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Abstract. A longitudinal study refers to collection of a response variable
and possibly some explanatory variables at multiple follow-up times. In
many clinical studies with longitudinal measurements, the response variable,
for each patient is collected as long as an event of interest, which consid-
ered as clinical end point, occurs. Joint modeling of continuous longitudinal
measurements and survival time is an approach for accounting association
between two outcomes which frequently discussed in the literature, but de-
sign aspects of these models have been rarely considered. This paper uses
a simulation-based method to determine the sample size from a Bayesian
perspective. For this purpose, several Bayesian criteria for sample size de-
termination are used, of which the most important one is the Bayesian power
criterion (BPC), where the determined sample sizes are given based on BPC.
We determine the sample size based on treatment effect on both outcomes
(longitudinal measurements and survival time). The sample size determina-
tion is performed based on multiple hypotheses. Using several examples, the
proposed Bayesian methods are illustrated and discussed. All the implemen-
tations are performed using R20penBUGS package and R 3.5.1 software.
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214 Sample Size Determination for Joint Modeling

1 Introduction

A crucial aspect in planning medical studies to test one or more hypotheses
tests is sample size determination. The number of subjects in a medical
study or clinical trial should be large enough to provide a sufficient power to
answer the research question under investigation and should avoid the waste
in resources and the risk of exposing the excessive number of individuals to
experimental treatments. Choosing the appropriate sample size increases the
chance of detecting an effect of treatment and ensures that the study is both
ethical and cost-effective.

In many longitudinal studies, longitudinal measurements are gathered
alongside time to event (survival) data. In these kinds of studies, an event
of interest such as death or disease progression is considered as an impor-
tant part of the study. Two important characteristics exist in these studies:
the first is missingness in the longitudinal measurements and the second is
censoring in the survival data. For designing these studies, these two types
of properties should be considered. Many studies are performed for model-
ing these kind of data (Guo and Carlin, 2004; Tsiatis and Davidian, 2004;
Baghfalaki and Ganjali, 2015; Baghfalaki et al., 2013, 2014a,b, 2017 among
other), but there is rarely studies in sample size determination based on these
simultaneous outcomes (Chen et al., 2011).

Often the required sample size in these studies are determined based on
those used for longitudinal studies. Sample size determination in classical
paradigm are discussed in many studies. The classical approaches can be
implemented by some packages such as RMASS2 (Hedeker et al., 1999),
PASS (Hintze, 2000), POWERLIB (Johnson et al., 2009) and Optimal De-
sign (Raudenbush, 1997).

Another approach for determining sample size is based on the Monte
Carlo simulation (Williams et al., 2007). In this framework, previous infor-
mation is used to repeatedly draw samples of the type to be employed in
the study from a fully specified population model. Then, it is simply cal-
culated for each simulated sample and their properties are evaluated over a
large number of repeated samples. This approach might be the only viable
alternative when complex analytical methods are to be employed and closed
formula are not available (Landau and Stahl, 2013). The above-mentioned
approaches are also classified as classical approaches. Another perspective
for determining sample size is the Bayesian one which is rarely discussed
when calculating sample size in the context of joint modeling of longitudinal
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and survival data, but frequently is used for cross-sectional data (Joseph and
Belisle, 1997; Pezeshk, 2003; Christensen et al., 2012; Wang and Gelfand,
2002 and other references therein).

Wang and Gelfand (2002) proposed a simulation-based approach to Bayesian
sample size determination. Their proposed approach is frequently used for
determining sample size in cross-sectional studies (Dendukuri et al., 2004;
Gamalo et al., 2014; Mukherjee et al., 2010; Cheng et al., 2010a,b; Dendukuri
et al., 2010). However, this approach is not used for determining sample size
in joint modeling of longitudinal measurements and survival data. In this
paper, Bayesian sample size determination for joint modeling of longitudinal
measurements and survival data is discussed based on the proposed method
of Wang and Gelfand (2002). The sample sizes are determined based on
the variation of the rate of censoring or missingness and the different con-
figurations for dependence between two outcomes. Also, multiple hypothesis
testing scenarios are discussed for sample size determination. Some exam-
ples are used for illustration of the proposed approach. The use of Bayesian
paradigm in joint modeling of longitudinal and survival data provides some
flexibility and simplicity for the analysis. As, for analyzing this kind of data
set a Bayesian paradigm may be used and so a Bayesian sample size determi-
nation (such as the approach mentioned in this paper) may provide a more
valid sample size.

