

A Two-parameter Generalized Skew-Cauchy Distribution

Wahab Bahrami^{†,*}, Hojat Rangin[‡] and Kauomars Rangin^{*}

- † Shahid Bahonar University of Kerman
- [‡] Tarbiat Moalem University of Tehran

Abstract. In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC (λ_1, λ_2) , that it has more flexible than the skew-Cauchy distribution (denoted by SC (λ)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC (λ_1, λ_2) can fits the data better than SC (λ) .

Keywords. Generalized skew-Cauchy; generalized skew-normal; skew-Cauchy and skew-normal distributions.

1 Introduction

Azzalini (1985, 1986) introduced the standard skew-normal distribution as a generalization of the normal distribution. A random variable Z_{λ} has a standard skew-normal distribution with parameter $\lambda \in \mathbb{R}$, denoted by SN (λ) , if its pdf is

$$f(z;\lambda) = 2\phi(z) \Phi(\lambda z)$$
 $z \in \mathbb{R}$,

where $\phi(\cdot)$ and $\Phi(\cdot)$ are the standard normal pdf and cdf, respectively. This distribution has been studied and generalized by some researchers. Jamalizadeh et al. (2008) discussed a new class of skew-normal distribution with two parameters. A random variable Z_{λ_1,λ_2} has a two-parameter generalized skew-normal distribution with parameters $\lambda_1,\lambda_2 \in \mathbb{R}$, denoted by

.

^{*} Razi University of Kermanshah

^{*} Corresponding author

 $GSN(\lambda_1, \lambda_2)$, if its pdf is

$$f\left(z,\lambda_{1},\lambda_{2}\right) = \frac{2\pi}{\cos^{-1}\left(-\frac{\lambda_{1}\lambda_{2}}{\sqrt{1+\lambda_{1}^{2}}\sqrt{1+\lambda_{2}^{2}}}\right)}\phi\left(z\right)\Phi\left(\lambda_{1}z\right)\Phi\left(\lambda_{2}z\right) \qquad z \in \mathbb{R},$$

also, they established some simple and useful properties of this distribution. If $X \sim \mathcal{N}(0,1)$ be independent of Z_{λ} , it is easy to show that $\frac{Z_{\lambda}}{X} \sim C(0,1)$ for $\lambda \in \mathbb{R}$. However $W_{\lambda} = \frac{Z_{\lambda}}{|X|}$ when $\lambda \neq 0$ is not C(0,1). Behboodian et al. (2006) refer to it as a *skew-Cauchy distribution* with parameter $\lambda \in \mathbb{R}$ and denoted it by $W_{\lambda} \sim \mathcal{SC}(\lambda)$. They derived the density of W_{λ} as follows

$$f\left(w;\lambda\right) = \frac{1}{\pi\left(1+w^2\right)}\left(1 + \frac{\lambda w}{\sqrt{1+\left(1+\lambda^2\right)w^2}}\right) \qquad w \in \mathbb{R},$$

and discussed some simple and important characteristics of this distribution. Let $X \sim \mathcal{N}(0,1)$ be independent of Z_{λ_1,λ_2} . In this paper, we consider the distribution of $W_{\lambda_1,\lambda_2} = \frac{Z_{\lambda_1,\lambda_2}}{|X|}$, refer to it as a two-parameter generalized skew-Cauchy distribution and denote this by $GSC(\lambda_1,\lambda_2)$.

This paper is organized as follows. In the next section we derive the density of W_{λ_1,λ_2} and present some simple properties of this distribution. In Section 3 we discuss about the moments of $GSC(\lambda_1,\lambda_2)$. Some important properties of $GSC(\lambda_1,\lambda_2)$ are given in Section 4, and in Section 5, two numerical examples to compare GSC and SC are provided.

2 Two-parameter Generalized Skew-Cauchy Distribution

In this section, we derive the density of W_{λ_1,λ_2} and establish some simple properties of this distribution.

