
c⃝ Statistical Research and Training Center

J. Statist. Res. Iran 7 (2010): 21–36 ٣۶–٢١ صص ،١٣٨٩ تابستان و بهار ،١ شماره�ی ،٧ دوره�ی
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Abstract. One of the new area of research emerging in the field of statistics
is the shape analysis. Shape is defined as all the geometrical information of
an object whose location, scale and orientation is not of interest. Diffusion
in shape analysis can be studied via either perturbation of the key coordi-
nates identifying the initial object or random evolution of the shape itself.
Reviewing the first case, we mainly consider the second case and particularly
define a new family of diffusion processes. It can be used to model diffusion
phenomena represented by shape evolution such as cell motion.

Keywords. Shape analysis; diffusion processes; shape coordinates; differ-
ential geometry; stationary distributions.

1 Introduction
In the ordinary language, the people are usually using more nominally fa-
miliar shape to describe the geometrical feature of an object. For example,
it is known that the map of Iran looks like the shape of a cat. This is our
subjective view of the shape whilst in order to analysis the shape of an object
statistically we do need to quantify it in a proper manner. Before describ-
ing such procedure, let us first recall the formal definition of shape accepted
between the statistical and mathematical communities.

The shape of the configuration is defined to be the geometrical informa-
tion that remains when location, scale and rotation effects are removed out
from an object Kendall (1984). It is seen that this clever definition justifies
the concept of the shape verbally understood by most people. For instance,
recalling our initial example, it does not matter how big the map of Iran
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is and where and in which orientation it is plotted - it it still ‘cat-shaped’.
Also, a typical version of standardization, frequently used in statistics, is
seen in the formal definition of the shape. Recall that the standardization of
a variable on one dimensional Euclidean space, taught and seen in the most
elementary statistics courses and statistical books, is obtained by subtracting
the variable from its mean (location parameter) and then dividing the result
over the standard deviation (scale parameter) of the variable. It is known
that by standardization one works with a new variable whose statistical fea-
tures are either easy to derive or already well known in the statistical field.
Similarly, in deriving the shape by omitting the translation, scale and orien-
tation effects, known as Euclidean similarity transformations, from an object
one is attempting to gather all objects under study in a common class. In
another word, with these operations one will derive a set of the standardized
shape data, ready to analysis statistically.

Having identified the shape of an object, one may be interested in study-
ing the diffusion of the shape. Random evolution of the shape can be inves-
tigated through at least two different point of views. In the first view, the
original points located on an object are assumed to perturb randomly in a
Euclidean space. Note that the object, itself, is lied in a Euclidean space.
Then, the properties of the shape of the object after an instant time point
or in a limit are studied. It is obvious that this process is a continuous
stochastic process in which the change of shape is described. This typical
diffusion process is known as the diffusion of the Euclidean shape. D.G.
Kendall, who was first to study the diffusion of shape, pointed out that this
process generally is not Markovian, so not a diffusion, except in particular
circumstance Kendall (1977). The exceptional case is in assuming the origi-
nal diffusion to be Brownian. The interesting result in the diffusion of shape
is given by D.G. Kendall stating that Brownian motion of the original points
in the plane transforms to infinitesimally uncorrelated diffusion of size and
shape, and the shape diffusion is Brownian motion specified directly in the
shape space but with a random time change. Thereafter, there were many
activities in this field by following the diffusion of Euclidean shape’s point
of view. See, for example, Kendall (1988), Kendall (1990), Le (1991) and Le
(1994).

In the second point of view, the random behavior of the shape itself,
rather than the original points located on the object, is considered as the
source of randomness. That is a study on a diffusion in the shape space. We
shall see below that the shape space is in fact a non-Euclidean space, so the
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diffusion process, and generally the stochastic process, in the shape would
be a typical one in the field of statistics. Although it is expected to consider
the motion of the whole shape, the common procedure in this situation is
to assume that the coordinates of the shape lied in the shape space are
perturbing randomly (see, e.g. Le, 1994, Kendall, 1998, and Kendall, 1990).
Assuming this sort of diffusion, one may be interested in many statistical
features of the shape diffusion such as the stationary distribution of a random
process proposed in the shape space. Note that because the shapes can be
represented on manifolds Small (1996), one can also study the stochastic
processes on a Riemannian manifold (see, e.g. Ikeda and Wanatabe, 1981)
and then consider the special cases of which the shape space is constructed.
This approach is worth in theoretical investigations, while in the application
studies the former approach is more popular.

