . . , ϵn is

l(ϕ2, γ, τ) = n log(γ)− n log(τ) + (γ − 1)

n∑
i=2

log(zi)−
n∑
i=2

zγi

where zi = (xi − ϕ2xi−1)/τ . The following estimating equations,

∂

∂γ
l(ϕ2, γ, τ) =

n

γ
+

n∑
i=2

log(z(i))−
n∑
i=2

zγ(i) log(z(i)) = 0

∂

∂ψ
l(ϕ2, γ, τ) = −n

τ
− (γ − 1)

τ

n∑
i=2

z(i)z
−1
(i) +

γ

τ

n∑
i=2

z(i)z
γ−1
(i) = 0

∂

∂ϕ2
l(ϕ2, γ, τ) = −(γ − 1)

τ

n∑
i=2

x[i]−1z
−1
[i] +

γ

τ

n∑
i=2

x[i]−1z
γ−1
[i] = 0,

have no explicit solution. The modified likelihood equations are obtained by
linearizing the intractable terms, z−1

(i) and zγ−1
(i) in likelihood equations using

the first two terms of the Taylor series expansion,

z−1
(i) ≃ vi0 −Bi0zi,

zγ−1
(i) ≃ v∗i0 +B∗

i0zi

where vi0 = 2
t(i)

, Bi0 = 1
t2
(i)

, t(i) = (− log(1 − i
n+1))

1
γ , v∗i0 = (2 − γ)tγ−1

(i) and

B∗
i0 = (γ − 1)tγ−2

(i) . Define

vi = (γ − 1)vi0 − γv∗i0,

βi = (γ − 1)βi0 + γβ∗i0

so we can obtain MMLE of γ, τ and ϕ2 as

∂

∂γ
l(ϕ2, γ, τ) =

n

γ
+

n∑
i=2

log(z(i))−
n∑
i=2

z(i) log(z(i))(v
∗
i0 + β∗i0zi) = 0
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τ̂ =
(−B ±

√
∆)

2A

where ∆ = B2 − 4AC, A = −n, B = −
∑n

i=2(x[i] − ϕ̂2x[i]−1)vi and C =∑n
i=2(x[i] − ϕ̂2x[i]−1)

2βi,

ϕ̂2 =

∑n
i=2 βix[i]−1x[i] − τ̂

∑n
i=2 vix[i]−1∑n

i=2 βix
2
[i]−1

.

2.3 Autoregressive Model with Log-normal Residual
Here we consider the first order autoregressive model as xi = ϕ3xi−1 + εi
with Log-normal, LN(µ,σ) residuals. We get the log-likelihood of ϵ1, . . . , ϵn,
as

l(ϕ3, µ, σ) = −n
2
log(2πσ2)−

n∑
i=1

log(xi−ϕ3xi−1)−
1

2σ2

n∑
i=1

(log(xi−ϕ3xi−1)−µ)2.

We derive modified maximum likelihood estimators by solving the estimating
equations

∂

∂µ
l(ϕ3, µ, σ) =

1

σ2

n∑
i=1

(log(z(i))− µ) = 0

∂

∂σ2
l(ϕ3, µ, σ) = − n

2σ2
+

1

2σ4

n∑
i=1

(log(z(i))− µ)2 = 0

∂

∂ϕ3
l(ϕ3, µ, σ) =

n∑
i=1

x[i]−1z
−1
(i) +

n∑
i=1

x[i]−1z
−1
(i) (log(z(i))− µ) = 0

where z(i) = x[i] − ϕ3x[i]−1. Similarly we linearize the intractable terms, z−1
(i)

and log(z(i)) in likelihood equations using the two terms of the Taylor series
expansion, we have

z−1
(i) ≃ αi −Biz(i)

and
log(z(i)) = ci +

αi
2
z(i)

where αi = 2
t(i)

, Bi = 1
t2
(i)

, ci = log(t(i))− 1 and

∫ t(i)

0

1

zσ
√
2π

exp(− 1

2σ2
(log(z)− µ)2)dz =

i

n+ 1
,
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so we can obtain MMLE of µ, σ2 and ϕ3 as

µ̂ =
1

n

n∑
i=1

log(z(i))

σ̂2 =
1

n

n∑
i=1

(log(z(i))− µ̂)2

ϕ̂3 =
(−B +

√
∆)

2A

where
∆ = B2 − 4AC

A =

n∑
i=1

αiBi

2σ̂2
x3[i]−1

B = −
n∑
i=2

x2[i]−1

(
α2
i − 2Bi(ci − µ̂− 2σ̂2)

2σ̂2
− αiBi

σ̂2
x[i]

)
and

C =
n∑
i=2

x[i]−1

αi(ci − µ+ 2σ̂2)−Biαix
2
[i]

2σ̂2


+

n∑
i=2

x[i]−1x[i]

(
α2
i − 2Bi(ci − µ− 2σ̂2)

2σ̂2

)
.

