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Abstract. The present work focuses on the second order Markov chain
model which arises in a variety of settings and is well-suited to be modeled
in many applications. The efficiency of the maximum quasi-likelihood esti-
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also given to discuss the feasibility and computational complexity of the QL
approach relative to the full likelihood approach.
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1 Introduction

The maximum likelihood (ML) approach is often difficult to carry out nu-
merically, in the theory of many complex models with high dimensional
dependencies. The pseudo-likelihood (PL), which is the product over condi-
tional densities, and quasi-likelihood (QL), which is the products of marginal
likelihoods for many small subsets, are two different ways to approximate the
maximum likelihood estimator. In recent years much progress has been made
to use and study the behavior of the maximum pseudo-likelihood and max-
imum quasi-likelihood estimators. Hu and Zhang (2010) present testing
procedures based on pseudo-likelihood ratio statistics with the biased obser-
vations and show their asymptotic distributions under the null hypothesis.
We refer the reader to Gong and Samaniego (1981); Liang and Self (1996)
and Hu et al. (2007), for more details.

The ML method is classic, see Anderson and Goodman (1957) and
Billingsley (1961a,b), but the QL results go back to the works of Besag
(1974, 1977). The composite likelihood proposed by Lindsay (1988) forms
by combining of likelihoods for small subsets of the data, and inherits some
good features of the full likelihood which are useful for inference, see Cox and
Reid (2004). Quasi-likelihood is a special case of the composite likelihood,
in which the quasi-likelihood is formed by the product of the bivariate proba-
bility density of all possible pairs of observations. It is attracting researchers
in handling high dimensional data analysis when the full likelihood is com-
putationally difficult to evaluate, or intractable when complex dependencies
are involved, e.g. in Markovian random fields for spatial and spatio-temporal
applications and some type of highly structured hidden Markov models.

The computational feasibility of the pairwise likelihood approach relative
to the full likelihood approach are studied by many authors. General discus-
sion on theoretical aspects and possible applications of QL is given in Cox
and Reid (2004); Varin (2008) and Varin et al. (2011). Hjort and Varin
(2008) discussed and compared three methods of estimation, the ML, a kind
of the pseudo-likelihood and the quasi-likelihood, in the case of traditional
Markov chain models. In the Markov chain models, the ML would typically
be the first choice, because of its simplicity and efficiency. But, it is worth
studying the QL alternative in situations where it is still of interest (and
appropriate) to compare the statistical behavior of the estimators, see Hjort
and Varin (2008). They have also found that the QL strategy is typically
preferable to the PL in the Markov chain models.
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The present work focuses on the second order Markov chain model which
arises in a variety of settings and is well-suited to be modeled in many applica-
tions. In chemistry, due to steric effects (arisen from the fact that each atom
within a molecule occupies a certain amount of space, Chan and Thouas,
2015), second-order Markov effects may also play a role in the growth of
some polymer chains. In the internet applications, Markov models have also
been used to analyze web navigation behavior of users. A user’s web link
transition on a particular web site can be modeled using first- or second-
order Markov models and can be used to make predictions regarding future
navigation and to personalize the web page for an individual user. In music,
a second-order Markov chain can be considered. The first, second, third and
fourth order Markov chain can also be used to calculate the transition prob-
ability for two-, three-, four- and five-amino-acid sequences, see Wu (1999,
2000). Due to correlation between data in these siutations, the exact max-
imum likelihood estimation, is often a challenge to compute, and thus, we
propose the pairwise likelihood approach that aim to balance statistical and
computational efficiency, see Varin et al. (2011) for real-world references.

It is well-known that the one dimensional Markov chain of order m is
equivalent to an m dimensional first order Markov chain. As a simple ex-
ample, a second order model for DNA is equivalent to a two dimensional
first order model that is comprised of the 16 dinucleotedes. A sequence of
CGACG (five bases) would be treated as a chain of CG-GA-AC-CG (four
states) with each symbol being drawn from the two dimensional setting. Nev-
ertheless, the skeleton of high order model is often preferable for analysis of
one dimensional Markov chain of higher order, see Singh (2003). Therefore,
in this work, we will work directly with structure of the one dimensional
Markov chain of order m, instead of its equivalent m dimensional first order
Markov chain.