In the subsequent sections, we first describe some preliminary materials
useful for the rest of the paper in the Section 2. It includes describing two
shape coordinate systems and a brief review of the diffusion on manifolds.
Then, we consider the diffusion processes on the shape space in the Section
3. Particularly, we pay attention to an important process suitable to model
shape evolution phenomena in our real life such as cell motion. The sta-
tionary distribution of the proposed process, inference about the involved
parameters and a simulation study are also presented in this section. The
paper is ended with conclusion along with direction to the future work.

2 Preliminaries
In this section we provide the required materials for the subsequent sections.
For the purpose of this paper, we use the notations implemented in Dryden
and Mardia (1998). Also, following the formal definition of the shape and
for consistency, the procedure to obtain the shape of an object is describe
based on the method implemented by Kendall (1984). It is known as the
Kendall coordinate system. However, in order to present the new results in
this paper we also use another shape coordinate system.

2.1 Shape Coordinate Systems

Recalling the shape definition, one can see that many mathematical concepts,
operations and functions are involved in the process of obtaining the shape
of an object. Before highlighting them let us, first, study the procedure to
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quantify an object. A common practical approach is to locate a set of points
on each object. The finite number of the points located on an object which
represent its key feature are called landmarks. There are three various types
of landmarks known as mathematical, anatomical and pseudo landmarks
(see, Dryden and Mardia, 1998, pp. 2-5). It is common to locate landmarks
on the outline of an object, although the researcher can also set them in the
interior body of the object. However, for the aim of this paper the later case
does not provide us any further information and so is not considered here.

Since the object are usually lying in two or three dimensional space, the
position coordinates of a landmark on each object are represented as pairs
of x and y or triplet x, y and z. In this article only two dimensional objects
are considered. Further, the case in which all landmarks are concentred in
one single point is not of interest.

Consider a configuration of k > 3 points in two dimensions. The config-
uration matrix, say X, is the k× 2 matrix of Cartesian co-ordinates of the k
landmarks in two dimensions, i.e.,

XT =

[
x1 x2 . . . xk
y1 y2 . . . yk

]
. (1)

Usually, the first step in obtaining the shape is to remove the location
information by pre-multiplying X, with Helmert sub-matrix H, which is the
(k − 1) × k Helmert matrix without the first row. We write XH = HX as
the Helmertized matrix. Then, the scale is removed by dividing by ||XH || =
||HX|| to get the pre-shape of X. Finally, the shape is obtained via post-
multiplying the pre-shape by a rotation matrix, say Γ. Note that if one does
not remove the scale effect what is left is known as “size-and-shape” of X.

Since points in two dimensions can be represented with the complex num-
ber, we can identify a landmark with coordinate, say (xj , yj), j = 1, . . . , k,
located on an object as z◦j = xj + iyj . Then, considering the original com-
plex landmarks z◦ = (z◦1 , z

◦
2 , . . . , z

◦
k)

T , and the Helmertized landmarks zH =
Hz◦ = (z1, z2, . . . , zk−1)

T , the shape of X can be identified by coordinates
(w1, w2, . . . , wk−2)

T , where wj = uj + ivj =
zj

zk−1
. These coordinates are

known as the Kendall coordinate systems in the literature and are usually
identified by the superscript K in uj and vj ’s, i.e. wK

j = uKj + ivKj . Note
that it is convenient to represent the shape of X by the real (2k − 4)-vector

uK = (uK1 , uK2 , . . . , uKk−2, v
K
1 , vK2 , . . . , vKk−2)

T .

