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Abstract. Let {Xn, n > 1} be a strictly stationary sequence of negatively
associated random variables, with common distribution function F. In this
paper, we consider the estimation of the two-dimensional distribution func-
tion of (X1, Xk+1) for fixed k ∈ N based on kernel type estimators. We
introduce asymptotic normality and properties and moments. From these
we derive the optimal bandwidth convergence rate, which is of order n−1.
Besides of some usual conditions on the kernel function, the conditions typ-
ically impose a convenient increase rate on the covariances cov(X1, Xn).

Keywords. Almost sure convergence; bivariate distribution function; kernel
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1 Introduction, Definitions and Assumptions
The interest on approximating distribution functions of random pairs arises
from the characterizations of the limiting distribution of empirical processes,
which has been a subject of interest for many statisticians. The first re-
sults concerning the asymptotic distribution of the sequence data back to
Donsker (1951), for independent underlying variables {Xn, n > 1}. The ex-
tension of this characterization to nonindependent variables was eventually
studied. One of the dependence structures is positive association. Azevedo
and Oliveira (2000) studied kernel type estimation of bivariate distribution
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244 Almost Sure Convergence of Kernel Bivariate . . .

function for positively associated random variables. The other type of depen-
dence is negative association (NA), introduced by Alam and Saxena (1981)
and carefully studied by Joag-Dev and Proschan (1983). A finite family of
random variables {Xi, 1 6 i 6 n} is said to be negatively associated if for
every pair of disjoint subsets A and B of {1, 2, . . . , n},

cov{f1(Xi, i ∈ A), f2(Xj , j ∈ B)} 6 0

whenever f1 and f2 are coordinatewise increasing and such that the covari-
ance exists. An infinite family of random variables is NA if every finite sub-
family is NA. Because of their wide applications in multivariate statistical
analysis and reliability theory, the notion of NA has received more and more
attention recently. We refer to Joag-Dev and Proschan (1983) for fundamen-
tal properties, Newman (1980) and Su and Chi (1998) for central limit the-
orem, Matula (1992) for three series theorem, Su et al. (1997) for a moment
inequality, a weak invariance principle and example to show that there exists
infinite family of non-degenerate non-independent strictly stationary NA ran-
dom variables, Shao (2000) for the Rosenthal type maximal inequality and
Kolmogorov exponenential inequality, Liang and Su (1988) for convergence
rates of law of the logarithm, Roussas (1994) for the central limit theorem
of random fields, some examples and applications and Yuan et al. (2003) for
improving the result of Roussas (1994). The above comments motivated the
interest on the estimation of the bivariate distribution function under neg-
ative association. A natural estimator of F (x, y) = Pr(X1 6 x,Xk+1 6 y)
with k fixed, is defined by

φ̂n(x, y) =
1

n− k

n−k∑
i=1

{1(−∞,x](Xi)1(−∞,y](Xk+i)}. (1)

The asymptotic behavior of this estimator were studied by Jabbari et al.
(2009) who considered conditions on the covariance structure of the sequence
{Xn, n > 1}, for the almost sure consistency of this estimator. Here we will
considered the kernel estimator of F , defined by

F̂n(x, y) =
1

n− k

n−k∑
i=1

U

(
x−Xi

hn
,
y −Xk+i

hn

)
=

∫
R2

U

(
x− s

hn
,
y − t

hn

)
dφ̂n(s, t), (2)
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where U is a given distribution function and {hn, n > 1}, is a sequence of
positive numbers converging to zero. The assumptions under which the main
result in this paper is obtained are gathered as below.

(A1) {Xn, n > 1}, is an NA and strictly stationary sequence of random
variables having density function f bounded by M0; let M1 = 2max
(2/π2, 45M0).

(A2) k is a fixed integer and F the distribution function of (X1, Xk+1). F has
bounded and continuous partial derivatives of first and second orders.

(A3) For each positive integer j, Fj is the distribution function of
(X1, Xk+1, Xj , Xk+j). Fj is bounded and has continuous partial deriva-
tives of first and second orders.

(A4) U is twice differentiable. If u = ∂2U
∂x∂y , then it satisfies∫

R2

xu(x, y)dxdy =

∫
R2

yu(x, y)dxdy = 0,∫
R2

x2u(x, y)dxdy < ∞,

∫
R2

y2u(x, y)dxdy < ∞.

(A5) The sequence of bandwidth is such that nh2n → 0.