This paper is organized as follows: In the next section, joint modeling of
longitudinal measurements and survival data from a Bayesian perspective is
discussed. Section 3 discusses Bayesian sample size determination for joint
modeling of longitudinal data and survival times. Section 4 covers Bayesian
sample size determination for joint modeling of longitudinal measurements
and survival data using multiple hypotheses testing and Sections 5 contains
some examples to investigate the approach. Some conclusions are given in
the last section.

2 Joint Modeling of Longitudinal Measurements
and Survival Data from a Bayesian Perspective

Let Y;(s) denote the longitudinal outcome at time point s for the ith indi-
vidual. The observed times are s;;, j : 1,2,...,n;. Thus, the longitudinal
outcomes for the ith individual consist of measurements Y'; = {Y;(s;;), j =
1, 2, cevy TLZ}
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216 Sample Size Determination for Joint Modeling

For the longitudinal process, we consider the following linear mixed effects
model:

Y;(sl]) = m;ﬁl + Z'/Lb’L +5Z(Szj)a (> 1,2,...,7’L, .7 : ]-727 -eey T, (1)

where components of €; = (g;(8;1), .., €i(8in;))’ are measurement errors, 3; =
(B11, -, Bip,)" is a p1-dimensional vector of longitudinal fixed-effect param-
eters, b; = (bi1, ..., big)’ i 4(0,D) is a g-dimensional vector of ran-
dom effects and is independent of €;. Also, «; and 2 are, respectively,
p1-dimensional and ¢-dimensional explanatory variables. We assume that
i YN, (0,021,).

Let T; denote the observed survival time for the ith individual, 7 : 1,2, ..., n,
which is taken as the minimum of the true event time 7;" and the cen-
soring time Cj, ie., T; = min(T;,C;). We define a censoring indicator,
0 = I(T} < Cj), which is 0 for right-censored individuals and 1 for com-
pletely observed individuals. Therefore, the observed data for the time to
event outcome consist of the pairs {(7;,6;), ¢ = 1,2,...,n}. For the time
to event process, we consider a parametric proportional hazard model with
Weibull baseline hazard in a frailty structure. The use of the Weibull propor-
tional hazard model has some advantages: The exponential model is nested
in the Weibull model; also, the Weibull model is the only model that is both
a proportional hazard model and an accelerated failure time model. The
estimated parameters can easily be transformed from one model to the other
and back; for more properties of the parametric proportional hazard model,
see Wienke (2011). The hazard function in our proposed model is given by

h(ti|w;, p,b;) = vt? texp {wiB, + p'bi} . (2)

Thus, the density function of the survival time for the ¢th individual can be
written in the form:

(vt L exp {wiB, + p’bi})‘si x exp {—t} exp {w)B; + p'b; } }

where wj is a pa-dimensional vector of explanatory variables, B, = (821, ..., B2p, )’
is a po-dimensional vector of time to event fixed effect parameters, p =
(p1y ey pq)’ is a ¢g-dimensional vector of parameters of the time to event pro-

id
cess and b; ~ N, (0, D).