Definition 1. A random variable W_{λ_1,λ_2} has a two-parameter generalized skew-Cauchy distribution with parameters $\lambda_1,\lambda_2 \in \mathbb{R}$, if $W_{\lambda_1,\lambda_2} \stackrel{d}{=} \frac{Z_{\lambda_1,\lambda_2}}{|X|}$, where $Z_{\lambda_1,\lambda_2} \sim \text{GSN}(\lambda_1,\lambda_2)$ and $X \sim \text{N}(0,1)$ are independent.

To obtain the density of W_{λ_1,λ_2} , let $g(w;\lambda_1,\lambda_2)$ and $G(w;\lambda_1,\lambda_2)$ denote the pdf and cdf of W_{λ_1,λ_2} , respectively. Then

$$G\left(w;\lambda_{1},\lambda_{2}\right)=P\left(Z_{\lambda_{1},\lambda_{2}}\leqslant w\left|X\right|\right)=E\left\{\Phi\left(w\left|X\right|;\lambda_{1},\lambda_{2}\right)\right\},$$

where $\Phi(\cdot; \lambda_1, \lambda_2)$ is the cdf of $Z_{\lambda_1, \lambda_2} \sim \text{GSN}(\lambda_1, \lambda_2)$. We have

$$G(w; \lambda_1, \lambda_2) = 2 \int_0^\infty \Phi(wx; \lambda_1, \lambda_2) \phi(x) dx,$$

which, by differentiation, we obtain

$$g\left(w;\lambda_{1},\lambda_{2}\right)=\frac{2}{\cos^{-1}\left(-\frac{\lambda_{1}\lambda_{2}}{\sqrt{1+\lambda_{1}^{2}}\sqrt{1+\lambda_{2}^{2}}}\right)}\int_{0}^{\infty}xe^{-\frac{1}{2}x^{2}\left(1+w^{2}\right)}\Phi\left(\lambda_{1}wx\right)\Phi\left(\lambda_{2}wx\right)dx.$$

If

$$g_1(w; \lambda_1, \lambda_2) = \frac{\lambda_1 w}{\sqrt{1 + (1 + \lambda_1^2) w^2}} \left\{ \frac{1}{4} + \frac{1}{2\pi} \tan^{-1} \left(\frac{\lambda_2 w}{\sqrt{1 + (1 + \lambda_1^2) w^2}} \right) \right\},$$

$$g_2(w; \lambda_1, \lambda_2) = \frac{\lambda_2 w}{\sqrt{1 + (1 + \lambda_2^2) w^2}} \left\{ \frac{1}{4} + \frac{1}{2\pi} \tan^{-1} \left(\frac{\lambda_1 w}{\sqrt{1 + (1 + \lambda_2^2) w^2}} \right) \right\}$$

and $a = \frac{2\pi}{\cos^{-1}\left(-\frac{\lambda_1\lambda_2}{\sqrt{1+\lambda_1^2}\sqrt{1+\lambda_2^2}}\right)}$, then by integration by parts, we obtain the

density of W_{λ_1,λ_2} as

$$g(w; \lambda_1, \lambda_2) = \frac{a}{\pi(1+w^2)} \left\{ \frac{1}{4} + g_1(w; \lambda_1, \lambda_2) + g_2(w; \lambda_1, \lambda_2) \right\}.$$
 (1)

If $\lambda_1 = \lambda_2 = \lambda$ and $b = \frac{\pi}{\tan^{-1}(\sqrt{1+2\lambda^2})}$ then the above density reduce to

$$g(w; \lambda) = \frac{b}{\pi (1 + w^2)} \left[\frac{1}{4} + \frac{\lambda w}{\sqrt{1 + (1 + \lambda^2) w^2}} \times \left\{ \frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{\lambda w}{\sqrt{1 + (1 + \lambda^2) w^2}} \right) \right\} \right].$$
 (2)

If the pdf of a variable is (1), we denote this by $GSC(\lambda_1, \lambda_2)$, and if the pdf of a variable is (2), then we denote this by $GSC(\lambda)$. Figure 1 illustrates several of the possible shapes obtained from $GSC(\lambda_1, \lambda_2)$ under various choices of (λ_1, λ_2) . Some simple properties of $GSC(\lambda_1, \lambda_2)$ is presented as follows.

