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Abstract. Doubly censoring scheme, which includes left as well as right
censored observations, is frequently observed in practical studies. In this pa-
per we introduce a new interval say tracking interval for comparing the two
rival models when the data are doubly censored. We obtain the asymptotic
properties of maximum likelihood estimator under doubly censored data and
drive a statistic for testing the null hypothesis that the proposed non-nested
models are equally close to the true model against the alternative hypothesis
that one model is closer when we are faced with an experimental situation.
Monte Carlo simulations are performed to observe the behavior of the theo-
retical results, and the proposed methodology is illustrated with data from
spreading of the micro plasma droplets. We also perform the statistical anal-
ysis of these data using the probability models including Weibull, Burr type
XII, Burr type III and inverse Weibull distributions. One important result
of this study is that the Burr type XII distribution, in contrast to inverse
Weibull distribution, may describe more closely to Weibull distribution for
spread factor data under doubly censored sample.
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1 Introduction

The idea of model selection is beginning with a set of data and rival models
to choice the best one. The decision making on this set is an important ques-
tion in statistical inference. Some tests and criteria are designed to answer
to this question that which of the rival models is the best one, or at least,
which of them are equivalent to select as the best. Since then, several articles
have been published on model selection based on complete data, for exam-
ple, Cox (1961, 1962) modified the classical hypothesis testing to test the non
nested hypothesis, Akaike (1973) introduced the Akaike Information Crite-
rion (AIC) to select the best model under parsimony, Vuong (1989) tested
the equivalence of two models, In Vuong viewpoint, the best model is the
model which maximizes the relevant part of the Kullback-Leibler (KL) risk,
see Kullback and Leibler (1951). The null hypothesis of Vuong test is the
expectation under the true model of the log-likelihood ratio of the two ri-
val models are equal to zero, which means that, two proposed models are
equivalent. This expectation however is unknown. But Vuong test works,
because the decision making procedure by Vuong test does not depend on
this unknown quantity. Recently, Commanges et al. (2008) have considered
the normalized difference of AIC as an estimate of a difference of KL risks
between two models. Sayyareh et al. (2011) and Sayyareh (2012a) compare
some tests and model selection criteria for parametric and linear models.
However, in many experimental studies, the experimenter may not always
obtain complete information on failure times for all experimental units. For
example, units may break accidentally in an industrial experiment. There are
a lot of situations in which the removal of units prior to failure is pre-planned.
Data obtained from such experiments are called censored data. Different
types of censoring arise based on how the data are collected from the exper-
iment. The scheme of doubly censored sampling is an important method for
obtaining data in experiments. Doubly censored data are commonly observed
in clinical or biomedical studies, where the first few observations and the last
few observations are unavailable from a sequence of observations. Examples
of doubly censored data are abundant. For example, Ren and Peer (2000)
analyzed doubly censored data in a study of the effectiveness of screening
mammograms, Cai and Cheng (2004) studied the HIV data under doubly
censoring scheme, Jones and Rocke (2002) considered an effective treatment
of genetic disorder and Khan et. al. (2011) analyzed doubly censored data in
a study of the laryngeal cancer. While much research has been done on the
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doubly censoring scheme, lack attention has been paid to the comparison of
two non-nested models under doubly censored plasma droplets data. Thus,
we applied this censoring in study of micro plasma droplets spread factor
data. Plasma spray coating is a process by which the high temperature of
a plasma is employed to melt powders of metallic or non-metallic materials
and spray them onto a substrate, forming a dense deposit. The process is
commonly used to apply protective coatings on components to shield them
from wear, corrosion, and high temperatures. In plasma spraying, spread
factor of the micro plasma droplets is a fundamental character in deposit
formation. Physical properties and mechanical characteristics of a plasma
spray deposit primarily depend on this crucial stage.
Development of model selection, which can predict spreading of micro plasma
droplets, can potentially reduce the cost of the development of new plasma
coatings considerably. Ideally, fitted distribution functions will allow us to
predict coating thickness and properties to meet the requirements of indi-
vidual applications, without having to do extensive experimentation. The
models will also allow us to improve and optimize the design of existing spray-
ing guns. A literature survey carried out by the authors indicated lack of
published data on the distribution modeling of micro plasma droplet spread-
ing in coating processes.
The main aim of this paper is twofold. First we focus on the behavior of the
two rival models under doubly censored sample. In other words, we want to
decide whether or not the two rival models are two equivalent models. For
this purpose, we propose the tracking interval which should contain the dif-
ference of risks with a given probability. When rival models are non-nested,
we introduce a test statistic that converges in distribution to the normal dis-
tribution and use it to construct the tracking interval. This interval helps us
to evaluate proposed models in comparison with each other. In other words,
if the calculated distance includes zero, it can be concluded that based on
the predetermined confidence, both proposed models are equivalent. This
interval could be useful in a wide variety of applications. For example, Com-
menges et al. (2008) considered the tracking interval between two models in
two applications. The first is a study of the relationship between body-mass
index and depression in elderly people. The second is the choice between
models of HIV dynamics, where one model makes the distinction between
activated CD4+T lymphocytes and the other does not. Panahi and Sayyareh
(2014, 2015) used the tracking interval for comparison of two rival models of
micro-droplet splashing data under different censoring schemes.
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The second aim of this paper is to analyze the spread factor of plasma
droplets data under doubly censoring scheme. It is clear that the spread
factor is always positive and therefore, it is reasonable to analyze the spread
factor data using the probability distribution, which has support only on the
positive real axis. Thus, we have considered different two-parameter distri-
butions such as Weibull, inverse Weibull, Burr type XII and Burr type III
distributions. One of the important problems in engineering experiments
namely the prediction interval for future observation. Therefore, we con-
struct the prediction interval for future observation and the ratio of two
future consecutive data, based on the doubly censored sample.
The rest of this paper is organized as follows. In Section 2, as preliminary, we
briefly mention about the doubly censored sample, the theory about models
and KL divergence. In Section 3, we bring the main results which we need to
construct the tracking interval for the difference of the expected KL diver-
gence of two non-nested models under doubly censored sample. Simulation
results and real data analysis are provided in Section 4, and finally we con-
clude the paper in Section 5.