(A6)
∑∞

j=3 j|cov1/3(X1, Xj−k)| < ∞.

(A7) V = ∂2U2

∂x∂y is such that∫
R2

x2V (x, y)dxdy < ∞,

∫
R2

y2V (x, y)dxdy < ∞.

In Sections 2 and 3, we study the convergence and mean square error
of F̂n. In Section 4, we consider the asymptotic distribution of the finite
dimensional distributions of F̂n.

2 Consistency of the Estimator
We first characterize the convergence rate of E[F̂n(x, y)] and show that F̂n

is asymptotically unbiased. To achieve this goal, we apply a strong law of
large numbers to the random variables U(x−Xi

hn
,
y−Xk+i

hn
); i = 1, 2, . . . , n − k

and we need to study the asymptotic properties of the covariance between
each term in the sum (2).
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Theorem 1. Suppose that {Xn, n > 1} satisfies (A1), (A2) and (A4). Then,
for every x, y ∈ R,

E[F̂n(x, y)] = F (x, y) +
h2n
2

{
∂2F (x, y)

∂x2

∫
s2u(s, t)dsdt

+
∂2F (x, y)

∂x∂y

∫
stu(s, t)dsdt

+
∂2F (x, y)

∂y2

∫
t2u(s, t)dsdt

}
+ o(h2n).

Proof. As E[φ̂n(x, y)] = F (x, y) it follows from (2) that

E[F̂n(x, y)] =

∫
R2

U

(
x− s

hn
,
y − t

hn

)
dF (s, t)

=

∫
R2

u(w, v)F (x− whn, y − vhn)dwdv.

Using a Taylor expansion of order 2 of F and taking account of Assump-
tions (A2) and (A4) and that of the continuity of the second order partial
derivatives of F the theorem follows.

From Theorem 1 and an application of the Dominated Convergence The-
orem, we conclude

E[F̂n(x, y)] −→ F (x, y).

Now, we establish the almost sure convergence of F̂n. For this goal, we need
some lemmas that are proved below.

Lemma 1. Suppose that {Xn, n > 1} is negatively associated. Let

HA,B = Pr(Xj > xj , j ∈ A
∪

B)−Pr(Xl > xl, l ∈ A)·Pr(Xm > xm,m ∈ B),

where xj ’s are real and A and B are disjoint subsets of {1, . . . , n}. Define
Hl,m = H{l},{m}. Then

0 > HA,B >
∑
l∈A

∑
m∈B

Hl,m. (3)

Proof. For the proof see Theorem 2 in Newman (1984).
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Lemma 2. Suppose {Xn, n > 1} satisfies (A1) and (A3). Then, for each
j > 1 and x, y, r, s ∈ R

|Fj(x, y, r, s)− F (x, y) · F (r, s)| 6 2M1|cov
1
3 (X1, Xj) + cov

1
3 (X1, Xk+j)

+ cov
1
3 (Xk+1, Xj) + cov

1
3 (Xk+1, Xk+j)|.

(4)

Proof. The density of the variables is bounded by M0. Then, by Corollary
of Theorem 1 in Sadikova (1966) and relation (21) in Newman (1980),

cov{1(x,+∞)(X1), 1(y,+∞)(Xk+1)} > M1cov
1
3 (X1, Xk+1), x, y ∈ R. (5)

Since {Xn, n > 1} is NA then for j > 1, by (5), NA properties and Lemma
1 we conclude

0 > Fj(x, y, r, s)− F (x, y) · F (r, s)

> M1cov
1
3 (X1, Xj) +M1cov

1
3 (X1, Xk+j)

+M1cov
1
3 (Xk+1, Xj) +M1cov

1
3 (Xk+1, Xk+j)

+ Pr(X1 > x,Xk+1 > y,Xj > r,Xk+j > s)− Pr(X1 > x,Xk+1 > y)

× Pr(Xj > r,Xk+j > s)

> 2M1[cov
1
3 (X1, Xj) + cov

1
3 (X1, Xk+j)

+ cov
1
3 (Xk+1, Xj) + cov

1
3 (Xk+1, Xk+j)].

So, the proof is complete.
Lemma 3. Suppose the variables {Xn, n > 1} satisfies (A1), (A2), (A3) and
(A4). Then, for each j > 1 and x, y ∈ R

cov

{
U

(
x−X1

hn
,
y −Xk+1

hn

)
, U

(
x−Xj

hn
,
y −Xk+j

hn

)}
= Fj(x, y, x, y)

− F 2(x, y) +O(h2n).