Theorem 1. 1. GSC (0,0) = C(0,1).

- 2. GSC $(\lambda_1, 0)$ = SC (λ_1) and GSC $(0, \lambda_2)$ = SC (λ_2) .
- 3. $GSC(\lambda_1, \lambda_2) = GSC(\lambda_2, \lambda_1)$.
- 4. $W_{\lambda_1,\lambda_2} \sim \text{GSC}(\lambda_1,\lambda_2) \Leftrightarrow -W_{\lambda_1,\lambda_2} \stackrel{d}{=} W_{-\lambda_1,-\lambda_2} \sim \text{GSC}(-\lambda_1,-\lambda_2)$.
- 5. If $X, X_1, X_2, X_3 \stackrel{iid}{\sim} N(0,1)$ and $X_{1:3} \leqslant X_{2:3} \leqslant X_{3:3}$ be the corresponding order statistics, then

$$\frac{X_{1:3}}{|X|} \sim \text{GSC}(-1, -1), \quad \frac{X_{2:3}}{|X|} \sim \text{GSC}(1, -1), \quad \frac{X_{3:3}}{|X|} \sim \text{GSC}(1, 1).$$

Proof. The parts 1, 2, 3 and 4 are easily obtained from Definition 1 and the density of W_{λ_1,λ_2} . For part 5, we know that

$$X_{1:3} \sim \text{GSN}(-1, -1), \quad X_{2:3} \sim \text{GSN}(1, -1), \quad X_{3:3} \sim \text{GSN}(1, 1),$$

(see Jamalizadeh et al., 2008), thus by Definition 1 the proof is completed.

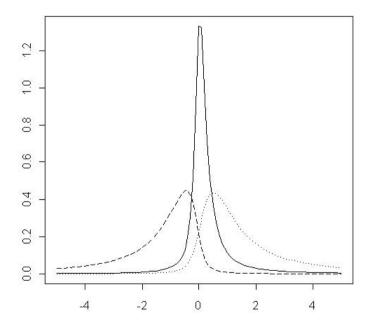


Figure 1. Example of the GSC(λ_1, λ_2) density for $(\lambda_1, \lambda_2) = (-3, 5)$ (solid line), $(\lambda_1, \lambda_2) = (1, 2)$ (dotted line), $(\lambda_1, \lambda_2) = (-1, -3)$ (dashed line).

© 2010, SRTC Iran

3 Moments

In this section we discuss about the moments of $GSC(\lambda_1, \lambda_2)$. We show that the odd moments of two-parameter generalized skew-Cauchy distribution are divergent. Suppose that $W_{\lambda_1,\lambda_2} \sim GSC(\lambda_1,\lambda_2)$. By the Definition 1, we have

$$E\left(W_{\lambda_{1},\lambda_{2}}^{m}\right)=E\left(\frac{Z_{\lambda_{1},\lambda_{2}}^{m}}{\left|X\right|^{m}}\right),$$

where $m=1,2,\ldots$. Since Z_{λ_1,λ_2} and X are independent and $Y=\left|X\right|^2\sim\chi_1^2$, then

$$E\left(W_{\lambda_{1},\lambda_{2}}^{m}\right)=E\left(Z_{\lambda_{1},\lambda_{2}}^{m}\right)E\left(Y^{-\frac{m}{2}}\right).$$