2 Preliminary

2.1 Doubly Censored Sample

The most common type of censoring is right censoring, in which the experi-
mental time is larger than the observed right censoring time. In some cases,
however, data are subject to left, as well as, right censoring. When left
censoring occurs, the only information available to a statistician is that the
experimental time is less than or equal to the observed left censoring time.
Data with both right and left censored observations are known as doubly
censored data. A doubly censoring scheme is a multiple censoring schemes.
The main aim of this paper is to focus on the non nested models under dou-
bly censoring scheme. Suppose that, Y1 6 . . . 6 Yn are the ordered sample
of X1, . . . , Xn. Thus, doubly censoring scheme can be described as follows:
Consider the experiment in which n identical units are placed on test simul-
taneously. The first r1 − 1 experiment times may be left-censored due to
negligence or problems at the beginning of the experiment, and the experi-
ment terminates as soon as the r2th unit failed. Then, the likelihood function
for doubly censored sample yr1 , . . . , yr2 with r1 − 1 observations censored on
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the left and n− r2 observations censored on the right is given by

lfn(α) ∝ {Fα(yr1)}(r1−1){1− Fα(yr2)}(n−r2)
r2∏
i=r1

fα(yi) (1)

where, Fα(·) is the distribution function. Note that the complete sample
case (r1 − 1 = n− r2 = 0), the right type II censored sample case (r1 − 1 =
0, n−r2 > 0) and the left type II censored sample case (r1−1 > 0, n−r2 = 0)
are special cases of doubly censored samples.

2.2 Statistical Models and Kullback-Leibler (KL) Divergence
Consider a sample of independently identically distributed (i.i.d.) random
variables, X1, . . . , Xn having probability density function h(x) ≡ h. Let us
consider two rival models:

Fα = {fα(·), α ∈ M ⊆ Rp} = (f) and Gβ =
{
gβ(·), β ∈ B ⊆ Rq

}
= (g).

Definition 1. (i) (f) and (g) are non overlapping if (f)
∩
(g) = ϕ; (ii) (f)

is nested in (g) if (f) ⊂ (g); (iii) (f) is well- specified if there is a value
α0 ∈ M such that fα0(·) = h; otherwise it is misspecified.
Let X1, . . . , Xn be a random sample from h and fα(·) as a proposed model,
then quasi log-likelihood function is given by

Lfnc
(α) =

n∑
i=1

log fα(xi),

where, Lfnc(α) is the quasi log-likelihood function for complete sample. Un-
der the following condition, α̂n is a quasi maximum likelihood estimator
(QMLE):

Lfn(α̂n) = supα∈ML
f
nc
(α),

If the model is well-specified then α0 = α∗, where α∗ = arg maxα∈M
Eh{Lfn(α)}, and refer to as the pseudo-true value of the α. The KL in-
formation in favor of h against fα is defined as

KL(h, fα) = Eh

{
log

h(X)

fα(X)

}
=

∫ ∞

−∞
h(x) log

h(x)

fα(x)
dx.

We have KL(h, fα) > 0 and KL(h, fα) = 0, imply that h = fα, that is
α = α0. The KL divergence is often intuitively interpreted as a distance
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between the two probability measures, but this is not mathematically a dis-
tance; in particular, the KL divergence is not symmetric. It may be felt
that this is a drawback. But, this feature may also have a deep mean-
ing in some model selection problem when there is no symmetry between
the true and the proposed models. KL(h, fα) has a minimum at α∗. If
α0 ̸= α∗ the model is mis-specified and KL(h, fα) > 0. The KL informa-
tion of fα against gβ is defined as KL(fα, gβ) = Eh

[
log{fα(X)/gβ(X)}

]
.

We say that (f) is closer to h than (g) if KL(h, fα∗) < KL(h, gβ∗). We
cannot estimate KL(h, fα∗) because the entropy of h, Eh {log h(X)}, can-
not be correctly estimated. However, we can estimate the difference of risks
∆d(f

α∗ , gβ∗) = EKL(h, fα∗) − EKL(h, gβ∗), a quantitative measure of the
difference of misspecification by [−n−1{Lfn(α̂n)−Lgn(β̂n)}]. This result may
not be completely satisfactory in practice if n is not very large because the
distribution we will use is f α̂n rather than fα∗ . Thus it is more relevant to
consider the risk Eh

[
log{h(X)/f α̂n(X)}

]
that we call the expected KL risk

and that we denote by EKL(h, f α̂n).

3 Main Results
Suppose that, Y1 6 . . . 6 Yn are the ordered sample of X1, . . . , Xn. Thus,
based on (1), the quasi log-likelihood function of the doubly censored sample
is:

Lfn(α) ∝
r2∑
i=r1

log fα(yi) + (r1 − 1) logFα(yr1) + (n− r2) logF
α
(yr2)

where, Fα(·) = 1−Fα(·) is the survival function. Therefore, the differences
of the quasi log-likelihood functions of the two rival models can be obtained
as:

L
f
g
n (α̂n, β̂n) = Lfn(α̂n)− Lgn(β̂n)

∝
r2∑
i=r1

log
f α̂n(yi)

gβ̂n(yi)
+ (r1 − 1) log

F α̂n(yr1)

Gβ̂n(yr1)

+ (n− r2) log
F
α̂n

(yr2)

G
β̂n
(yr2)

.
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Let Y1, Y2, . . . , Yn are ordered observations of n independent units taken
from a true distribution. Under the doubly censoring scheme, since the
experiment is truncated at Yr1(= ζ1n) and Yr2(= ζ2n), by pdf h∗(·) ≡ h∗.
It is assumed that r1

n
P−→ p1 ∈ (0, 1) and r2

n
P−→ p2 ∈ (0, 1) such that

Yr1(= ζ1n) and Yr2(= ζ2n) converges in probability to ζ1 and ζ2, the
p1th and p2th percentiles of true distribution respectively. Thus, based on
Sayyareh (2012b),

1

n

r2∑
i=r1

log
f α̂n(yi)

gβ̂n(yi)

P−→ (p2 − p1)Eh∗

{
log

fα∗(Y )

gβ∗(Y )

}
,

1

n
(r1 − 1) log

F α̂n(yr1)

Gβ̂n(yr1)

P−→ (p1) log
Fα∗(ζ1)

Gβ∗(ζ1)

and
1

n
(n− r2) log

F
α̂n

(yr2)

G
β̂n
(yr2)

P−→ (1− p2) log
F
α∗
(ζ2)

G
β∗
(ζ2)

.