For the fact that, the obtained modified maximum likelihood estimator of
mentioned models have not closed form, in order to show the values of MMLE
are close to the true vector parameters we have done simulation study. We
have considered different values for n. For each n, we estimate the unknown
parameters.The results are presented in Table 1.

It is possible that data is generated from family near normal with more
or less skewed so we consider a class of skew-normal models that include the
normal distribution as a particular member. See Table 7 for kurtosis and
skewness values. In the next subsection we find the MLE of the parameters
based on the EM algorithm.
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Table 1. The value of modified maximum likelihood estimaors

True model n ϕ̂1 α̂ β̂

25 0.7702 1.3962 2.3184
50 0.7461 1.7571 1.8154
100 0.7424 1.7579 1.7205
200 0.7232 1.8493 1.8540
300 0.7212 1.9220 1.8561

xi = 0.7xi−1 + ϵi 400 0.7202 1.9232 1.8661
ϵi ∼ G(2, 2) 500 0.7191 1.9566 1.8732

600 0.7179 1.9624 1.8971
700 0.7155 1.9583 1.8942
800 0.7151 1.9737 1.8971
900 0.7131 1.9760 1.9133
1000 0.7120 1.9665 1.9171

n ϕ̂2 γ̂ τ̂

50 0.7333 2.7373 4.4884
100 0.7220 2.7771 4.6382
200 0.7135 2.8691 4.7745
300 0.7102 2.8935 4.8382

xi = 0.7xi−1 + ϵi 400 0.7084 2.9082 4.8602
ϵi ∼ W (3, 5) 500 0.7075 2.9191 4.8833

600 0.7061 2.9332 4.9012
700 0.7043 2.9474 4.9171
800 0.7041 2.9539 4.9271
900 0.7031 2.9634 4.9365
1000 0.7030 2.9652 4.9413

n ϕ̂3 µ̂ σ̂

50 0.7324 1.6500 1.3691
100 0.7244 1.7312 1.2983
200 0.7183 1.8036 1.2435
300 0.7162 1.8332 1.2151

xi = 0.7xi−1 + ϵi 400 0.7140 1.8432 1.2041
ϵi ∼ LN(2, 1) 500 0.7132 1.8603 1.1822

600 0.7124 1.8674 1.1791
700 0.7123 1.8675 1.1732
800 0.7121 1.8715 1.1671
900 0.7120 1.8716 1.1620
1000 0.7120 1.8742 1.1582
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2.4 Autoregressive Model with Skew Normal Residual
The first autoregressive model with skew-normal residuals is expressed as
xi = ϕ4xi−1+ϵi, i = 2, . . . , n where residuals have a skew-normal distribution
with the location parameter, µ, scale parameter, σ2, and λ as the skewness
parameter. Its density function is

f(ϵi) =
2

σs
ϕ(
ϵi − µs
σs

)Φ(λ
ϵi − µs
σs

)

where ϕ(·) and Φ(·) are the standard normal density and normal distribution
function, respectively. The log-likelihood function can be written as

l(ϕ4, µs, σ
2
s , λ) = n log(2)− n log(2πσ2s)−

1

2σ2s

n∑
i=2

(xi − ϕ4xi−1 − µs)
2

+

n∑
i=2

log Φ(λ
xi − ϕ4xi−1 − µs

σs
)

The first order derivatives are listed below,

∂

∂µs
l(ϕ4, µs, σ

2
s , λ) =

n∑
i=2

(xi − ϕ4xi−1 − µs)

σ2s
− λ

σs
W (ki)

∂

∂σ2s
l(ϕ4, µs, σ

2
s , λ) = − n

2σ2s

+

n∑
i=2

(xi − ϕ4xi−1 − µs)
2

2σ4s
− λ(xi − ϕ4xi−1 − µs)

2σ3s
W (ki)

∂

∂λ
l(ϕ4, µs, σ

2
s , λ) =

n∑
i=2

(xi − ϕ4xi−1 − µs)

σs
W (ki)

∂

∂ϕ4
l(ϕ4, µs, σ

2
s , λ) =

n∑
i=2

[
(xi − ϕ4xi−1 − µs)

σ2s
− λ

σs
W (ki)

]
xi−1,

where ki = λxi−ϕ4xi−1−µs
σs

and W (ki) = ϕ(ki)
Φ(ki)

. We compute the maximum
likelihood estimates based on the EM algorithm. The model can be expressed
as