Let $a = \frac{2\pi}{\cos^{-1}\left(-\frac{\lambda_1\lambda_2}{\sqrt{1+\lambda_1^2}\sqrt{1+\lambda_2^2}}\right)}$. Now, we calculate $E\left(Z_{\lambda_1,\lambda_2}^m\right)$ and $E\left(Y^{-\frac{m}{2}}\right)$.

$$\begin{split} E\left(Z_{\lambda_{1},\lambda_{2}}^{m}\right) &= a\int_{-\infty}^{+\infty}z^{m-1}z\phi\left(z\right)\Phi\left(\lambda_{1}z\right)\Phi\left(\lambda_{2}z\right)dz\\ &= a\left(m-1\right)\int_{-\infty}^{+\infty}z^{m-2}\phi\left(z\right)\Phi\left(\lambda_{1}z\right)\Phi\left(\lambda_{2}z\right)dz\\ &+ \frac{a\lambda_{1}}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}z^{m-1}\phi\left(\sqrt{1+\lambda_{1}^{2}}z\right)\Phi\left(\lambda_{2}z\right)dz\\ &+ \frac{a\lambda_{2}}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}z^{m-1}\phi\left(\sqrt{1+\lambda_{2}^{2}}z\right)\Phi\left(\lambda_{1}z\right)dz\\ &= a\left(m-1\right)E\left(Z_{\lambda_{1},\lambda_{2}}^{m-2}\right) + \frac{a\lambda_{1}\left(1+\lambda_{1}^{2}\right)^{-\frac{m}{2}}}{2\sqrt{2\pi}}\\ &\times E\left(Y_{1}^{m-1}\right) + \frac{a\lambda_{2}\left(1+\lambda_{2}^{2}\right)^{-\frac{m}{2}}}{2\sqrt{2\pi}}E\left(Y_{2}^{m-1}\right), \end{split}$$

where $Y_1 \sim \text{SN}\left(\frac{\lambda_1}{\sqrt{1+\lambda_1^2}}\right)$ and $Y_2 \sim \text{SN}\left(\frac{\lambda_2}{\sqrt{1+\lambda_2^2}}\right)$.

The moments generating function of $S \sim SN(\lambda)$ is

$$M_S(t) = 2e^{\frac{t^2}{2}}\Phi\left(\frac{\lambda t}{\sqrt{1+\lambda^2}}\right),$$

and also, we have

$$E\left(Y^{-\frac{m}{2}}\right) = \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} y^{-\frac{m}{2}} e^{-\frac{y}{2}} y^{-\frac{1}{2}} dy = \frac{\Gamma\left(\frac{1-m}{2}\right)}{\sqrt{\pi} 2^{\frac{m}{2}}}.$$

Since the gamma function is divergent for all nonpositive integers, thus $E\left(Y^{-\frac{m}{2}}\right)$ is divergent for $m=1,3,\ldots$. Therefore, if $m=2,4,\ldots$, then

$$E\left(W_{\lambda_{1},\lambda_{2}}^{m}\right) = \frac{a\Gamma\left(\frac{1-m}{2}\right)}{\sqrt{\pi}2^{\frac{m}{2}}} \left\{ (m-1) E\left(Z_{\lambda_{1},\lambda_{2}}^{m-2}\right) + \frac{\lambda_{1}\left(1+\lambda_{1}^{2}\right)^{-\frac{m}{2}}}{2\sqrt{2\pi}} E\left(Y_{1}^{m-1}\right) + \frac{\lambda_{2}\left(1+\lambda_{2}^{2}\right)^{-\frac{m}{2}}}{2\sqrt{2\pi}} E\left(Y_{2}^{m-1}\right) \right\}.$$