Then the difference quasi log-likelihood function of two rival models is con-
verges in probability as below:

1

n
L

f
g
n

(
α̂n, β̂n

)
P−→ (p2 − p1)Eh∗

{
log

fα∗(Y )

gβ∗(Y )

}
+ p1 log

Fα∗(ζ1)

Gβ∗(ζ1)
+ (1− p2) log

F
α∗
(ζ2)

G
β∗
(ζ2)

where

α∗ = argmax
α∈M

{
(p2 − p1)Eh∗ [log f

α(Y )] + p1 logF
α(ζ1) + (1− p2) logF

α
(ζ2)

}
and

β∗ = argmax
β∈B

{
(p2 − p1)Eh∗

[
log gβ(Y )

]
+ p1 logG

β(ζ1) + (1− p2) logG
β
(ζ2)

}
,

α∗ and β∗ are pseudo-true values of α and β, respectively. Also quasi maxi-
mum likelihood estimator of α say α̂n, is the solution of

∂

∂α
Lfn (α) =

r2∑
i=r1

∂

∂α
log fα(yi) + (r1 − 1)

∂

∂α
logFα(yr1)

+ (n− r2)
∂

∂α
logF

α
(yr2) = 0.
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The minimum assumptions, ℜ, for compact neighborhood M of α∗ are:
ℜ1 : The parameter space M is an open interval in R.
ℜ2 : ∂

∂αf
α(x) is a strictly monotone function on M for each x and also,

∂

∂α
fα(x) and ∂2

∂α2
fα(x) all exist for every α.

ℜ3 : For all α ∈ M the partial derivative ∂
∂αf

α(x), is integrable on R, the
partial derivative ∂

∂αF
α(x), exists for x ∈ χ and satisfies

∂

∂α
Fα(x) =

∫ x

−∞

∂

∂α
fα(u)du.

ℜ4 : For every α, we have
∣∣∣∂fα(x)∂α

∣∣∣ 6 K1 and
∣∣∣∂2fα(x)∂α2

∣∣∣ 6 K2 and
∣∣∣∂3fα(x)∂α3

∣∣∣ 6
K3, where,

∫
Kidµ(x) <∞; i = 1, 2, 3.

ℜ5: For every α, 1

F
α
(x)

and 1

Fα(x)
are bounded by υ1(x) and υ2(x) respec-

tively, where, E{υ1(X)} 6 N1 and E{υ2(X)} 6 N2; N1 and N2 are positive
constants.
ℜ6: For every α, we have, γ =

∫
( ∂∂α log fα(x))2fα(x)dµ(x) <∞.

Theorem 1. Assume that fα(·) is well specified model satisfied the suit-
able conditions (ℜ1 -ℜ6 ). Then as n → ∞, the asymptotic distribution of
maximum likelihood estimator,

√
n(α̂n − α0) is, N(0, J−1

fd
), where,

Jfd = γ + p1ν1 + (1− p2)ν2. (2)

Proof. The proof of Theorem 1 is provided in the Appendix A.

Theorem 2. If the proposed model is misspecified and fα∗ ̸= gβ∗, then
√
n

{
1

n
L

f
g
n (α̂n, β̂n)− (p2 − p1)Eh∗(τ1)− p1τ2 − (1− p2)τ3

}
D−→ N

(
0, ω2

∗d
)
,

where, τ1 = log
fα∗(Y )

gβ∗(Y )
, τ2 = log

Fα∗(ζ1)

Gβ∗(ζ1)
, τ3 = log

F
α∗
(ζ2)

G
β∗
(ζ2)

and

ω2
∗d = V arh

{
log

fα∗(W )

gβ∗(W )

}
+ p1V arh∗1

{
log

fα∗(Z)

gβ∗(Z)

}
+ (1− p2)V arh∗2

{
log

fα∗(U)

gβ∗(U)

}
,

w = (w1, . . . , wn) = the complete data, z = (z1, . . . , zr1−1) and u =
(u1, . . . , un−r2) = the complete data of size r1 − 1 and n − r2, from the
right and left truncated population.
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Proof. see the Appendix B.

Hence, we investigate the following statistics:

ω̂2
nd =

1

n

n∑
i=1

{
log

f α̂n(wi)

gβ̂n(wi)

}2

−

[
1

n

n∑
i=1

{
log

f α̂n(wi)

gβ̂n(wi)

}]2

+

(
r1 − 1

n

)[
1

r1 − 1

r1−1∑
i=1

(
log

f α̂n(zi)

gβ̂n(zi)

)2

−

{
1

r1 − 1

r1−1∑
i=1

(
log

f α̂n(zi)

gβ̂n(zi)

)}2 ]

+ (
n− r2
n

)

[
1

n− r2

n−r2∑
i=1

(
log

f α̂n(ui)

gβ̂n(ui)

)2

−

{
1

n− r2

n−r2∑
i=1

(
log

f α̂n(ui)

gβ̂n(ui)

)}2 ]

Thus, based on Vuong (1989), we consider the hypotheses as

H0 : Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
= 0 ⇒

[
log

F
α∗
(ζ2)

G
β∗
(ζ2)

= 0 and log
Fα∗(ζ1)

Gβ∗(ζ1)
= 0

]

Hf : Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
> 0 ⇒

[
log

F
α∗
(ζ2)

G
β∗
(ζ2)

> 0 and log
Fα∗(ζ1)

Gβ∗(ζ1)
> 0

]

Hg : Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
< 0 ⇒

[
log

F
α∗
(ζ2)

G
β∗
(ζ2)

< 0 and log
Fα∗(ζ1)

Gβ∗(ζ1)
< 0

]
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Thus, from (Vuong; Theorem 5.1),

under H0 : ℑ =
L

f
g
n

(
α̂n, β̂n

)
√
nω̂nd

D−→ N (0, 1)

under Hf : ℑ =
L

f
g
n

(
α̂n, β̂n

)
√
nω̂nd

a.s−→ +∞

under Hg : ℑ =
L

f
g
n

(
α̂n, β̂n

)
√
nω̂nd

a.s−→ −∞.

If the value of the statistic ℑ is higher than Z1−α then one rejects the null
hypothesis that the model are equivalent in favor of Fα being better than
Gβ. If ℑ is smaller than −Z1−α then one rejects the null hypothesis in
favor of Gβ being better than Fα, finally if |ℑ| < Z1−α then one cannot
discriminate between the two rival models based on the given data. Also,
Z1−α is (1− α)th quantile of standard normal distribution.