Proof. Rewrite the covariance as

cov

{
U

(
x−X1

hn
,
y −Xk+1

hn

)
, U

(
x−Xj

hn
,
y −Xk+j

hn

)}
=

∫
R4

U

(
x− r

hn
,
y − s

hn

)
U

(
x− u

hn
,
y − v

hn

)
dFj(r, s, u, v)

−
{∫

R2

U

(
x− r

hn
,
y − s

hn

)
dF (r, s)

}2

,
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where the second term on the right hand side is just E2[F̂n(x, y)] and its
behavior has been described in Theorem 1. For the first term, we write
the function U as an integral and use Fubini’s Theorem. So, by expanding
Fj to the second order and using (A3) and (A4), this integral is equal to
Fj(x, y, x, y)+O(h2n). Therefore, the proof is complete by the limit behavior
of E[F̂n(x, y)].

Next theorem considers the almost sure convergence of F̂n.

Theorem 2. Suppose {Xn, n > 1} satisfy (A1), (A2), (A3), (A4), (A6) and
(A7). Then, for each x, y ∈ R

F̂n(x, y) −→ F (x, y) a.s. (6)

Proof. It suffices to prove that the variables U(x−Xm
hn

,
y−Xk+m

hn
), m > 1

satisfy a strong law of large numbers. As U is coordinatewise nondecreasing,
these variables are stationary and NA. According to Newman (1980), U ’s
verify a strong law of large numbers if

lim
n→∞

1

n− k

n−k∑
j=2

∣∣∣∣cov{U (x−X1

hn
,
y −Xk+1

hn

)
, U

(
x−Xj

hn
,
y −Xk+j

hn

)}∣∣∣∣ = 0.

(7)
From Lemma 3 and using (4) for r = x and s = y, it follows∣∣∣∣cov{U(x−X1

hn
,
y −Xk+1

hn

)
,U

(
x−Xj

hn
,
y −Xk+j

hn

)}∣∣∣∣
6 |Fj(x, y, x, y)− F 2(x, y)|+O(h2n)

6 2M1|cov
1
3 (X1, Xj) + cov

1
3 (X1, Xk+j)

+ cov
1
3 (Xk+1, Xj) + cov

1
3 (Xk+1, Xk+j)|.

Since {Xn, n > 1} is NA, by Lemma 8 in Newman (1984), we have∑∞
j=2 |cov(X1, Xj)| < ∞. Then, we may conclude that cov(X1, Xj) is non-

decreasing as j → ∞. So, the proof follows from (A6).
For the formulation of the next results we need to introduce some addi-

tional notations. Let t be a sequence of positive integers such that t → +∞.
For each i = 1, . . . , t, put xi = Q(i/t), where Q is the quantile function of
F . Define then,

Dn = sup
x,y∈R

|F̂n(x, y)− F (x, y)|,

c⃝ 2009, SRTC Iran



H. Jabbari Nooghabi 249

and
D∗

n = max
i,j=1,...,t

|F̂n(xi, xj)− F (xi, xj)|.

To prove an uniform version of the preceding theorem, we will apply the
following result which is proved in Theorem 2 of Henriques and Oliveira
(2003).

Lemma 4. If the sequence {Xn, n > 1} satisfies (A1), then for each n ∈ N,

Dn 6 D∗
n +

2

t
a.s. (8)

Next theorem is the uniform consistency of the estimator under the same
set of conditions as in Theorem 2.

Theorem 3. Suppose {Xn, n > 1} satisfies (A1), (A2), (A3), (A4), (A6)
and (A7). Then

sup
x,y∈R

|F̂n(x, y)− F (x, y)| −→ 0 a.s. (9)

Proof. From Theorem 2, it follows that

D∗
n = max

16i,j6t

∣∣∣∣F̂n

(
i

t
,
j

t

)
− F

(
i

t
,
j

t

) ∣∣∣∣ −→ 0 a.s.

Lemma 4 implies that for all x, y ∈ R,

Dn = sup
x,y∈R

|F̂n(x, y)− F (x, y)| 6 D∗
n +

2

t
.

So, the proof is complete, as t is arbitrary.