For a special case

$$\begin{split} E\left(W_{\lambda_{1},\lambda_{2}}^{2}\right) &= \frac{a\Gamma\left(-\frac{1}{2}\right)}{2\sqrt{\pi}} \left\{1 + \frac{\lambda_{1}}{2\sqrt{2\pi}\left(1+\lambda_{1}^{2}\right)}E\left(Y_{1}\right) + \frac{\lambda_{2}}{2\sqrt{2\pi}\left(1+\lambda_{2}^{2}\right)}E\left(Y_{2}\right)\right\} \\ &= \frac{a\Gamma\left(-\frac{1}{2}\right)}{2\sqrt{\pi}} \left\{1 + \frac{\lambda_{1}^{2}}{2\pi\left(1+\lambda_{1}^{2}\right)\sqrt{1+2\lambda_{1}^{2}}} + \frac{\lambda_{2}^{2}}{2\pi\left(1+\lambda_{2}^{2}\right)\sqrt{1+2\lambda_{2}^{2}}}\right\}. \end{split}$$

The value of gamma function for some special cases that may have been used to calculating the moments as follows.

$$\Gamma(-0.5) = -3.544908$$

 $\Gamma(-1.5) = 2.363272$
 $\Gamma(-2.5) = -0.9453087$
 $\Gamma(-3.5) = 0.2700882$

4 Some Important Properties

Theorem 2. Suppose that $X, U_1, U_2, U_3 \stackrel{iid}{\sim} \mathbb{N}(0,1)$ and also, $Y_1 = \frac{U_1}{|X|}$, $Y_2 = \frac{U_2}{|X|}$ and $Y_3 = \frac{U_3}{|X|}$. Then

$$W_{\lambda_1,\lambda_2} \stackrel{d}{=} Y_1 | (Y_2 < \lambda_1 Y_1, Y_3 < \lambda_2 Y_1) \sim GSC(\lambda_1,\lambda_2).$$

Proof. It is clearly that

$$W_{\lambda_1,\lambda_2} \stackrel{d}{=} \frac{U_1}{|X|} \left(U_2 < \lambda_1 U_1, U_3 < \lambda_2 U_1 \right).$$

Let $U \stackrel{d}{=} U_1 | (U_2 < \lambda_1 U_1, U_3 < \lambda_2 U_1)$. We know that

$$P(U_2 < \lambda_1 U_1, U_3 < \lambda_2 U_1) = \frac{\cos^{-1}\left(-\frac{\lambda_1 \lambda_2}{\sqrt{1 + \lambda_1^2}\sqrt{1 + \lambda_2^2}}\right)}{2\pi},$$

(see Jamalizadeh et al., 2008), and also

$$f_{U}(u) = \frac{P(U_{2} < \lambda_{1}U_{1}, U_{3} < \lambda_{2}U_{1}|U_{1} = u) \phi(u)}{P(U_{2} < \lambda_{1}U_{1}, U_{3} < \lambda_{2}U_{1})}$$

$$= \frac{2\pi}{\cos^{-1}\left(-\frac{\lambda_{1}\lambda_{2}}{\sqrt{1+\lambda_{1}^{2}}\sqrt{1+\lambda_{2}^{2}}}\right)} \phi(u) \Phi(\lambda_{1}u) \Phi(\lambda_{2}u),$$

then $U \sim \text{GSN}(\lambda_1, \lambda_2)$ and therefore, by Definition 1 the proof is completed.

Corollary 1. Suppose that $X, U_1, U_2, U_3 \stackrel{iid}{\sim} \mathbb{N}(0, 1)$ and also, $Y_1 = \frac{U_1}{|X|}$, $Y_2 = \frac{U_2}{|X|}$ and $Y_3 = \frac{U_3}{|X|}$. Then

$$Y_1 | (Y_2 < \lambda Y_1, Y_3 < \lambda Y_1) \sim GSC(\lambda).$$

Theorem 3. Suppose that $(U_1, U_2, U_3) \sim N_3 \left(\mathbf{0}, \begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix} \right)$, with $\rho_{23} = \rho_{12}\rho_{13}$, and also $X \sim N(0,1)$ be independent of (U_1, U_2, U_3) . Then

$$W_{\lambda_1,\lambda_2} \stackrel{d}{=} \frac{U_1}{|X|} \left| \left(\min \left(U_2, U_3 \right) > 0 \right) \sim \mathrm{GSC}(\lambda_1, \lambda_2), \right.$$

where
$$\lambda_1 = \frac{\rho_{12}}{\sqrt{1-\rho_{12}^2}}$$
 and $\lambda_2 = \frac{\rho_{13}}{\sqrt{1-\rho_{13}^2}}$.