3.1 Tracking Interval for a Difference of KL Divergences
In this section, we propose the tracking interval for

∆nd(f
α̂n , gβ̂n) = EKL(h, f α̂n)−EKL(h, gβ̂n),

which should contain the difference of risks with a given probability. This
is not a usual confidence interval because ∆nd(f

α̂n , gβ̂n) changes with n. Al-
though it converges toward ∆d(f

α∗ , gβ∗), we wish to approach ∆nd(f
α̂n , gβ̂n)

for values of n for which the Akaike correction is not negligible.
We can say that the expected KL risk, EKL(h, f α̂n), is the sum of the mis-
specification risk KL(h, fα∗) plus the statistical risk 1

2nTr(IfJ
−1
f ) as (Linhart

and Zucchini, 1986):

EKL (h, f α̂n) = KL (h, fα∗) +
1
2n

Tr (IfdJ
−1
fd

) + o(n−1), (3)

where, Jfd = −Eh∗
(
∂2 log fα(Y )
∂α ∂α′

)∣∣∣
α∗

and Ifd = Eh∗
(
∂ log fα(Y )

∂α .∂ log f
α(Y )

∂α′

)∣∣∣
α∗

.
Note that if (f) is well specified, we have KL(h, fα∗) = 0 and EKL (h, f α̂n) =
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p
2n + o(n−1). Also based on Sayyareh (2012b), we have

EKL(h, f α̂n) = −Eh
{
1

n
Lfn(α̂n)

}
+ F (h) +

1

n
Tr(IfdJ

−1
fd

) + op(n
−1). (4)

Here we have essentially estimated Eh{log fα∗(X)} by Eh{ 1
nL

f
n(α̂n)}, but

because of the overestimation bias, the factor 1/2 in the last term disappears.
Akaike criterion follows from (4) by multiplying by 2n, deleting the constant
term, F (h), which we cannot estimate that, and replacing the expected value
of the normalized version of maximized likelihood function by its empirical
version. Thus, we can estimate the difference of risks ∆nd(f

α̂n , gβ̂n) as:

∆nd(f
α̂n , gβ̂n) = Eh

[
− 1

n

{
Lf/gn (α̂n, β̂n)− Tr(IfdJ

−1
fd

) + Tr(IgdJ
−1
gd

)
}]

Now, using the Akaike approximation, Tr(IfdJ
−1
fd

) ≈ p, the simple estimator
of ∆nd (f

α̂n , gβ̂n) is

Dnd (f
α̂n , gβ̂n) = −n−1

{
L

f
g
n (α̂n, β̂n)− (p− q)

}
where, p and q are the number of parameters in two rival models.
Now, we emphasis on the case where fα∗ ̸= gβ∗ . Thus using Theorem 2, we
have

n
1
2

{
Dnd(f

α̂n , gβ̂n)−∆nd(f
α̂n , gβ̂n)

}
D−→ N(0, ω2

∗d).

From this, the tracking interval for ∆nd (f
α̂n , gβ̂n) is given by[

Dnd (f
α̂n , gβ̂n)− n−

1
2 zα

2
ω̂nd, Dnd (f

α̂n , gβ̂n) + n−
1
2 zα

2
ω̂nd

]
. (5)

This interval has the property as

Ph

[
An < ∆nd (f

α̂n , gβ̂n) < Bn

]
→ 1− α

where, An = Dnd(f
α̂n , gβ̂n) − n−

1
2 zα

2
ω̂nd; Bn = Dnd(f

α̂n , gβ̂n) + n−
1
2 zα

2
ω̂nd

and Ph represents the probability with density h.

J. Statist. Res. Iran 11 (2014): 147–176



158 Tracking Interval for Doubly Censored Data with Application of . . .

4 Simulations and Real Data Analysis

4.1 Simulations

In this section we present some numerical experiments, mainly to observe
how the two rival models behave for different sample sizes, different param-
eter values of true distribution and for different censoring schemes. For this
purpose, we consider i.i.d. sample of size n of Weibull density (f

(α,β)
Weibull =

αβxα−1e−βx
α
;x > 0) say h. Because of the application of Burr distribu-

tion (Burr, 1942) in the study of biological, engineering, industrial, relia-
bility and life testing, and several industrial and economic experiments (see
for example, Panahi and Sayyareh, 2013; Rastogi and Tripathi, 2012; and
Raqab and Kundu, 2005), the rival models are considered as f (p,b)BurrXII =

pbxb−1(1 + xb)
−p−1 and g

(c,k)
BurrIII = ckx−k−1(1 + x−k)

−c−1, which are mis-
specified models. First we generate 104 Monte-Carlo data sets of sample
size n from Weibull (α, β) distribution and estimate the unknown parame-
ters of f (p,b)BurrXII and g

(c,k)
BurrIII using the maximum likelihood method under

doubly censoring. Then we construct a 0.95 tracking interval from (5). We
choose different sample sizes, namely n=20, 50,100 and 200, whereas (α, β)
for different sample sizes are taken as (α, β) = (0.5, 1), (1,1), (2,1). For dou-
bly censoring schemes, we present the results when r1 = [n ∗ p1(= 0.05)];
r2 = [n ∗ p2(= 0.96)] and r1 = [n ∗ p1(= 0.16)]; r2 = [n ∗ p2(= 0.70)], the
integer parts of n ∗ pi; i = 1, 2, respectively. The results are reported in
Tables 1 and 2. Note that we consider W, BXII and BIII instead of Weibull,
Burr XII and Burr III for simplicity.
Some of the points are quite clear from the Tables 1 and 2. It is observed
that for n=20, 50 and 100, the tracking intervals contain zero, which indi-
cates that the BXII and BIII are equal or observationally equal. But for
n=200, when the censored data increase, both limits of the tracking inter-
vals are negative. So, the BXII density is better than the BIII density to
estimate the true model ( Weibull (α, β)). Note that, we say one model is
better than the other one when the tracking interval does not contain zero.
In other words, both limits of the tracking intervals are negative or positive.
Also, the average tracking interval lengths decrease as sample size increases
for fixed (α, β). For example, from Table 1 and n = 20, the average length of
the tracking interval for (α = 0.5, β = 1) is 1.07003, this reduces to 0.378789
for n = 50, 0.267308 for n = 100 and 0.195206 for n = 200. Furthermore,
we see that for fixed n and (α, β) when censored observations increase, the
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tracking interval lengths increase.