The new results in this paper is based upon the Kent polar coordinate
systems Kent (1994). Hence, let us define the procedure to derive it here.
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Using the Helmertized landmarks, consider the transformation zj = s
1
2
j e

iθj ,

where sj > 0, 0 6 θj 6 2π and
∑k−1

i=1 si = 1. Then, the Kent polar
coordinates for the shape of X are (ST ,θT )T = (s1, . . . , sk−2, θ1, . . . , θk−2)

T .
Let us write Ds = diag(

√
s1, . . . ,

√
sk−2) and γ(s) = 1−

∑k−2
i=1 si, to simplify

the further computations. Note that transformation between this and other
shape coordinate systems including the Kendall coordinates is straightfor-
ward (see, e.g. Dryden and Mardia, 1998).

It is worth here to review some geometrical properties of the shape space.
The shape space of k points in m dimensions, located on the outline of an
object, is denoted by Σk

m. Due to loosing m dimensions for location, one
dimension for scale and 1

2m(m− 1) dimensions for rotation, the shape space
is km −m − 1 − m(m−1)

2 dimensions. Note that the size-and-shape space is
written as S Σk

m, which is a km−m− m(m−1)
2 dimensional space.

Special cases of the shape space for the two dimensional shapes is of
interest. In two dimensional case the shape space is the complex projective
space with sectional curvature 4 and particularly for triangles in a plane it
is the sphere in three dimensions with radius 1

2 , Kendall (1984). It is clear
that the shape space is a non-Euclidean space because not only the shape
space Σk

2, k > 3, i.e. the complex projective space, but also the sphere,
which is the shape space of 3 points in two dimensions, are non-Euclidean
spaces. It should be noted that the metric considered by Kendall to study
the distance between shapes is the Procrustes distance, which is one of the
suitable Riemannian metrics to compare objects in non-Euclidean space.

2.2 Diffusion Processes on Manifolds
As was mentioned, the shape space is an non-Euclidean space. So, since
the shape spaces contains the curved surfaces, known as a manifold, the
methods of differential geometry can be used to represent shapes. Hence, to
understand the diffusion processes in the shape space one can study them
first on manifolds.

Many important operations in differential geometry can be transferred
to a class of stochastic curves using stochastic calculus. Then, using a class
of affine connections one can obtain diffusions on a manifold. Precisely, the
procedure involves constructing a flow of a diffeomorphism on the bundle
of orthonormal frames over the manifold Ikeda and Wanatabe (1981), p.
261. In addition, a non-singular diffusion induces a Riemannian structure
on manifold where the elements of the structure are generated by diffusing
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local coordinates (see, e.g. Rogers and Williams, 1987, pp. 203-224).
The shape space is usually identified by local coordinates. They are

known as the shape coordinate system, which are simply the result of vari-
ous mathematical approaches to obtain the shape. Closely related to them
are the Riemannian metric induced by the infinitesimal changes of the coor-
dinates along a path. On the other hand, having the differential operators
in a manifold one can derive the infinitesimal operators of a diffusion process
(see, e.g. Meyer, 1966, pp. 256-270). One of the key tools useful to obtain
the infinitesimal parameters of a diffusion process on a Riemannian manifold
is the Laplace-Beltrami operator. It is used to define the Brownian motion in
both shape and size-and-shape spaces Kendall, et al. (1999). Note that the
Laplace-Beltrami operator is usually defined as “div grad” in the stochastic
textbooks.

Among many diffusion processes the Brownian motion and Ornstein-
Uhlenbeck (OU) processes are of great important for both probabilists and
statisticians. For example, in studying the motion of a particle, the Brow-
nian motion only describes its position while the OU process explains its
velocity as a function of time as well. In the shape analysis these processes
can be used to model the random evolution of geometrical objects such as
cell motion during a time period.

3 Diffusions on Shape Space
The initial work in the subject of the diffusion of shape is done by Kendall
(1977). He has explored many aspects of diffusion of k particles in one and
two dimensions. He has noted that although a diffusive motion for k > 3
particles in m > 1 will result in a continuous stochastic process of shape, it
will not be a Markovian process. However, assuming Brownian motion for the
original landmarks he proved that the resulting shape is also Brownian but
with respect to the random time change. His son has explored this statement
and other relevant results via symbolic computation Kendall (1988). He has
further given important results for the both Brownian and OU processes
using various shape coordinates Kendall (1990).