If an event occurs at time T;, that is ¢th individual experiences death
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or drops out, then after that event longitudinal measurements can not be
observed. Therefore, Y'; can be partitioned into Y o5 = {Yi(si5) : 515 <
T;,j = 1,2,...,n;} which contains all observed longitudinal measurements for
the ith individual before the observed event time Tj, and Y ;mis = {Yi(sij) :
sij = Tj,j = 2,...,n;} which contains the longitudinal measurements that
should have been taken until the end of the study. In this context, some
individuals are missing due to dropout or death. If the probability of the
event occurring is dependent on the unobserved outcome, then missingness
is non-ignorable or dropout is non-random.

In our model, p is the non-ignorability parameter. This means that if p =0
then the longitudinal measurements and the event time are independent and
when p # 0, the degree of non-ignorability depends on its value, that is a
large significant value of components of p cause non-ignorability.

The Bayesian methodology will be implemented using MCMC techniques
for the joint modeling of longitudinal and survival data. It can be formulated
in a flexible hierarchical representation as follows:

Yib N, (XiBy + Zibi, 021,,), (3)

where X; = (X7y,..., X},.) and Z; = (Z}y,...,Z}, ) are p; x n; and ¢ x

n; matrix of explanatory variables. Also, the survival model based on the
parametric proportional hazard model is given by:

ind.

Tilb; ~  Weibull(w,35 + p'b;,v). (5)

It is important to note that the components of b; are shared between two
models (models of Equations 3-5) and joint modeling forms using them. Sup-

pose that Ymis = (yll,mis7 y/2,mis? T 7y;L,mis)/7 Yobs = (yll,obs7 y/2,0bs7 I yln,obs)/7
b= (b},b,,....,b,) and t = (t1,ts, ..., t,)". Therefore, the likelihood function
for complete data Data = (Y/,,;5, Y.y, t', ') is given by

L(0|Data) o« 11 [¢n, (y;; XiB) + Zibi,021,,,) (6)
=1

X (vty ™ exp {wiB, + P/bi})gi
x exp {—t} exp {wiBy + p'bi} }
X ¢q(bs;0,D)].
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218 Sample Size Determination for Joint Modeling

Bayesian specification of the model needs to consider prior distribution for all
the unknown parameters, in our modeling 8 = (3, 35, D, p,02,v)". Because
of, not having prior information from historical data or previous experiment,
we shall try to assign non-informative prior distributions for the parameters.
Assuming elements of the parameter vector to be independent, the prior
distributions are given by:

B ~ Nm (ﬁop 201), By ~ sz(ﬁoz, 202), (7)
D ~ :[Wq(n7¢)7 vV~ F(aljvTV)a

02 ~ 10 (ag,70), pr ~ N(,upk,azk), k=1,...q.

The hyper parameters of these priors are selected in such way that they lead
to the low-informative prior distributions. The joint posterior density of all
unobservable components is given by the combining of the likelihood function
(6) and the prior distribution (7):

(0,5, Ypis[Uppsr 1) X ilzll [fn, (yi: XiBy + Zibs, 021y, (8)
X ¢q(bi;0,D)
X (Vt,l;_l exp {w’,BQ + p’bi})(;i
x exp{—t{ exp{w'By + p'b;} }] x 7(0).

MCMC methods such as the Gibbs sampler and Metropolis-Hastings algo-
rithm can be used to draw samples, from which features of marginal posterior
distribution of interest can be inferred. The Gibbs sampler works by draw-
ing samples iteratively from conditional posterior distributions deriving from

(8).