Proof. Since $U_1 | (\min(U_2, U_3) > 0) \sim \text{GSN}(\lambda_1, \lambda_2)$ (see Jamalizadeh et al., 2008), then by Definition 1 the proof is completed.

We need to the next definition and lemma to present the next theorem.

Definition 2. We say that $\mathbf{V} = (V_1, V_2, V_3)$ has a standard trivariate Cauchy distribution if its pdf is

$$f(\mathbf{v}; \Sigma) = \frac{1}{\pi^2 |\Sigma|^{\frac{1}{2}} (1 + \mathbf{v} \Sigma^{-1} \mathbf{v})^2},$$

J. Statist. Res. Iran 7 (2010): 61-72

where
$$\mathbf{v}' = (v_1, v_2, v_3)$$
 and $\Sigma = \begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix}$, (see Fang et al., 1990).

We denote this distribution by $\mathbf{V} \sim C_3(\mathbf{0}, \Sigma)$. It can be shown that for i = 1, 2, 3, we have $V_i \sim C(0, 1)$.

Lemma 1. Suppose that $(U_1, U_2, U_3) \sim N_3 \left(\mathbf{0}, \begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix} \right)$ and $X \sim N(0, 1)$ are independent. Then

$$\left(\frac{U_1}{|X|}, \frac{U_2}{|X|}, \frac{U_3}{|X|}\right) \sim C_3\left(\mathbf{0}, \Sigma\right).$$

Proof. Suppose that $\mathbf{U} = (U_1, U_2, U_3) \sim N_3(\mathbf{0}, \Sigma)$ and $\mathbf{V} = (V_1, V_2, V_3) \stackrel{d}{=} \left(\frac{U_1}{|X|}, \frac{U_2}{|X|}, \frac{U_3}{|X|}\right)$, then

$$F_{\mathbf{V}}(\mathbf{v}) = P(\mathbf{V} \leqslant \mathbf{v}) = P\left(\frac{U_1}{|X|} \leqslant v_1, \frac{U_2}{|X|} \leqslant v_2, \frac{U_3}{|X|} \leqslant v_3\right)$$

$$= P(\mathbf{U} \leqslant \mathbf{v} |X|) = E\left\{\Phi_3\left(\mathbf{v} |X|; \Sigma\right)\right\}$$

$$= 2\int_0^\infty \Phi_3\left(\mathbf{v} x; \Sigma\right) \phi(x) dx,$$

where $\Phi_3(\cdot; \Sigma)$ is the cdf of $N_3(\mathbf{0}, \Sigma)$. Upon differentiating this expression of $F_{\mathbf{V}}(\mathbf{v})$, we obtain

$$f_{\mathbf{V}}(\mathbf{v}) = \frac{\partial}{\partial v_1 \partial v_2 \partial v_3} F_{\mathbf{V}}(\mathbf{v}) = 2 \int_0^\infty x^3 \frac{e^{-\frac{1}{2}x^2 (\mathbf{v} \Sigma^{-1} \mathbf{v})}}{(2\pi)^{\frac{3}{2}} |\Sigma|^{\frac{1}{2}}} \cdot \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} dx,$$