Based on the Riemannian metric tensor in Σk
2 using Kendall coordinate

system, Ball and his colleagues derived the Brownian motion specified di-
rectly in the planar shape space Ball, et al. (2008). They further identi-
fied the infinitesimal parameters of the Brownian motion represented by an
stochastic differential equation (SDE) and introduced a family of OU pro-
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cesses on Σk
2. Then, having the simple form of the SDEs for both processes,

they described the procedure to simulate the random shapes moving towards
a reference shape and in particular to model cell motion. As a motivation
to analysis the cell motions in further details, we define a new family of OU
processes in which its counterpart Brownian motion has the uniform shape
density as its stationary distribution.

3.1 New OU Processes in Two Dimensional Shape Space
By adding an extra drift to the standard Brownian motion using Kent co-
ordinate proposed in Ball, et al. (2008), we can define a new family of OU
processes on Σk

2. The new process is defined by the following SDEs

dS = [−4κγ(s)S+ 2 {1k−2 − (k − 1)S}] dt

+ 2

{
−
D2

s1k−21
T
k−2

1 +
√
γ(s)

+ Ik−2

}
DsdB

(s)
t ,

dθ =
1√
γ(s)

{
1k−21

T
k−2Ds

1 +
√

γ(s)
+
√
γ(s)D−1

s

}
dB

(θ)
t , (2)

where κ > 0 is a constant. The first expression added to the drift function
indicates the strength of the infinitesimal drift towards the reference shape
with the Helmertized coordinates µ0 = (1, 0, . . . , 0)T . Further, comparing the
first equation in (2) with the SDE of the standard Brownian motion using
Kent coordinate given in Ball, et al. (2008) shows that the term −4κγ(s)S
is analogous to the drift of an OU process on the line, say dXt = −κXtdt+
dBt. The OU processes given by (2), also, possess the important feature of
independency of polar coordinates S and θ. This property would be very
useful in where one is interested on simulating the processes. In other words,
in simulating the discretized version of the SDEs (2), two random processes
can be generated independently, each having its own criteria. Further, since
zk−1 ̸= 0 the term γ(s) is not zero and so the above SDEs are defined
everywhere.

Note that the SDEs here are in Itô form (see, e.g. Karlin and Taylor
(1981). Also, since the shape space Σk

2 is homogeneous the reference shape
can be any particular shape rather than the point µ0 = (1, 0, . . . , 0)T . That
shape can be transferred to the reference shape µ0 using a suitable unitary
transformation and the other new coordinates will be obtained accordingly.

J. Statist. Res. Iran 7 (2010): 21–36



28 A Useful Family of Stochastic Processes for Modeling Shape Diffusions

This feature is of great importance in which the reference shape is unknown
and one is going to follow a statistical procedure to estimate it.

Having considered the cell motion as a shape diffusion, both geometrical
and statistical aspects of this evolution can be investigated by the above
modelling. For instance, if it is assumed that cells are moving, with a smooth
drift, towards a particular cell but subject to a random fluctuation of their
positions the above SDEs can handle this feature. An simulating study
dealing with cell motions is discussed later. But we, first, provide a graphical
example to motivate the latter simulation study.

Initial motivation behind the considered OU process came from an anal-
ysis of cell motion by Ionides (2001). Ionides has studied the movements
of ten cells recorded at seven equally spaced time points using some prede-
fined SDEs. However, whole geometric aspect of motion has not been taken
into account in his work. In other words, the positions of landmarks on the
outline of cells, as the main source of the information to do a statistical (la-
beled) shape analysis, were not used to model the movement. We expect the
shape of cells at any time instant, considered by Ionides (2001), is the result
of movement of so many points which are set at the outline of a unit circle.
Hence, our OU process could capture these feature. As an example, the circle
in the Figure 1 is the initial shape (cell) generated by our OU process with
the parameters fixed as k = 100, κ = 100, and △ t = 0.005.
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Figure 1. Circle with landmarks on its outline. The circle is the initial shape in a sequence of
shape data generated by the SDEs in (2). The parameters are fixed as k = 100, κ = 100, and
△ t = 0.005. It is expected the perturbation of the landmarks would produce new objects
which is somewhat similar to the shape of cells considered by Ionides (2001).
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3.2 Stationary Distributions
Having defined some continuous stochastic processes, one can derive their
limiting behaviors leading to stationary distributions. For the one dimen-
sional stationary diffusion processes an explicit formula to derive the sta-
tionary distribution is available (see, e.g. Karlin and Taylor, 1981, p. 221).
However, there is not a closed form for the multidimensional case. To over-
come this one can turn around the problem. If a stationary distribution exists
it necessarily satisfies the Kolmogorov forward equation of the diffusion pro-
cess under study. Hence, for a given distribution one can verifies whether
or not it is satisfies the Kolmogorov forward equation of the corresponding
multidimensional stochastic process. If the answer is YES, the distribution
is in fact the stationary distribution. Although this method involves tedious
mathematical calculations, it is quite helpful. Particularly, many involved
manipulations can be handled by the available computer packages such as
Maple. We followed this procedure for our proposed OU process for multidi-
mensional cases. Recall that a stationary diffusion process Xt with drift and
motion µ and σ, respectively, and stationary distribution f satisfies in the
Kolmogorov forward equation