3 The Behavior of the Mean Square Error
In this section, we study the asymptotic properties and convergence rate of
the mean square error of the estimator. From which, we derive the optimal
bandwidth convergence rate of order n−1. This rate is different from the one
in the independent case. We write

MSE[F̂n(x, y)] = var{F̂n(x, y)}+ [E{F̂n(x, y)} − F (x, y)]2.
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Theorem 1 gives the behavior of E{F̂n(x, y)}. Then, we need to describe
the asymptotic properties and convergence rate of

var{F̂n(x, y)} =
1

n− k
var

{
U

(
x−X1

hn
,
y −Xk+1

hn

)}
+

2

(n− k)2

n−k∑
j=2

(n− k − j + 1)cov

{
U

(
x−X1

hn
,
y −Xk+1

hn

)
,

U

(
x−Xj

hn
,
y −Xk+j

hn

)}
. (10)

Lemma 3 gives the asymptotic property of all these terms in (10). Just
notice that the variance term, which corresponds to the choice j = 1 in
Lemma 3, gives as limit F1(x, y, x, y)− F 2(x, y) = F (x, y)− F 2(x, y). Now,
we state the result in the following theorem.

Theorem 4. Suppose that {Xn, n > 1} satisfies (A1), (A2), (A3), (A4),
(A5), (A6) and (A7). Then, for all x, y ∈ R

(n− k)MSE[F̂n(x, y)] = F (x, y)− F 2(x, y) + 2
∞∑
j=2

{Fj(x, y, x, y)− F 2(x, y)}

+O(hn + nh2n) + an,

where

an =
1

(n− k)

∞∑
j=2

(j − 1){Fj(x, y, x, y)− F 2(x, y)}

− 2
∞∑

j=n−k−1

{Fj(x, y, x, y)− F 2(x, y)}.

Note that, from assumption (A6) and Lemma 2, an → 0 as n → ∞,
and an is independent of the bandwidth choice. It is now evident that an
optimization of the convergence rate of the MSE is achieved by choosing
hn = Cn−1 for C > 0.

4 Finite Dimensional Distributions
Now, we study the asymptotic behavior of the finite dimensional distribu-
tions of the estimator. For this goal, we will use a decomposition of the
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sum (2) into several blocks that are negatively associated. This approxima-
tion is controlled via Newman’s inequality (1984). As the proof is long and
quite technical, we will divide it into some lemmas. Before proceeding, for
x, y, r, s ∈ R, define

αn(x, y) =
√
n− k{F̂n(x, y)− F (x, y)},

σ2(x, y, r, s) = F{min(x, r),min(y, s)} − F (x, y) · F (r, s)

+ 2

∞∑
j=2

{Fj(x, y, r, s)− F (x, y) · F (r, s)}.

For simplicity, throughout this section we assume that {Xn, n > 1} satisfies
(A1), (A2), (A3), (A4), (A5), (A6) and (A7).

Lemma 5. For every x, y, r, s ∈ R, we have

cov[αn(x, y), αn(r, s)] −→ σ2(x, y, r, s). (11)

Proof. Using stationarity of the variables, we may write

cov[αn(x, y),αn(r, s)] = cov

{
U

(
x−X1

hn
,
y −Xk+1

hn

)
,

U

(
r −X1

hn
,
s−Xk+1

hn

)}
+

2

n− k

n−k∑
j=2

(n− k − j + 1)

× cov

{
U

(
x−X1

hn
,
y −Xk+1

hn

)
, U

(
r −Xj

hn
,
s−Xk+j

hn

)}
.

(12)

From Lemma 3 we have, for j = 1, . . . , n− k

cov

{
U

(
x−X1

hn
,
y −Xk+1

hn

)
, U

(
r −Xj

hn
,
s−Xk+j

hn

)}
= Fj(x, y, r, s)

− F (x, y)F (r, s) +O(h2n).

Inserting these characterizations in (12), we find that the last term in the
right hand side of (12) is equal to

2

n−k∑
j=2

{Fj(x, y, r, s)− F (x, y) · F (r, s)} − 2

n− k

n−k∑
j=2

(j − 1){Fj(x, y, r, s)

− F (x, y) · F (r, s)}+O(nh2n).
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From Lemma 2 and using Assumption (A6), we have

1

n− k

n−k∑
j=2

(j − 1)|Fj(x, y, r, s)− F (x, y) · F (r,s)| 6 8M1

n− k

×
n−k∑
j=2

j|cov
1
3 (X1, Xj−k)| −→ 0.