Table 1. Choice between BXII and BIII models using tracking interval when
r1 = [n ∗ p1(= 0.16)]; r2 = [n ∗ p2(= 0.70)]

(α, β) (0.5, 1) (1, 1) (2, 1)

(n = 20) (-0.58363, 0.48639) (-0.59153, 0.49305) (-0.60420, 0.50522)
1.07003 1.08458 1.10943

(n = 50) (-0.284478, 0.094310) (-0.282334, 0.091930) (-0.287928, 0.098036)
0.378789 0.374265 0.385964

(n = 100) (-0.244766, 0.022542) (-0.242922, 0.022358) (-0.243322, 0.023218)
0.267308 0.265281 0.266541

(n = 200) (-0.215278, -0.020071) (-0.21663, -0.02023) (-0.215560, -0.019817)
0.195206 0.19640 0.195742

Table 2. Choice between BXII and BIII models using tracking interval when
r1 = [n ∗ p1(= 0.05)]; r2 = [n ∗ p2(= 0.96)]

(α, β) (0.5, 1) (1, 1) (2, 1)

(n = 20) (-0.035038, 0.044976) (-0.034334, 0.045122) (-0.040738, 0.048479)
0.080014 0.079457 0.089218

(n = 50) (-0.042450, 0.028837) (-0.042655, 0.028574) (-0.042607, 0.028515)
0.071288 0.071230 0.071123

(n = 100) (-0.029802, 0.033489) (-0.029481, 0.034172) (-0.029671, 0.033630)
0.063292 0.063653 0.063301

(n = 200) (-0.037674, 0.017800) (-0.037647, 0.017755) (-0.037566, 0.017791)
0.055474 0.055402 0.055357

4.2 Real Data Analysis
Data set 1: In this example, we present the data analysis of the micro
plasma spread factor data reported by Kang and Ng (2006) for illustrative
purposes. The authors are thankful to Dr. Asadi (2008 and 2012) for provid-
ing the data, which represent spread factor of plasma droplets. The spread
factor, ς, is defined as the ratio of splat diameter to droplet diameter, i.e.

ς =
de
Dp

,

where, de is the equivalent diameter of the elliptical splat area and Dp is the
droplet diameter before impacting on the substrate. The elliptical splat area
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is converted to an equivalent splat of circular shape so that its equivalent
diameter de can be derived. The spread factor data measured by means of
Scanning Electron Microscopy (SEM) and high resolution surface profilome-
try and reported in 0 (Data set I) and 30 (Data set II) substrate inclination
angles respectively. For datasets 1 and 2, we have divided each data point
by 4.48 and 4.54 respectively.
First we want to check whether the Weibull distribution fits the datasets
or not, and that we have used the complete datasets. For this purpose,
we present the q-q plots of datasets I (0◦) and II (30◦) in Figures 1 and
2 respectively. These plots show a strong relationship supporting the ap-
propriateness of the Weibull distribution. For datasets I and II, we also fit
Weibull, Burr XII, Burr III and inverse Weibull and report the estimated
parameter values, Kolmogorov distances and the AIC values in Tables 3 and
4 respectively. We plot the empirical and the fitted cumulative distribution
functions for different distributions and for both the datasets in Figures 3
and 4 respectively.

Table 3. Estimated parameters, K-S distances and AIC values for
different distribution functions of Dataset I.

Distribution Estimated Parameters K-S AIC

W α = 9.47927, β = 0.59586 0.1046 -66.46386
BXII p = 1.08586, b = 12.02986 0.1738 -54.98781
BIII c = 0.94491, k = 12.58930 0.1648 -54.82070
IW θ = 6.70588, λ = 0.57373 0.1863 -41.26251

Table 4. Estimated parameters, K-S distances and AIC values for
different distribution functions of Dataset II.

Distribution Estimated Parameters K-S AIC

W α = 9.47280, β = 0.61149 0.092 -43.01254
BXII p = 1.08011, b = 13.2313 0.150 -39.52303
BIII c = 0.95207, k = 13.7940 0.1415 -39.42007
IW θ = 7.87697, λ = 0.56435 0.1615 -34.09201

From Tables 3 and 4, it is clear that, Weibull with estimated parame-
ters α ∼= 9.5 and β ∼= 0.6 is the best fitted model based on the minimum
AIC criterion or the minimum Kolmogorov distance. We also want to ob-
serve how the two rival models behave for these data using tracking interval.
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Figure 1. The q-q plot of dataset I.

Figure 2. The q-q plot of dataset II.
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Figure 3. Empirical survival function and the fitted survival functions for dataset I.

Figure 4. Empirical survival function and the fitted survival functions for dataset II.
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We consider the following four different cases of rival models and censoring
schemes:

Case 1: (Burr XII and inverse Weibull) and (r1 = 3, r2 = 50).

Case 2: (Burr XII and inverse Weibull) and (r1 = 7, r2 = 34).

Case 3: (Burr XII and Burr III ) and (r1 = 3, r2 = 50).

Case 4: (Burr XII and Burr III ) and (r1 = 7, r2 = 34).

Note that, the true model (h) is Weibull distribution. For dataset I and Cases
1, 2, 3 and 4, the tracking intervals are (-0.183724, -0.074251), (-0.139226,
-0.056710), (-0.063805, 0.034970) and (-0.230943, 0.042245) respectively. It
is observed that for Cases 1 and 2, both limits of the tracking intervals
are negative, which indicates that the Burr XII is better than the inverse
Weibull to estimate the true model. For Cases 3 and 4, the tracking intervals
contain zero, as expected. So the Burr XII and the Burr III distributions are
equivalent to consider as an estimate for the true mode. Also, for dataset
II, we have the following four different cases of rival models and censoring
schemes:

Case 1: (Burr XII and inverse Weibull) and (r1 = 2, r2 = 32).

Case 2: (Burr XII and inverse Weibull) and (r1 = 5, r2 = 25).

Case 3: (Burr XII and Burr III ) and (r1 = 2, r2 = 32).

Case 4: (Burr XII and Burr III ) and (r1 = 5, r2 = 25).