3 Bayesian Sample Size Determination for Joint
Modeling

Based on the Bayesian sample size determination approach proposed by
Wang and Gelfand (2002), which is a simulation-based approach, two sets
of priors are considered. The first set is called the “fitting” or “analysis”
priors which are used for analyzing data. The other set of priors is called
“design” or “sampling” sets which drawing upon expertise, we may speculate
upon a variety of informative scenarios regarding the unknown parameters
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and capture each with a suitable sampling prior. In the first step of the
simulation-based approach, one generates the parameters from the design
priors then a sample from the generated parameters is obtained. Note that
the frequentist /classical viewpoint of the sample size determination approach
requires a point estimate of the variance and the smallest meaningful differ-
ence (Diggle et al., 2002). This information is elicited based on pilot data
or the opinion of experts. The use of design priors in the proposed ap-
proach of Wang and Gelfand (2002) replaces this part of the classical sample
size determination approach. After generating data using the design priors
in this stage, they are analyzed by the fitting priors. In this paper, non-
informative priors are used as fitting priors [as mentioned in equation (7)],
as we assume there is no prior information or any expert opinion to be used
to construct a prior distribution. If there is any prior information to be used
to elicit an appropriate prior distribution, one may use it in the step of fit-
ting prior and for sure, if the specification of the prior is correct, one will
achieve a better result. In general, significance of a regression coefficient is
used to obtain the optimal sample size. This approach can be improved by
choosing a threshold other than zero or any other function of the parame-
ters of interest. Let Data™ = (asgn),wgn),y(”),t(”)) be a generated data
set using design priors with sample size n. Also, consider models (1) with
x B + z;b; = B0+ LBrixri + D _peo Bie®ki + boi + biit;, where x1 is the treat-
ment /placebo binary factor of interest and (17 is its regression coefficient of
interest for determining sample size based on the longitudinal model. Again,
consider models (2) with w}By = B0+ B2121i+ Y120 BokWki, where x is the
treatment /placebo binary factor of interest and [32; is its regression coeffi-
cient of interest for determining sample size based on the survival model. In
this paper, four criteria are used for determining sample size in joint model:
Bayesian power criterion (BPC), average length criterion (ALC), average
posterior variance criterion (APVC) and average converge criterion (ACC).
In the following, at first 811 is used for describing the criteria that form the
sample size determination of the longitudinal model in detail. This discussion
is the same for determining sample size based on survival model.

BPC Consider hypothesis test Hp : 511 < 0 versus Hy : 811 > 0; that is, the
relationship of the binary factor and the response variable is expected
to be positive. BPC (Wang and Gelfand, 2002; Baghfalaki, 2019)
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based on the sample size n and probabilities « and 7 is given by
E [I <P(ﬁ11 > 0|Data(™) > 1 — a)] >, 9)

where I(+) is an indicator function. By this approach, we are looking
for n such that the expected of having high posterior probability of a
significant 511 (at 1 — « level) is high (at least ). The common choice
for a is 0.01, 0.05 or 0.1, also, n is usually considered to be 0.8 or 0.9.
Based on (9), the sample size is determined as the optimal value of n
such that P(8y; > 0|Data™) > 1 — a at least %100(1 — n). If the
hypothesis test is considered as Hg : £11 = 0 versus Hy : 8 < 0, the

BPC is defined as E {I <P(B11 < 0|Data™) > 1 — a)] > .

ALC (Wang and Gelfand, 2002; Baghfalaki, 2019) Consider an equal tails

(1 — «) Bayesian interval estimation
C(Data™) = (L, 5(Datal™),U,_, »(Data™)).
Given [ > 0, the ALC seeks n such that
E[U;_q/2(Data™) — L, »(Data™)] <1 (10)

i.e. to find an optimal sample size that for it the expected value of
width of the interval is smaller than [. Note that a (1 — «) highest
posterior density (HPD) can replace the equal tails interval.

APVC (Wang and Gelfand, 2002; Baghfalaki, 2019) Given e > 0, the APVC

seeks n such that E (var(ﬁn\Data(”))) < €. i.e. such that the ex-

pected value of the posterior variance of 511 to be as small as possible.
Instead of the variance, the average posterior interquartile range or
other measures of dispersion might be used. This approach may be
regarded as an estimation or hypothesis testing approach.

ACC (Wang and Gelfand, 2002; Baghfalaki, 2019) Suppose C(Data(")) is

a Bayesian interval estimation or HPD with length ¢£. ACC seeks n
such that

E (P(Bn € C(Data(”))]Data(”))) >1-a. (11)

i.e. find n such that the expected value of posterior probabilities of
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coverage of 311 to be large (e.g. larger than for example 1 —a = 0.9 or
0.95).