n∑
i=1

∂[µi(x)f ]

∂xi
− 1

2

n∑
i,j=1

∂2[(σσT )ij(x)f ]

∂xi∂xj
= 0. (3)

One of the important distributions in the statistical shape analysis is the
uniform distribution. The uniform density with respect to Lebesgue measure
using Kendall coordinate system is given as

(k − 2)!

πk−2

{
1 + (uK)TuK

}1−k
. (4)

This distribution using Kent coordinate system is (k − 2)!/(2π)k−2. So, it
is more natural to use this coordinate systems to represent the uniform dis-
tribution in the shape space Σk

2 as analogous with the uniform distribution
on the line. The interesting point is that if the original landmarks are inde-
pendently identically distributed with a rotationally symmetric distribution,
then the resulting shape distribution is uniform in the shape space (see, e.g.
Dryden and Mardia, 1998, p. 111). Ball and his colleagues have shown that
the uniform distribution (k− 2)!/(2π)k−2 is the invariant distribution of the
standard Brownian motion on Σk

2 using the Kent polar coordinates Ball, et
al. (2008).
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The other shape distributions for two dimensional data include the com-
plex Bingham, complex Watson, complex angular central Gaussian and offset
normal distributions (see, e.g. Dryden and Mardia, 1998, Chapter. 6). It is
of interest to verify whether or not any of them is the invariant distribution
for a family of OU processes on Σk

2. Ball and his colleagues have defined a
family of OU processes in which the shapes are moving towards a particular
reference shape Ball, et al. (2008). They have shown that for particular
situation the stationary distribution of their OU processes is the complex
Watson distribution, written as

f(uK) =
(k − 3)!

{
1 + (uK)TuK

}1−k

2πk−2C2(κ)
· exp

{
κ
1− (uK)TuK

1 + (uK)TuK

}
, (5)

where

C2(κ) =
(k − 3)!e−κ

κk−22k−1

{
e2κ −

k−3∑
r=0

(2κ)r

r!

}
=

e−κ

2(k − 2)
1F1(1; k − 1; 2κ),

where

1F1(a; b;x) = 1 +
a

b

x

1!
+

a(a+ 1)

b(b+ 1)

x2

2!
+

a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

x3

3!
+ · · ·

is the confluent hypergeometric function.
In order to obtain the complex Watson distribution represented by the

Kent coordinate system, we could, first, derive its corresponding distribution
in terms of Kendall polar coordinate. That can be implemented via the

equality uKj + ivKj = rje
iϕj , j = 1, . . . , k − 2, with the Jacobian

k−2∏
j=1

rj ,

yielding

f(r1, . . . , rk−2, ϕ1, . . . , ϕk−2) =

(k − 3)!
{
+

k−2∑
j=1

r2j

}1−k k−2∏
j=1

rj

2πk−2C2(κ)

× exp

κ

1−
k−2∑
j=1

r2j

1 +
k−2∑
j=1

r2j

 , (6)
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Then, we could utilize the relationship between Kendall and Kent coordinates
(both in polar systems) to get the required distribution. It is known that
(see, e.g. Dryden and Mardia, 1998, P. 110) ϕj = (θj − θk−1)mod 2π, and

r2j =
sj(

1−
k−2∑
j=1

sj

) , j = 1, . . . , k − 2. (7)

and so |∂sj/∂rj | = 2k−2
{
1 +

k−2∑
j=1

r2j

}1−k k−2∏
j=1

rj .