Now, for the proof of the lemmas that concerned the asymptotic normality
we need some further notations. Denote ñ = n − k and given an integer
p 6 ñ, let m be the largest integer less than or equal to ñ/p. Let q ∈ N,
c1, . . . , cq ∈ R, x, y, x1, . . . , xq, y1, . . . , yq ∈ R and define

Tñ,i(x, y) = U

(
x−Xi

hn
,
y −Xk+i

hn

)
− E

{
U

(
x−Xi

hn
,
y −Xk+i

hn

)}
,

Y p
j (x, y) =

1
√
p

jp∑
i=(j−1)p+1

Tñ,i(x, y), W p
j =

q∑
k=1

ckY
p
j (xk, yk),

and

Zmp =
1√
m

q∑
k=1

ck

m∑
j=1

Y p
j (xk, yk), Zñ =

1√
ñ

q∑
k=1

ck

ñ∑
i=1

Tñ,i(xk, yk).

Note that, as follows from Lemma 5,

var(Zñ) −→ σ2 :=

q∑
k=1

c2kσ
2(xk, yk, xk, yk) + 2

q−1∑
k=1

q∑
l=k+1

ckclσ
2(xk, yk, xl, yl).

(13)
Further, for each p fixed, it follows from Lemma 3 that

var[Y p
1 (x, y)] = cov

 1
√
p

p∑
i=1

Tñ,i(x, y),
1
√
p

p∑
j=1

Tñ,j(x, y)


=

1

p

p∑
i=1

p∑
j=1

{F|j−i+1|(x, y, x, y)− F 2(x, y)}+O(ph2n). (14)
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Then

var(W p
j ) = σ2

p :=

q∑
k=1

c2kσ
2
p(xk, yk, xk, yk) + 2

q−1∑
k=1

q∑
l=k+1

ckclσ
2
p(xk, yk, xl, yl),

(15)
where

σ2
p(xk, yk, xl, yl) = F{min(xk, xl),min(yk, yl)} − F (xk, yk) · F (xl, yl)

+
2p− 2

p

p∑
j=2

{Fj(xk, yk, xl, yl)− F (xk, yk) · F (xl, yl)}. (16)

We now proceed to the lemmas that provided the asymptotic normality.
First, replace the sum up to ñ by the sum up to mp to find a sum consisting
only on the blocks W p

j .

Lemma 6. For fixed p, we have

|EeitZñ − EeitZmp | −→ 0. (17)

Proof. Follow the arguments of the proof of Lemma 5.2 in Azevedo and
Oliveira (2000). Now, we control the approximation between our sum and
what we would find if the blocks W p

j were independent.

Lemma 7. For p fixed, there exists a constant C > 0, such that∣∣∣∣∣∣EeitZmp −
m∏
j=1

Ee
it√
m
W p

j

∣∣∣∣∣∣ 6 Ct2
q∑

k=1

|σ2
p(xk, yk, xk, yk)− σ2(xk, yk, xk, yk)|

+ 2t2
q−1∑
k=1

q∑
l=k+1

|σ2
p(xk, yk, xl, yl)− σ2(xk, yk, xl, yl)|.

(18)

Proof. This is a convergence of Newman’s inequality (1984) and asymptotic
properties of the variances of Zñ and of W p

j mentioned above.

Lemma 8. For p fixed, we have∣∣∣∣∣∣
m∏
j=1

Ee
it√
m
W p

j − e
t2σ2

p
2

∣∣∣∣∣∣ −→ 0. (19)
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Proof. Just apply the Lindeberg condition to the variables m−1/2W p
j , j =

1, . . . ,m and take account of the fact that each W p
j is a sum of p bounded

variables, so it is also bounded.
Now by summarizing the results, we have the asymptotic normality in

the next theorem which can be obtained from Lemmas 6, 7 and 8. The proof
is similar to the proof of Theorem 5.5 of Azevedo and Oliveira (2000) and,
therefore is omitted.

Theorem 5. The random vector (αn(x1, y1), . . . , αn(xq, yq)) converges in
distribution to a normal centered vector with covariance matrix

∑
=


σ2(x1, y1, x1, y1) σ2(x1, y1, x2, y2) . . . σ2(x1, y1, xk, yk)
σ2(x2, y2, x1, y1) σ2(x2, y2, x2, y2) . . . σ2(x2, y2, xk, yk)

. . . . . . . . . . . .
σ2(xk, yk, x1, y1) σ2(xk, yk, x2, y2) . . . σ2(xk, yk, xk, yk)

 (20)
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