The simulation-based approach of Wang and Gelfand (2002) can be sum-
marized as follows:

1. Specify the value of the effect of 511 that is of interest and specify the
design and fitting priors.

2. For each sample size n, the following steps are repeated M times:

(a) Generate values of the unknown parameters from their design pri-
ors.

(b) Simulate the values of covariates from continuous or discrete dis-
tributions and the response variables from its distribution.

(c) Analyse the generated data set of step (2b) using the fitting priors.
(d) Calculate BPC.

3. Fit a curve or surface through Bayesian power values and find an ade-
quate sample size for a desired power using interpolation. In this paper,
the curve is fitted using a polynomial regression.

In step 2(d), one can calculate ACC, APVC, or ALC and determine the
sample size based on these criteria. ACC is a controlling criterion, that is,
a sample size is obtained such that ACC is relatively large. In the following
section, the Bayesian sample size determination using multiple testing for
joint modeling is also illustrated. We have used the available software pack-
ages OpenBUGS (Spiegelhalter et al., 2003) and R ([sec:hello]https://cran.r-
project.org/) for implementation of the models and the method. The pro-
gram codes for determining the sample sizes are available under request from
the authors.

4 Bayesian Sample Size Determination Using Mul-
tiple Testing for Joint Modeling

For sample size determination by considering the effect of treatment /placebo
on both the longitudinal and survival models, we use multiple testing ap-
proach. In the following, we discuss multiple testing for this frameworks.
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1. Consider models (1) and (2), such that 3, + 2.b; = 10 + Sriz1; +
Skt Bie@ri+boi+biit; and wiBy+p'b; = Pao+Lo121i+ Y he s PokWii+
p1boi + p2bii. Also, let z1 be the treatment/placebo binary factor of
interest and 811 and P21 are two regression coefficients corresponding to
longitudinal model and survival model, respectively. Specify the values
of the effect of 817 and P21 that is of interest and specify the design
and fitting priors.

2. For each sample size n, the following steps are repeated M times:

Generate values of the unknown parameters from their design pri-
ors.

Simulate the values of covariates from continuous or discrete dis-
tributions and the response variables from its distribution.

Analyse the generated data set of step (2b) using the fitting priors.

If the relationship between x; and the response variable is ex-
pected to be positive, the BPC is given by

E [I (P(Bn > 0|Data™) > 1 — a> I (P(ﬁQ1 > 0|Data™) > 1 — a)} >,

If the relationship between x; and the longitudinal response vari-
able is expected to be positive, but the relationship between x;
and the survival variable is expected to be negative, the BPC is
given by

E [I (P(ﬁn > 0|Data™) > 1 — a> I (P(ﬁm < 0|Data™) > 1 — oz)} > .

This criterion can be modified by a threshold other than 0 or any
other function of the parameters of interest.

3. Fit a curve or surface through Bayesian power values and find an ade-

quate sample size for a desired power using interpolation. In this paper,
the curve is fitted using a polynomial regression.

Note that ALC, APVC and ACC can be defined for each parameter of
interest separately. However, one can aggregate them using a function such
as the mean. In this paper, the first paradigm, i.e. the consideration of each
parameter separately, is adopted.
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5 Applied Simulated Examples

In this section, the proposed approaches are illustrated using some simulated
examples. The effect of different association parameters, different number
of repeated measurements of longitudinal data, various rates of censoring of
survival times and the use of the separate model instead of joint model on
required sample sizes are illustrated.