then, by integration by parts, we have

$$f_{\mathbf{V}}(\mathbf{v}) = \frac{2}{(2\pi)^2 |\Sigma|^{\frac{1}{2}}} \left(-\frac{x^2 e^{-\frac{1}{2}x^2 (1 + \mathbf{v}\Sigma^{-1}\mathbf{v})}}{1 + \mathbf{v}\Sigma^{-1}\mathbf{v}} - \frac{2e^{-\frac{1}{2}x^2 (1 + \mathbf{v}\Sigma^{-1}\mathbf{v})}}{(1 + \mathbf{v}\Sigma^{-1}\mathbf{v})^2} \right)_0^{\infty}$$
$$= \frac{1}{\pi^2 |\Sigma|^{\frac{1}{2}} (1 + \mathbf{v}\Sigma^{-1}\mathbf{v})^2}.$$

	$\mathrm{SC}\left(\lambda ight)$	$\mathrm{GSC}\left(\lambda ight)$	$\mathrm{GSC}\left(\lambda_{1},\lambda_{2} ight)$	
$\widehat{oldsymbol{\lambda}}$	0.2902438	0.09042141		
$\widehat{\boldsymbol{\lambda}}_{1}$			-1.656760	
$\widehat{\boldsymbol{\lambda}}_{2}$			2.153499	
Log-likelihood	-137.655963	-137.999645	-119.832504	

Table 1. MLEs for the lifespan of rats (ad libitum diet) under GSC and SC models.

Theorem 4. Suppose that
$$(V_1, V_2, V_3) \sim C_3(\mathbf{0}, \Sigma)$$
 and $\Sigma = \begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix}$ with $\rho_{23} = \rho_{12}\rho_{13}$. Then

$$V_1 | (\min (V_2, V_3) > 0) \sim GSC(\lambda_1, \lambda_2),$$
where $\lambda_1 = \frac{\rho_{12}}{\sqrt{1 - \rho_{12}^2}}$ and $\lambda_2 = \frac{\rho_{13}}{\sqrt{1 - \rho_{13}^2}}.$

Proof. As in Lemma 1, suppose that $(V_1, V_2, V_3) \stackrel{d}{=} \left(\frac{U_1}{|X|}, \frac{U_2}{|X|}, \frac{U_3}{|X|}\right)$, where $(U_1, U_2, U_3) \sim N_3 \left(\mathbf{0}, \begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix}\right)$, with $\rho_{23} = \rho_{12}\rho_{13}$, and $X \sim N(0, 1)$ are independent. Then the proof is completed by theorem 2.

5 Data Illustration

In this section we consider two data sets to compare SC (λ) and GSC (λ_1, λ_2).

Example 1. This example considers the standardized data concerning the lifespan of rats that they were under an *ad libitum* diet (that is, "free eating"), given in Landau and Everitt (2003). We want to compare $SC(\lambda)$ and $GSC(\lambda_1, \lambda_2)$, by fitting them for these standardized data. We estimate parameters by numerically maximizing the likelihood function. The obtained numerical results are presented in Table 1. Based on log-likelihood, $GSC(\hat{\lambda}_1, \hat{\lambda}_2)$ fits the data better than $SC(\hat{\lambda})$. Figure 2 illustrates the histogram of the data with the fitted densities.

Example 2. In this example, we consider the standardized roller data set, available for downloading at http://lib.stat.cmu.edu/jasadata/laslett and

	$\mathrm{SC}\left(\lambda ight)$	$\mathrm{GSC}\left(\lambda ight)$	$\overline{\mathrm{GSC}\left(\lambda_{1},\lambda_{2} ight)}$
$\widehat{\lambda}$	0.1649845	0.0590169	
$\widehat{oldsymbol{\lambda}}_{oldsymbol{1}}$			1.580540
$\widehat{\boldsymbol{\lambda}}_{2}$			-1.337220
$\operatorname{Log-likelihood}$	-1871.571888	-1872.913647	-1731.895581

Table 2. MLEs for the roller data set under GSC and SC models

alternatively analyzed by Gomez et al. (2006). The data set consists of 1150 heights measured at 1 micron intervals along the drum of a roller (i.e. parallel to the axis of the roller). For this standardized data set the obtained numerical results are presented in Table 2. Based on log-likelihood, $GSC(\widehat{\lambda}_1, \widehat{\lambda}_2)$ fits the data better than $SC(\widehat{\lambda})$. This point is further illustrated in Figure 3, where a histogram of the data is plotted together with the fitted densities.