Thus, for Cases 1, 2, 3 and 4, the tracking intervals are (-0.136504, -0.003690),
(-0.215939, -0.086732), (-0.054068, 0.036941) and (-0.237397, 0.064241) re-
spectively. Similar to the dataset I, it is clear that, for Cases 1 and 2, the
Burr XII is better than the inverse Weibull to estimate the true model and
for Cases 3 and 4, the two models are equivalent to consider as an estimate
for the Weibull distribution (true model).
Another important problem in engineering experiments namely the predic-
tion intervals of the future observations, based on the current available obser-
vation. So, we obtain the Prediction interval of the future observation (yr2+1)
and the ratio of two future consecutive data (yj+1/yj ; j = r2, . . . , n− 1), see
Wu (2008).
Suppose that, yr1 , . . . , yr2 present the doubly censored sample from a Weibull
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distribution with parameters α and β. Then the 100(1− γ)% prediction in-
terval of yr2+1 and yj+1/yj ; j = r2, . . . , n− 1 are given by(

κ1F1− γ
2
(2, 2(r2 − r1)) + yr2 , κ1F γ

2
(2, 2(r2 − r1)) + yr2

)
and (

κ2F1− γ
2
(2, 2(r2 − r1)) + 1 , κ2F γ

2
(2, 2(r2 − r1)) + 1

)
respectively, where,

κ1 =

(n− r2 + 1)yr2 +
r2−1∑
i=r1+1

yi − (n− r1)yr1

(n− r2)(r2 − r1)

and

κ2 = (n− r2 + 1)yr2 +

r2−1∑
i=r1+1

yi − (n− r1)yr1
yj(n− j)(r2 − r1)

.

See Appendix C for more details.
Now, we consider the dataset II and we wish to find the prediction interval
of the y31 and yj+1/yj ; j = 30, . . . , 33, based on the observed sample when
r1 = 5 and r2 = 30. The prediction interval of y31 is (5.12654, 8.45481),
therefore the real value of y31(=5.17215) falls into this interval. The predic-
tion intervals of yj+1/yj ; j = 30, . . . , 33 and their real values are presented
in Table 5. It is observed that all intervals include the corresponding real
values. Furthermore, we can see that the length of the prediction interval
increases when i increase, ( j = 30, . . . , 33).

Table 5. The 0.95% prediction intervals for the ratio of two
future consecutive data and their real values.

yj+1/yj ; j = 30, . . . , 33 Rediction Intervals Real Values

(y31/y30) (1.00055, 1.64253) 1.00792
(y32/y31) (1.00073, 1.84783) 1.01047
(y33/y32) (1.00108, 2.24593) 1.02073
(y34/y33) (1.00199, 3.33760) 1.06599

Data set 2: in this example, we provide another data analysis for more illus-
trative purposes. The data have been taken from Rupert and Miller (1997)
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and it represents the 23 patients who were diagnosed with acute myeloge-
neous cancer. Moradi et al. (2014) observed that the Burr III (BIII) and
exponentiated Burr III (EBIII) distributions work quite well for this data
and the AIC’s of them are very similar. Now, we want to compare the BIII
and EBIII distributions using the tracking interval. So, we consider BIII
(say f ) and EBIII (say g) as rival models and create three artificially doubly
censored data sets from the uncensored data set, using the following cases of
censoring schemes:

Case 1:= r1 = 2, r2 = 21.

Case 1:= r1 = 4, r2 = 18.

Case 1:= r1 = 8, r2 = 16.

In all the cases we have estimated the unknown parameters using the MLEs
and then constructed the tracking intervals. For Cases 1, 2 and 3, the
tracking intervals are (−2.4844 × 10−5, 6.6271 × 10−5), (−6.6627 × 10−4,
2.2624× 10−4) and (−8.1747× 10−4, 1.1074× 10−4). It is observed that the
tracking intervals contain zero (as we expected). So there is no confidence
that we incur a lower risk using BIII rather than EBIII distribution. Also in
all the cases, the tracking interval lengths are negligible. This indicates that
the Burr XII and Burr III are very similar in information criteria sense.

5 Conclusion
In the present work, we examined how the two rival models behave under
doubly censoring scheme. We considered an interval, say, tracking interval
for differences of the expected KL of two rival models. Our approach enlight-
ens the variability of any criterion based on log-likelihood function, like AIC
and their variants. To introduce the tracking interval, we proposed a statis-
tic which tracks the difference of the expected KL risks between maximum
likelihood estimators in two non-nested rival models. We also obtained the
asymptotic distribution of maximum likelihood estimator under doubly cen-
soring scheme. It is observed that the asymptotic distribution of maximum
likelihood estimator is asymptotically normal. The results of our simulation
study were in agreement with the asymptotic results. For an application,
we considered several statistical distribution functions to analyze the micro
plasma spread factor datasets. Using several statistical criteria, like mini-
mum Kolmogorov distance and minimum AIC value, the Weibull distribution
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with estimated parameters α ∼= 9.5 and β ∼= 0.6 appears to be more appro-
priate statistical distribution for datasets I ( 0

◦) and II ( 30
◦). These results

can be to extend for other angels of plasma spraying. We also have obtained
the tracking intervals for comparing two rival models based on different cen-
soring schemes and found that the Burr XII is closer than inverse Weibull
and Burr III to Weibull distribution.
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Appendix A

To prove Theorem 1, we use the idea of missing information principle (Louis,
1982) to obtain the asymptotic normality of the MLE under doubly censoring
scheme. For this purpose, we consider the Taylor expansion of n−1 ∂L

f
n(α)
∂α

around α = α0 as:

n−1∂L
f
n(α)

∂α
= n−1∂L

f
n(α)

∂α
|α=α0 + n−1(α− α0)

∂2Lfn(α)

∂α ∂α′ |α=α0 + op(1)

= A1 +A2(α− α0) + op(1) (6)

where,

A1 =
1

n

[{
r2∑
i=r1

∂

∂α
log fα(yi)

}
+ (r1 − 1)

∂

∂α
log{F (yr1)}

+ (n− r2)
∂

∂α
log{F (yr2)}

]
α=α0

and

A2 =
1

n

[{
r2∑
i=r1

∂2

∂α ∂α′ log f
α(yi)

}
+ (r1 − 1)

∂2

∂α ∂α′ log{F (yr1)}

+ (n− r2)
∂2

∂α ∂α′ log{F (yr2)}

]
α=α0
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We will show that, A1
P−→ 0 and A2

P−→ −Jfd , where Jfd is constant.
Using the missing information principle, the observed information under dou-
bly censoring scheme is

r2∑
i=r1

log fα(yi) =

n∑
i=1

log fα(wi)−
r1−1∑
i=1

log fα(zi | Y )−
n−r2∑
i=1

log fα(ui | Y ),

(7)
where, w = (w1, . . . , wn) = the complete data, z = (z1, . . . , zr1−1) and
u = (u1, . . . , un−r2) = the complete data of size r1 − 1 and n− r2, from the
right and left truncated population with density functions:
h∗1 = fα(z)

Fα(yr1 )
; z < yr1 and h∗2 = fα(u)

F
α
(yr2 )