5.1 The Effect of Different Association Parameters

Consider a continuous response variable with n;, = m = 3,8, ¢ =1,2,....n
repeated measurements with n individuals. The treatment indicator is de-
noted by Treat, where Treat = 1 if the treatment is given and Treat = 0 if
a placebo is used. We assume that the linear predictor for longitudinal and
survival model are, respectively, u?j = Bio + Builreat; + Prat; + bio + birtj
and p! = Bag + BaTreat; + pibio + pabi1, where Treat is equally allocated
to treatment and placebo groups. Also, 10% rate of censoring is considered
and t is considered as observed time point of longitudinal measurements and
is a vector such that t = (2,6,8,10, 12, 14,16, 18)’, also, for m = 3 the three
first components are considered. We assume that b; = (bjo, b;1)’ is the vector
of random effects with distribution Ny(0,D). The design and fitting priors
for described joint model (1) and (2) with the above-mentioned linear pre-
dictors are given in Table 1. After considering this design prior, the rate of
missingness are varied in range of 10% to 40%. The purpose is sample size
determination based on (11 and 1, so we fix f11 = 1 and f21 = —1 and
use two degenerated distributions at these points as design priors for them,
but one can consider other values for them. Also, we consider five different
association design priors for association parameters p; and pg (for simplicity
we consider p; = pz). In all the results of this paper, we ran two paral-
lel MCMC chains with different starting values for each 15000 iterations.
Then we discarded the first 5000 iterations as preconvergence burn-in and
retained 10000 as the posterior analysis. Then we have checked convergence
of parameter estimates using Gelman and Rubin diagnostic test for the joint
model (Gelman and Rubin, 1992).

Figure 1 shows BPC for different sample sizes for 1 — a = 0.9 and 0.95.
This figure shows that increasing the absolute value of association parameters
decreases the BPC. Also, the higher the number of repeated measures is, the
lower the needed sample size is for a given level of BPC. Table 2 shows the
required sample size for attaining the values of 0.8, 0.9 and 0.95 for BPC
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Table 1. Design and fitting priors for sample size determination.

Parameter Design prior Fitting prior
Bio N(5,0.3) N(0,1000)
B11 Degenerated at 1 N(0,1000)
B2 N(1,0.2) N(0,1000)
ol U(1,3) 1T(0.01,0.01)
D IW(I2,2) IW(1012,2)
B20 N(1,0.25) N(0,1000)
Ba1 Degenerated at -1 N(0,1000)

N(-4,0.2) N(0,1000)

N(-2,0.2) N(0,1000)

01, P2 N(0,0.2) N(0,1000)
N(2,0.2) N(0,1000)

N(4,0.2) N(0,1000)

v N(2,1/0.4) r(0.1,0.1)

and for 1 — a = 0.9 and 0.95. This table shows that the higher the BPC
and 1 — « are, the higher is the sample size. Also, the results shows that the
larger number of repeated measurements lead to the larger values of BPC
and therefore, a smaller number of required sample sizes. Figures 2, 3 and
4 show ACC, ALC and APVC for different sample sizes, respectively. Note
that in this paper, ACC is used as a controlling criterion, that is, a sample
size is obtained such that ACC is relatively large. Figure 2 shows that the
values of ACC for all different sample sizes are more than 0.8. Also, Figures
3 and 4 show that the larger sample sizes and the larger number of repeated
measurements lead to the smaller values of ALC and APVC. For example,
the required sample size for an ALC of 511, when p; = ps = —2, equal to
2 is 207 for m = 3 and 96 for m = 8 and for an ALC of £2; equal to 2
is 316 for m = 3 and 165 for m = 8. Also, a level of APVC of (811, when
p1 = pa = —2, equal to 0.5 is required sample sizes 364 and 40 for m = 3
and m = 8, respectively, also, a level of APVC of 821, when p; = ps = —2,
equal to 0.5 is required sample sizes 189 and 153 for m = 3 and m = 8,
respectively.
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Figure 1. The BPC for different sample sizes, different association parameters and different
number of repeated measurements. The panel (a) for 1 — a = 0.9 and m = 3, the panel (b)
for 1 — a = 0.95 and m = 3, the panel (c) for 1 — a = 0.9 and m = 8 and the panel (d) for

1—a=0.95and m =8.