ϵi|Zi = zi ∼ N(µs +
λσs√
1 + λ2

zi,
σ2s√
1 + λ2

),
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Zi ∼ HN(0, 1),

where HN(0,1) denotes the standardized univariate half-normal distribution.
See Cancho et al. (2008). Note that Zi, i = 1, . . . , n and Xi, i = 1, . . . , n
can be treat as missing and observed data, respectively and Yc = (Xi, Zi)
denotes the complete data. The complete data log likelihood, ignoring addi-
tive constant terms, is

lc(ϕ4, µs, σ
2
s , λ) = −n

2
log σ2s +

n

2
log(1 + λ2)

− 1 + λ2

2σ2s

n∑
i=1

(
xi − ϕ4xi−1 − µs −

λσs√
1 + λ2

zi

)2

• Expectation step: in this step we calculate the expected value of the
log likelihood function, with respect to the conditional distribution
of Z given X under the current estimate of the parameters υ(k) =

(ϕ̂(k), µ̂s
(k), σ̂2s

(k)
λ̂(k)) :

ẑi = E(Zi|X, υ̂(k)) = T1 +
ϕ(T1T2 )

Φ(T1T2 )
T2

ẑ2i = E(Z2
i |X, υ̂(k)) = T 2

1 + T 2
2 +

ϕ(T1T2 )

Φ(T1T2 )
T1T2,

where T1 + λ
σs

√
1+λ2

ϵi and T 2
2 = 1

1+λ2
.

• Maximization step: The first and second derivatives are presented be-
low.

∂

∂ϕ4
lc(ϕ4, µs, σ

2
s , λ) =

n∑
i=2

1 + λ2

σs

(
ai
σs

− λ√
1 + λ2

ẑi

)
xi−1

∂

∂µs
lc(ϕ4, µs, σ

2
s , λ) =

n∑
i=2

1 + λ2

σs

(
ai
σs

− λ√
1 + λ2

ẑi

)

∂

∂σ2s
lc(ϕ4, µs, σ

2
s , λ) = − n

2σ2s
+

n∑
i=2

1 + λ2

2σ3s

(
ai
σs

− λ√
1 + λ2

ẑi

)
ai
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∂

∂λ
lc(ϕ4, µs, σ
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where ai = xi−ϕ4xi−1−µs. Thus, the (k+1)th estimate of parameter
υ can be obtained by υ̂(k+1) = υ̂(k) + J(υ̂(k))−1U(υ̂(k)) where U(υ) =
∂
∂υ lc(υ) and J(υ) = − ∂2

∂υ∂υ lc(υ).

3 Simulation Study
Based on the simulation study, we have shown that the information crite-
ria such as AIC, AICc and SIC are appropriate criteria for optimum model
selection for autoregressive models with non-negative residuals based on
the modified maximum likelihood estimators. Assume that the set of data
{x1, . . . , xn} is generated by Weibull autoregressive model. In the other
hand xi = 0.7xi−1 + εi, where εi’s are i.i.d W(3,5). Consider first order
Gamma autoregressive model, GAR(1), first order Weibull autoregressive
model, WAR(1), and first order Log-normal autoregressive model, LNAR(1),
as three competing models. By using obtained MMLE in the provide sec-
tion and an available data, we estimate parameter of GAR(1), WAR(1) and
LNAR(1) and compute the value of AIC, AICc and SIC for the three com-
peting models for different n. The value of these information criteria for
GAR(1), WAR(1) and LNAR(1) are given in Table 2. It shows that for each
n, WAR(1) model is optimum model because IC(fψ2 ) < IC(fη1 ) < IC(fθ3 ).
The IC shows all of the information criteria AIC, SIC and AICc, where h(x)
is true density, W(3,5), and fη1 (x), f

ψ
2 (x) and fθ3 (x) are Gamma, Weibull and

Log-normal autoregressive models, respectively, η = (α, β, ϕ1), ψ = (γ, τ, ϕ2)
and θ = (µ, σ, ϕ3). For more illustration see Figure 1. Since AIC is an esti-
mator of Kullback-Leibler criterion we can conclude that

KL(g, fψ2 ) < KL(g, fη1 ) < KL(g, fθ3 ).
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Table 2. The value of information criteria for competing models

n fη1 fψ2 fθ3

50 245.2012 186.6434 276.3434
100 478.3437 375.1828 548.6551

AIC 250 1106.8554 927.1864 1312.6081
500 2145.6165 1926.8272 2475.0494

50 250.9370 209.0045 282.0794
100 486.1592 384.7092 556.4705

SIC 250 1117.4193 945.6185 1323.1730
500 2158.2601 1946.8844 2487.6937

50 245.7227 187.1652 276.8651
100 286.9998 268.8021 442.4647

AICc 250 1106.9528 927.2839 1312.7064
500 2145.6655 1926.8759 2475.0988
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Figure 1. Weibull, Gamma and Log-normal autoregressive model curves