On substituting (7) into (6) and considering the above Jacobian, the
complex Watson distribution represented by the Kent coordinate system,
with respect to Lebesgue measure, turns out as

f(S,θ) =
(k − 3)!

2k−1πk−2C2(κ)
· exp

{
κ

(
1− 2

k−2∑
i=1

si

)}
, (8)

As can be seen, the random variables S and θ are independent with f(θ) =
1/(2π)k−2. This fact will help us to verify whether or not this distribution
is the stationary distribution of our new OU process given by the SDEs (2)
while invoking the Kolmogorov forward equation given by (3).

To have an idea in how to verify if the distribution in (8) is the stationary
distribution of the OU process with the SDEs (2), let us consider the case
k − 2 = 1, i.e. three points in two dimensions. The procedure for other
cases, i.e. k > 4 will be quite similar but with more complexity due to very
troublesome calculations. Recalling the equation (2), the SDE of our OU
process for k = 3 will break down to

dS = {−4κS(1− S) + 2(1− 2S)}dt+ 2

(
− S

1 +
√
1− S

+ 1

)√
SdBS

t

= µ(S)dt+ σ(S)dBS
t ,

dθ =
1√

1− S

( √
S

1 +
√
1− S

+

√
1− S√
S

)
dBθ

t = σ(θ)dBθ
t , (9)

where (BS
t , B

θ
t ) is 2-dimensional standard Brownian motion. In this partic-

ular case, the distribution in (8) turns out to

f(S, θ) =
1

2π
· 1

2C2(κ)
eκ(1−2S) =

1

2π
· 2κ

eκ − e−κ
eκ(1−2S)

= f(θ) f(S), 0 6 θ 6 2π, 0 6 s 6 1. (10)
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Using these information and the independency of the random processes S
and θ, the left hand side of the Kolmogorov forward equation in (3) is also
simplified as

∂[µ(S)f(S)]

∂S
− 1

2

∂2[σ2(S)f(S)]

∂S2
.

Ignoring the normalising constants of the marginal distribution f(S), this
final expression can be rewritten as

∂[
{
− 4κS(1− S) + 2(1− 2S)

}
eκ(1−2S)]

∂S
− 1

2

∂2[4S(1− S)eκ(1−2S)]

∂S2
. (11)

Note that none of the infinitesimal parameters in the SDEs in (9) and
quantities in joint distribution in (10) are involved in θ, and so their deriva-
tives with respect to θ are zero. Consequently, as expected, no expression of
θ appears in the Kolmogorov forward equation for the stochastic process of
(S, θ). Now, we should check whether or not the expression in (11) is equal to
zero. That is a matter of differentiation and could be easily shown that the
final result is indeed zero. Hence, the distribution in (10) is the stationary
density of our proposed OU process with the SDEs given in (9).

The complexity of mathematical calculations involved in deriving SDEs,
stationary distributions and Kolmogorov forward equations in studying dif-
fusion processes for more points, i.e. k > 4 can be seen from the above
particular case. We used arithmetic to break down the rigorous manipula-
tions for other scenarios, i.e. k > 4. The results were all promising in both
delivering the SDEs in (2) and distributions in (8) and, further, evaluating
the equality in (3) to justify that the complex Watson distribution is the
stationary distribution of our OU process.