Table 2. Required sample sizes to make a BPC of 0.8, 0.9 and 0.95 using joint modeling.

m=3 m=2_8
BPC

1-—« p1 = p2 0.8 0.9 0.95 0.8 0.9 095
-2 346 730 825 221 305 395
531 829 887 239 329 617
0.9 225 311 393 134 204 257
-4 553 905 924 466 783 885
4 894 973 998 449 905 973
-2 453 812 881 256 348 832
705 859 907 298 461 850
0.95 0 297 466 677 171 241 328
-4 724 947 961 535 746 947
4 983 1023 1039 538 902 949
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Figure 4. The APVC for different sample sizes, different association parameters and different
number of repeated measurements. The panel (a) for 811 and m = 3, the panel (b) for 821
and m = 3, the panel (c) for 11 and m = 8 and the panel (d) for 821 and m = 8.

5.2 The Effect of Separate Models Instead of Joint Model

In this subsection, for investigating the effect of the use of separate models
instead of joint model, we fixed some status in the previous section: p; =
pos = —2 and m = 8. Separate models contain a mixed effects model for
analysing longitudinal data and a parametric proportional hazard model with
Weibull baseline hazard for analysing survival times. These models are fitted
separately on each outcome. The separate models and joint model are used
for analyzing the data and the mentioned criteria for determining sample
sizes are calculated. Table 3 shows the required sample sizes for attaining
the values of 0.8, 0.9 and 0.95 for BPC and for 1 — a = 0.9 and 0.95. This
table shows that for attaining a pre-defined BPC a very larger sample size
is required in the use of separate models instead of the joint model. Also,
Figure 5 shows BPC for 1 — a = 0.9 and 0.95 for this example.

5.3 The Effect of Different Rates of Censoring

This subsection is performed for investigating the effect of different rates
of censoring on the required sample size for attaining a pre-defined level of
BPC. For this purpose, the example of the previous subsection with three
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Table 3. Required sample sizes to make a BPC of 0.8, 0.9 and 0.95 using joint modeling with

m = 8 and p1 = p2 = —2 for separate and joint models.
BPC
11—« model 0.8 0.9 0.95
0.9 joint model 221 305 395
separate model 940 1006 1032
0.95 joint model 256 348 832

separate model 1076 1157 1190
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Figure 5. The BPC for different sample sizes, and different number of repeated measure-
ments for p1 = p2 = —2 and m = 8. The panel (a) for 1 — a = 0.9 and the panel (b) for
1—a=0.95.
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Table 4. Needed sample sizes to make a BPC of 0.8, 0.9 and 0.95 using joint modeling with

m = 8 and p1 = p2 = —2 for different rates of censoring.
BPC

1 —a  censoring rate 0.8 0.9 0.95

0.9 10 221 305 395

30 654 778 883

50 706 853 906

0.95 10 256 348 832

30 687 802 902

50 759 883 930

rates of censoring 10%,30% and 50% are considered. The required sample
sizes for attaining BPC of 0.8, 0.9 and 0.95 and for 1 — a = 0.9 and 0.95
are given in Table 4. The results of this table show that the higher the rate
of censoring and the higher the value of 1 — « the smaller and the values of
BPC. Therefore, the required sample sizes for attaining a level of BPC for
higher rates of censoring is larger than those of a lower rate of censoring.
Figure 6 shows BPC for different sample sizes for 1 — a = 0.9 and 0.95.
This figure shows that increasing of the rate of censoring decreases the BPC.

6 Conclusions

In this paper, a simulation-based approach is proposed for determining sam-
ple size in joint model of longitudinal measurements and survival times. For
this purpose, the sample size is determined based on Bayesian power crite-
rion. Also, some other criteria such as average length, average coverage and
average posterior variance are evaluated to obtain the desired sample size.
Some tables containing the desirable sample size are provided for BPC values
equal to 0.8, 0.9 and 0.95. Also, the sample sizes based on the interpolation
of ALC and APVC are obtained and in all the sample size determinations
the AC criterion is checked to be a large value.