The Kolmogorov-Smirnov test confirms these results. The values of the
Kolmogorov-Smirnov test for different n are given in Table 3. It shows that
all of the P-values of Kolmogorov-Smirnov test of estimated Weibull autore-
gressive are greater than 0.05.
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Table 3. The P-values of the Kolmogorov-Smirnov test

n fη1 fψ2 fθ3

50 0.1396 0.3321 0.0830
100 0.0686 0.3358 0.0003
250 0.1188 0.7304 0.0000
500 0.1617 0.9184 0.0000

Now consider first order autoregressive models with W(3,5) residual as
true model and with G(5,1.2), W(3,0.2) and LN(1,0.2) residuals as three
competing models. Based on the Figure 2 we can say, first order autoregres-
sive models with G(5,1.2) is optimal model. It is result that we can achieve
by information criteria well. because

IC(fη1 ) < IC(fθ3 ) < IC(fψ2 ).
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Figure 2. Weibull, Gamma and Log-normal autoregressive model curves

The values of information criteria for three competing models are pre-
sented in Table 4.
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Table 4. The value of information criteria for competing models

n W(3,0.2) G(5,1.2) LN(1,0.2)

50 2434835 256.2216 765.2733
100 5248667 510.1005 1564.9226

AIC 250 11575308 1350.6731 4252.7522
500 21725749 2602.6340 7820.6584

50 2436308 261.9577 771.0094
100 5250142 517.9161 1572.7382

SIC 250 11576786 1361.2376 4263.3172
500 21727228 2615.2785 7833.3023

50 2434836 256.7434 765.7951
100 5248667 510.3505 1565.1722

AICc 250 11575308 1350.7725 4252.8595
500 21725749 2602.6826 7820.7075

4 Real Data Analysis
The Lake series shows that the level in feet of Lake Huron in the years 1875-
1930. This data can be found in Itsm data libraries. A graph of the level in
feet of Lake Huron is displayed in Figure 3.
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Figure 3. Level of Lake Huron 1875− 1930 curve
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The sample autocorrelation function, ACF, suggests that an autoregres-
sive model might provide a reasonable model for given data. The sample
partial autocorrelation function, PACF, of the data is slightly outside the
bounds ±1.96/

√
55 at lag 1. So, we can suggest first order autoregressive

model for the data. The ACF and PACF are shown in Figure 4.
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Figure 4. The sample autocorrelation function and partial autocorrelation function of Lake Huron
1875− 1930

Based on the Yule-Walker method for parameter estimation, the autore-
gressive coefficient is 0.81. We can compute the residuals (ϵi = xi−0.81xi−1).
Since all of residuals are non-negative, we suggest non-negative competing
models. Consider first order autoregressive model with Gamma, Weibull,
Log-normal and Skew-Normal residuals as four competing models. The Ta-
ble 5 shows the estimated values of parameters of first order autoregressive
model with Gamma, Weibull and Log-normal residuals based on modified
maximum likelihood method and first order autoregressive model with Skew-
Normal residuals based on EM algorithm.
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Table 5. Estimation of parameters

first parameter second parameter third parameter ϕ

G(α, β) 1.2516 1.6272 - 0.8466
W (υ, τ) 2.4898 1.7283 - 0.8468
LN(µ, σ) 0.4574 0.2603 - 0.8253

SN(µs, σs, λ) 1.4996 0.7507 0.9862 0.8098

The AIC, SIC, AICc and P-value of Kolmogorov-Smirnov test are given
in Table 6. Because

IC(fψ2 ) < IC(fυ) < IC(fθ3 ) < IC(fη1 )

the first order autoregressive with Weibull distribution as a suitable model
for residuals, is the best model among the other competing models. The
Kolmogorov-Smirnov test confirms this result.

Table 6. The value of information criteria and P-value of Kolmogorov-Smirnov test

AIC SIC AICc P-value of K − S

G(α, β) 152.1973 158.2193 152.6679 0.0007
W (υ, τ) 107.9387 116.9607 108.4093 0.9091

LN(µ, σ2) 117.0986 126.1206 117.5692 0.4111
SN(µs, σs, λ) 116.5389 124.5683 117.3389 0.4383

Figure 5 shows the histogram of residuals and four competing models. It
suggests Weibull model, W(2.4898,1.7283), as optimal model.

The summary of information about Lake Huron data, residuals of Lake
Huron data and four competing models are given in Table 7. As we see, the
mean and variance of autoregressive with Weibull residuals are near to the
mean and variance of observation respectively.
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Figure 5. Histogram of residuals and Gamma، Weibull and Log-normal model curve

Table 7. Summary of information about the Lake Huron data

Min 1st Qu Median Mean 3rd Qu Max Var skewness kurtosis

Observation 6.750 8.840 9.510 9.524 10.260 11.860 1.3077 -0.117 2.8110

WAR(1) 9.5832 1.4729

GAR(1) 12.7305 11.2588

LNAR(1) 2.5411 0.7947

SNAR(1) 10.0992 1.5628
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