; u > yr2 respectively. Note that,
the sequences of random variables W ’s, Z’s and U ’s are independent. For
simplicity, we use fα(zi) and fα(ui) instead of fα(zi | Y ) and fα(ui | Y )
in what follows. Thus, A1 can be rewritten as

A1 =
1

n

[{
n∑
i=1

∂

∂α0
log fα(wi)

}
−
r1−1∑
i=1

∂

∂α0
log fα(zi)−

n−r2∑
i=1

∂

∂α0
log fα(ui)

+ (n− r2)
∂

∂α0
log{Fα(yr2)}+ (r1 − 1)

∂

∂α0
log{Fα(yr1)}

]
≡ 1

n
(A∗

1 −A∗∗
1 ). (8)

So, from Cramer (1946), 1
nA

∗
1 = 1

n

n∑
i=1

∂
∂α0

log fα(wi)
P−→ 0 and we will

prove that

1

n
A∗∗

1 =
1

n

r1−1∑
i=1

∂

∂α0
log fα(zi) +

n−r2∑
i=1

∂

∂α0
log fα(ui)

− (n− r2)
∂

∂α0
log{Fα(yr2)} − (r1 − 1)

∂

∂α0
log{Fα(yr1)}

P−→ 0.
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We can rewritten A∗∗
1 as

A∗∗
1 =

r1−1∑
i=1

∂

∂α0
log fα(zi)−

r1−1∑
i=1

E

{
∂

∂α0
log fα(Zi)

}

+

r1−1∑
i=1

E

{
∂

∂α0
log fα(Zi)

}
+

n−r2∑
i=1

∂

∂α0
log fα(ui)

−
n−r2∑
i=1

E

{
∂

∂α0
log fα(Ui)

}
+

n−r2∑
i=1

E

{
∂

∂α0
log fα(Ui)

}
− (n− r2)

∂

∂α0
log{Fα(yr2)} − (r1 − 1)

∂

∂α0
log{Fα(yr1)}.

Under ℜ3, we have

E

{
∂

∂α0
log fα(Z)

}
=

yr1∫
−∞

∂

∂α0
log fα(z)

fα(z)

Fα(yr1)
dµ(z)

=
∂
∂α0

Fα(yr1)

Fα(yr1)
=

∂

∂α0
log{Fα(yr1)} (9)

and similarly,

E

{
∂

∂α0
log fα(U)

}
=

∂

∂α0
log{Fα(yr2)} (10)

So, A∗∗
1
n

P−→ 0. Now by using Slutsky’s Theorem, the result follows (A1
P−→ 0).

Similarly, we consider, A2 =
1
n(A

∗
2 −A∗∗

2 ), where,

A∗
2 =

n∑
i=1

∂2

∂α0∂α′
0
log fα(wi)

and

A∗∗
2 =

r1−1∑
i=1

∂2

∂α0∂α′
0
log fα(zi) +

n−r2∑
i=1

∂2

∂α0∂α′
0
log fα(ui)

− (n− r2)
∂2

∂α0∂α′
0
log{Fα(yr2)} − (r1 − 1)

∂2

∂α0∂α′
0
log{Fα(yr1)}
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We know that, A∗
2
n

P−→ −℘, and

A∗∗
2

n
=
n− r2
n

[
1

n− r2

{
n−r2∑
i=1

∂2

∂α0∂α′
0
log fα(ui)

−
n−r2∑
i=1

E

(
∂2

∂α0∂α′
0
log fα(Ui)

)}]

+
r1 − 1

n

[
1

r1 − 1

{
r1−1∑
i=1

∂2

∂α0∂α′
0
log fα(zi)

−
r1−1∑
i=1

E

(
∂2

∂α0∂α′
0
log fα(Zi)

)}]

− 1

n

[
(n− r2)

∂2

∂α0∂α′
0
log{Fα(yr2)}

−
n−r2∑
i=1

E

{
∂2

∂α0∂α′
0
log(fα(Ui)

}]

− 1

n

[
(r1 − 1)

∂2

∂α0∂α′
0
log{Fα(yr1)}

−
r1−1∑
i=1

E

{
∂2

∂α0∂α′
0
log(fα(Zi)

}]
(11)

The first and second terms in (11) converges in probability to zero. So, based
on (9), (10) and after some simplification, we obtain

∂2

∂α0∂α′
0
logF

α
(yr2) =

∂2

∂α0∂α′
0
F
α
(yr2)

F
α
(yr2)

−
[
E

{
∂

∂α0
log fα(U)

}]2
(12)

and

E

{
∂2

∂α0∂α′
0
log fα(U)

}
=

∂2

∂α0∂α′
0
F
α
(yr2)

F
α
(yr2)

−
∞∫

yr2

{
∂

∂α0
log fα(u)

}2 fα(u)

F
α
(yr2)

dµ(u). (13)
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Thus, from (11), (12) and (13), we have

1

r1 − 1

r1−1∑
i=1

[
∂2

∂α0∂α′
0
log{Fα(yr1)} − E

{
∂2

∂α0∂α′
0
log fα(Zi)

}]

=
1

r1 − 1

r1−1∑
i=1

V ar

{
∂

∂α0
log fα(Zi)

}
= B∗

Similarly,

1

n− r2

n−r2∑
i=1

[
∂2

∂α0∂α′
0
log{Fα(yr2)} − E

{
∂2

∂α0∂α′
0
log fα(Ui)

}]

=
1

n− r2

n−r2∑
i=1

V ar

{
∂

∂α0
log fα(Ui)

}
= B∗∗

where, B∗ and B∗∗ converges to bounded values, say ϑ1 and ϑ2 respectively.
Thus, −A∗∗

2
n

P−→ p1ϑ1 + (1 − p2)ϑ2, and combining of this results gives,
A2 =

1
n(A

∗
2−A∗∗

2 )
P−→ −Jfd , where, Jfd ≡ ℘+ p1ϑ1+(1− p2)ϑ2. Now, from

(6) and (8), we have

√
nJfd(α̂n − α0) =

√
nA1√
Jfd

− A2
Jfd

= (nJfd)
− 1

2

(
−A2

Jfd

)−1
{

n∑
i=1

∂

∂α0
log fα(wi)

}

−
r1−1∑
i=1

∂

∂α0
log fα(zi)

+ (nJfd)
− 1

2

(
−A2

Jfd

)−1
[
−
n−r2∑
i=1

∂

∂α0
log fα(ui)

+ (n− r2)
∂

∂α0
log{Fα(yr2)}

]