In this paper, multiple hypotheses testing are used for sample size deter-
mination. In this framework, the effect of an event of interest on both the
longitudinal model and survival model is investigated.

In comparison with other criteria which discussed in this paper, sample
size determination based on BPC is more reasonable, because some pre-
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Figure 6. The BPC for different sample sizes, and different rates of censoring for p1 = p2 =
—2 and m = 8. The panel (a) for 1 — a = 0.9 and the panel (b) for 1 — a = 0.95.
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defined thresholds exist for this criterion and one can try to have a sample
size with large value of BPC. In usage of ALC and ACC, we use the simul-
taneous confidence intervals with Bonferroni correction, as we consider, the
Bonferroni corrected simultaneous confidence intervals is at level « and the
family wise error rate is controlled at level 0.1.

In this paper, random right censored survival times are considered, but
one can investigate the effect of other type of censoring in future studies.

As future work, one can use another multiple comparison correction or
define the algorithm for defining Bayesian credible region for multiple testing
such as those defined by Breth (1978), Turkkan and Pham-Gia (1997), Shal-
loway (2014) among others. The APVC is a criteria for controlling expected
value of the posterior variance and one should control the posterior variances
of both parameters by controlling the posterior variance of each parameter.
As another note, one can conclude that the BPC is more a “making decision”
type of criteria, while the others are “how accurate the conclusion would be”
type of criteria. Because of this the final conclusion by using the BPC is
based on BPC probabilities which has a “type I error” type of interpretation
but the other criteria do not seem to do the same role. In this paper, the
effect of the censoring rate is also investigated. As expected the smaller rate
of censoring leads us to more accurate parameter estimation. Based on the
results, one can conclude that this accuracy leads to smaller sample size for
a pre-defined level of BPC. Also, as many authors pointed in the literature
of joint modeling of longitudinal data and survival times, the use of the sepa-
rate models instead of joint model leads to biased parameter estimates. This
inaccuracy is reflected by large sample sizes.

In this paper, we use non-informative priors for fitting priors, if there exist
any prior information to be used to help the elicitation of an appropriate
prior distribution we may use it in our fitting priors. Also, ACC is used
as a controlling criterion, that is, a sample size is obtained such that ACC
is relatively large. The other criteria such as ALC and APVC have not
any threshold and the sample size determination based on them required a
pre-chosen or pre-determined value. One would consider a multi-objective
criterion for determining sample size based on more than one criterion.

In this paper, we discussed sample size determination for continuous lon-
gitudinal data in the joint modeling. As a future work, one can consider
sample size determination based on the approach proposed in this paper for
binary or ordinal longitudinal data.

Another point which should be discussed in this paper is the use of
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Bayesian paradigm for sample size determination instead of classical ap-
proach. When Bayesian approach is used for statistical inference, one can
apply the Bayseian sample size determination for detecting required sample
size, but an analysis with a classical paradigm needs classical sample size
determination. In most of the classical approach for determining sample size
a term cost is considered but in our approach this term can not be considered
and considering it is an open problem in longitudinal data setting. However,
by any word obtaining more accurate sample size in a study reduce the cost
of the study.

One of the most important points in using the Bayesian sample size de-
termination is the use of Bayesian paradigm and its benefits. The simplicity
and flexibility of MCMC approach in determining sample size is an impor-
tant point which should be referred. A disadvantage of using this approach
is in the choice of the prior distributions which a discussion about it can be
considered as future work.

In this paper, the effects of association parameter, censoring rate and
the usual separate model are investigated. In a similar way, the effect of
different covariance matrix of the random effects, for considering within-
subject correlation, can be investigated. Also, a linear mixed effect model
and a linear frailty model are, respectively, used for longitudinal and survival
modeling. As a future work the nonlinear counterparts of these models can
be investigated for sample size determination.
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