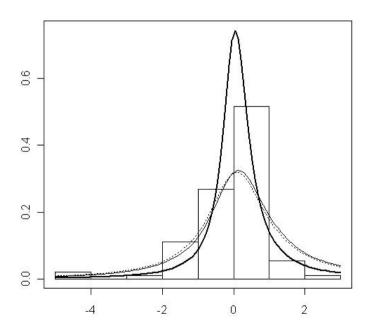


Figure 2. Histogram of the lifespan of rats (ad libitum diet). The lines represent distributions fitted using MLE: $GSC(\hat{\lambda}_1, \hat{\lambda}_2)$ (bold solid line), $GSC(\hat{\lambda})$ (dotted line), $SC(\hat{\lambda})$ (solid line).

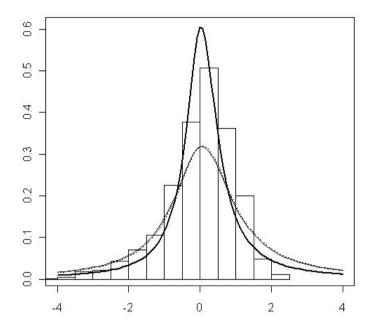


Figure 3. Histogram of the standardized roller data. The lines represent distributions fitted using MLE: $GSC(\widehat{\lambda}_1, \widehat{\lambda}_2)$ (bold solid line), $GSC(\widehat{\lambda})$ (dotted line), $SC(\widehat{\lambda})$ (solid line).

References

Arnold, B.C. and Beaver, R.J. (2000). The skew-Cauchy distribution. *Statistics and Probability Letters*, **49**, 285-290.

Azzalini, A. (1985). A class of distributions which includes the normal ones. *Scandinavian Journal of Statistics*, **12**, 171-178.

Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. *Statistica*, **46**, 199-208.

Bahrami, W., Agahi, H. and Rangin, H. (2010). A two-parameter Balakrishnan skew-normal distribution, J. Statist. Res. Iran, 6, 231-242.

Behboodian, J., Jamalizadeh, A. and Balakrishnan, N. (2006). A new class of skew-Cauchy distributions. *Statistics and Probability Letters*, **76**, 1488-1493.

Fang, K.T., Kotz, S. and Ng, K.W. (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall, London.

Gomez, H.W., Salinas, H.S. and Bolfarine, H. (2006). Generalized skew-normal models: properties and inference. *Statistics*, **40**, 495-505.

Henze, N.A. (1986). A probabilistic representation of the skew-normal distribution. *Scandinavian Journal of Statistics*, **13**, 271-275.

Huang, W.J. and Chen, Y.H. (2007). Generalized skew-Cauchy distribution. *Statistics and Probability Letters*, **77**, 1137-1147.

Jamalizadeh, A., Behboodian, J. and Balakrishnan, N. (2008). A two-parameter generalized skew-normal distribution. *Statistics and Probability Letters*, **78**, 1722-1728.

Landau, S. and Everitt, B.S. (2003). A Handbook of Statistical Analyses using SPSS. Chapman and Hall, Boca Raton.

Wahab Bahrami

Department of Statistics, Shahid Bahonar University of Kerman, Kerman, Iran.

email: W.Bahrami@yahoo.com

Hojat Rangin

Department of Statistics, Tarbiat Moalem University of Tehran, Tehran, Iran.

Kauomars Rangin

Department of Statistics, Razi University of Kermanshah, Kermanshah, Iran.