+ (nJfd)
− 1

2

{
−A2

Jfd

}−1
[
(r1 − 1)

∂

∂α0
log{Fα(yr1)}

]
(14)
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where, −A2/Jfd
P−→ 1. So, it suffices to show that the numerator is asymp-

totically N(0, 1). Using (9), (10) and Slutsky Theorem, we have

√
r1 − 1√
n

[
1√
r1 − 1

{
r1−1∑
i=1

∂

∂α0
log fα(zi)−

r1−1∑
i=1

E

(
∂

∂α0
log fα(Zi)

)}]
P−→ N (0, p1ϑ1) (15)

√
n− r2√
n

[
1√

n− r2

{
n−r2∑
i=1

∂

∂α0
log fα(zi)−

n−r2∑
i=1

E

(
∂

∂α0
log fα(Ui)

)}]
P−→ N (0, (1− p2)ϑ2) (16)

Now, using Slutsky Theorem, we obtain,

[
1√
n

n∑
i=1

∂

∂α0
log fα(wi),

1√
n

n−r2∑
i=1

{(
∂

∂α0
log fα(ui)

)
− E

(
∂

∂α0
log fα(Ui)

)}

− 1√
n

r1−1∑
i=1

{(
∂

∂α0
log fα(zi)

)
− E

(
∂

∂α0
log fα(Zi)

)}]
D−→ (V,U) ,

where, V = 1√
n

n∑
i=1

∂
∂α0

log fα(wi) ∼ N (0, ℘) and U ∼ N (0, p1ϑ1 + (1− p2)ϑ2)

and V and U are independent. Now, using continuous mapping Theorem
and (14)-(16), we conclude that

(nJfd)
− 1

2

[
r2∑
i=r1

∂

∂α
log fα(yi) + (n− r2)

∂

∂α
log{Fαyr2)}

+ (r1 − 1)
∂

∂α
log{Fα(yr1)}

]
α=α0

convergence in distribution to N(0, 1), and the proof is complete.
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Appendix B

Proof: Based on Theorem 3.3 of Voung (1989) and Theorem 1, we have

√
n

{
1

n
L

f
g
n (α̂n, β̂n)− (p2 − p1)Eh∗(τ1) + p1τ2 + (1− p2) τ3

}
=

√
n

{
1

n
L

f
g
n (α∗, β∗)− (p2 − p1)Eh∗(τ1) + p1τ2 + (1− p2) τ3

}
+ op(1)

where, τ1 = log fα∗ (Y )
gβ∗ (Y )

, τ2 = log Fα∗ (ζ1)
Gβ∗ (ζ1)

and τ3 = log F
α∗ (ζ2)

G
β∗ (ζ2)

. But from the
multivariate central Theorem, the first term in the right hand side converges
in distribution to N(0, ω2

∗d). It now suffices to show that

ω2
∗d = V arh

{
log

fα∗(W )

gβ∗(W )

}
+ p1V arh∗1

{
log

fα∗(Z)

gβ∗(Z)

}
+ (1− p2)V arh∗2

{
log

fα∗(U)

gβ∗(U)

}
.

Using the missing information principle (7), we can write V ar( 1nL
f/g
n (α̂n, β̂n))

as

V ar

{
1

n
L

f
g
n

(
α̂n, β̂n

)}
= V ar

{
1

n
η1 +

(r1 − 1)

n
η2 +

(n− r2)

n
η3

}
= V ar

[
n−1 {η6 − η7− η8 + (r1 − 1)η2 + (n− r2)η3}] .

where

η1 =

r2∑
i=r1

log
f α̂n(Yi)

gβ̂n(Yi)
, η2 = log

F α̂n(yr1)

Gβ̂n(yr1)
, η3 = log

F
α̂n

(yr2)

G
β̂n
(yr2)

,

η6 =

n∑
i=1

log
f α̂n(Wi)

gβ̂n(Wi)
, η7 =

r1−1∑
i=1

log
f α̂n(Zi)

gβ̂n(Zi)
, η8 =

n−r2∑
i=1

log
f α̂n(Ui)

gβ̂n(Ui)
.

If, r1−1
n → p1 and n−r2

n → 1− p2 as n→ ∞ such that Yr1 = ξ1n → ξ1 and
Yr2 = ξ2n → ξ2 in probability, then

ω2
∗d = V arh

{
log

fα∗(W )

gβ∗(W )

}
+ p1V arh∗1

{
log

fα∗(Z)

gβ∗(Z)

}
+ (1− p2)V arh∗2

{
log

fα∗(U)

gβ∗(U)

}
.
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Appendix C

Let yr1 , . . . , yr2 be a doubly censored sample from a Weibull distribution.
Thus vr1 = βyαr1 , . . . , vr2 = βyαr2 is a doubly censored sample from an expo-
nential distribution with parameter one and based on Thomas and Wilson
(1972), we know that,

sr1+1 = (n− r1)(vr1+1 − vr1), sr1+2 = (n− r1 − 1)(vr1+2 − vr1+1), . . . ,

sr2 = (n− r2 + 1)(vr2 − vr2−1), sr2+1 = (n− r2)(vr2+1 − vr2)

are iid random variables from a exponential distribution with parameter one.
So, 2sr2+1 ∼ χ2

2 and 2
r2∑

i=r1+1
si ∼ χ2

2(r2−r1) and they are independent. Now,

we consider the statistic λ1 as

λ1 =

(n−r2)(2β)(yr2+1−yr2 )
2

2β{(n−r2+1)yr2+
r2−1∑

i=r1+1
yi−(n−r1)yr1}

(yr2−yr1 )

.

Thus,

P ( F γ
2
(2 , 2r2 − 2r1) < λ1 < F1− γ

2
(2 , 2r2 − 2r1) ) = 1− γ.

After some simplification, we have:(
κ1F1− γ

2
(2, 2(r2 − r1)) + yr2 < yr2+1 < κ1F γ

2
(2, 2(r2 − r1)) + yr2

)
,

where, κ1 = ((n− r2 + 1)yr2 +
r2−1∑
i=r1+1

yi − (n− r1)yr1)/((n− r2)(r2 − r1) ).

Considering the statistic λ2 as

λ2 =
(n− j)(r2 − r1)(yj+1 − yj)

(n− r2 + 1)yr2 +
r2−1∑
r1+1

yi − (n− r1)yr1

; j = r2, . . . , n− 1,

the prediction interval of yj+1/yj ; j = r2, . . . , n − 1 can be obtained, simi-
larly.
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