3.3 Inference
In real applications, the parameter κ is usually unknown. Here, we only
consider the classical statistics approach, specifically the pseudo maximum
likelihood method, to derive an estimate for κ. The other statistical inference
methods will be our future topic. Note that other parameters, i.e. the refer-
ence shape and the variance of the time instance, can be unknown as well.
However, for the purpose of this paper, we assume that the only unknown
parameter is the strength of the drift, i.e. κ, for the proposed OU with SDEs
given in (2) or equivalently the concentration parameter of the distribution
in (8).
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Suppose a sample of size n shape data identified by the shape coordinate
systems (S,θ), are modeled by distribution (8) and the aim is to derive a
maximum likelihood estimator for κ. Note that making the inference just
based upon this distribution means that the shape data collected over time
are independent sample. However, our data, generated from the OU pro-
cess (2), are highly correlated. Nevertheless, we can assume that the avail-
able are from stationary distribution with known reference shape µ0. Let us
D = {(S1,θ1), (S2,θ2), . . . , (Sn,θn)}T , indicates the shape data. Then, the
logarithm of the likelihood of κ up to constants is

logL(κ|D) = l(κ) = κ

(
n− 2

n∑
i=1

1Tk−2Si

)
− n logC2(κ),

where 1q is the column q-vector of ones. Setting the derivative, with respect
to κ, of this last equation to zero and assuming C

′
2(κ) = ∂C2(κ)

∂κ , gives the
MLE of κ as the solution of the following equality

C
′
2(κ)

C2(κ)
= 1− 2

∑n
i=1 1

T
k−2Si

n
. (12)

If it is known that the concentrations parameter (κ) is too big, we can use
the approximate equality

C2(κ) ≈
(k − 3)!

κk−22k−1
eκ

and so (see, e.g. Dryden and Mardia, 1998, P. 121)

C
′
2(κ) ≈

(k − 3)!

κk−22k−1
eκ
[
1− k − 2

κ

]
.

Plugging these information into the equation (12), gives the approximate
MLE for high concentration κ, as κ̂ ≈ n(k − 2)/2

∑n
i=1 1

T
k−2Si.

3.4 A Simulation Study
In this section, we provide a simulation study to generate shape data, to
model the random feature of them and to make inference about a concen-
tration parameter. In fact, the simulation study is proposed to mimic the
behavior of cell motion Ionides (2001). The procedure is as follows.
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We started with initial circle given in Figure 1 and, then, the subsequent
shape data (cells) were generated using the OU process given in (2) with the
parameters fixed as in Figure 1. In total we had 1000 shape data. Because the
shape data in terms of Kent polar coordinates lie in non-Euclidean space they
cannot be visualized well on a computer screen or a piece of paper. Hence,
for plotting purpose, all shapes were transferred to the Bookstein coordinate
system using simple relationship between shape coordinates (see, e.g. Dryden
and Mardia, 1998). As an example, Figure 2 shows the shape figure of the
objects at some time instants. Since the time scale is too small the difference
between shapes are not obvious. However, it moves well towards the reference
shape with just altering the concentration parameters. Note that in this
example we assumed that the reference shape is known a priory as µ0. The
estimate of κ given by approximate MLE led to the value 129 which is far
from the actual value. However, this may be due to both ignoring the high
dependency of generated data and fixing the other parameters.

50 75 100 230

290 350 410 470

530 590 650 710

770 830 890 950

Figure 2. Shape of some data generated by the SDEs in (2). The plot shows the shape of
objects at some time instants with the parameters fixed as k = 100, κ = 100, and △ t = 0.005.
It mimics the diffusions of cells considered by Ionides (2001).
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To consider the correlation around the outline, as treated by Kent and his
colleagues Kent, et al. (2000), may describe the real diffusion of cells much
better than the case studied here. It will be investigated in future research.

Conclusion
In studying the random behavior of an object, perturbation of individual
points cannot give any insight about the next state of the geometrical struc-
ture of entire object. To take into account whole object, as data observation,
and study diffusion of its shape in the space, where it lies, could provide
more information in making inference, doing prediction and further statisti-
cal analysis about object itself rather than the individual points. The paper
introduced a new family of stochastic process for modeling shape diffusion.
It was used to model cell diffusion where the cells are moving towards par-
ticular shape. The SDEs on the process were presented and the stationary
distribution was derived. The statistical inference about the concentration
parameter through maximum likelihood method was made and a simulation
study was carried out to both mimic the cell motion and have an estimate
for the parameter. Due to nature of modeling, it is more feasible to consider
the other statistical methods to estimate concentration and other involved
parameters. Applying the proposed processes in some real data will defi-
nitely arise many other challenges dealing with applied shape analysis which
are worth to study in future.
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