We concentrate on the QL method and specify its efficiency in the un-
derlying second order Markov chain models. We have argued about the
feasibility of the QL approach and discussed its computational complexity
relative to competing approaches, however, there is in general, some loss of
efficiency compared to ML method. Practical results of the QL and ML are
brought into light and some efficiency calculations are presented.

This paper is organized as follows. Preliminaries are given in Section 2.
The limiting distribution of ML and QL estimators are established in Section
3. In this section, we also provide some efficiency calculations to demonstrate
the feasibility of the proposed QL approach.
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2 Preliminaries

Let X0, X1, . . . be an irreducible Markov chain of order m (being a positive
integer) on a finite state space S, in the sense that

P{Xn = xn|Xk = xk, k < n} = P{Xn = xn|Xk = xk, n−m ⩽ k < n}, (1)

for all xi ∈ S, i = 0, 1, . . . , n. Without loss of generality, the elements of S
(states) can be considered as a set of integers, S = {1, 2, . . . , s}.

The model reduces to the classical (or simple) Markov chain, whenever
m = 1. Throughout what follows, it will be assumed that the Markov chain
has stationary transition probability, that is the conditional probabilities in
(1) will depend only on the order m, and on the {xk, n −m ⩽ k < n}, and
not on the integer n. In the classical Markov chain, the initial probabilities
are pi = P{X0 = i}, i = 1, 2, . . . , s;

∑
i
pi = 1 and the transition probabilities

are pij = Pr{Xn = j|Xn−1 = i}, i, j = 1, 2, . . . , s;
∑
j
pij = 1. When the

pijs are specified functions of some unknown parameters θ, the estimation
problem of θ by means of a sequence of observations from the chain can be
addressed.

In this paper, we treat the case m = 2, i.e., the second order Markov
chain. The method can be easily extended to the higher order cases in the
same manner.

Let X0, X1, . . . be a second order Markov chain on a finite state space
with stationary transition probabilities. In this case, (1) reduces to

Pr{Xn = xn|Xk = xk, k < n} = Pr{Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2}.
(2)

On the merits of simplicity, the corresponding parametric model of (2)
can be considered of the form

pa,b,c(θ) = Pr
θ
{Xn = c|Xn−1 = b,Xn−2 = a}, a, b, c = 1, . . . , s, (3)

where θ is some underlying parameter vector. The chain is observed from
time zero to time N. The aim is to compare the full and pairwise likelihood
methods and to see whether there is some loss of efficiency for parameter
estimation in the underlying second order Markov chain models, in a large
sample setting, i.e., as N grows towards infinity.
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3 Main Results

The traditional full maximum likelihood method (ML) maximizes

lN (θ) = Pr(X0 = x0, X1 = x1)
N−1∏
i=1

Pr
θ
(Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1)

=
∏
a,b,c

p
Ia,b
a,b (θ)pa,b,c(θ)

Na,b,c ,

where Na,b,c counts the number of transitions from a to b and b to c, i.e.,

Na,b,c =

N−1∑
i=1

I{(Xi−1, Xi, Xi+1) = (a, b, c)},

and Ia,b = I(X0 = a,X1 = b).

We assume that the true model is specified by setting θ = θ0. Let ua,b,c(θ)
(p-vector) and ia,b,c(θ) (p × p matrix) be the first and second derivatives of
log pa,b,c(θ) and

J =
∑
a,b,c

papa,bpa,b,cua,b,cu
T
a,b,c.

Now focus on the ML estimator, say θ̂ML, which under regularity conditions,
as stated in Geys et al. (1997); Molenberghs and Verbeke (2005), is the
solution of the score function given by

UN (θ) = ∂ log lN (θ)/∂θ =
∑
a,b,c

Na,b,cua,b,c +
∑
a,b

sIa,bua,b = 0.

Under the regularity conditions, it is well-known that
√
N(θ̂ML − θ) →d N(0,J−1),

see e.g. Billingsley (1961). The quasi-likelihood method maximizes the func-
tion

ql2(θ) =

N∏
i=1

Pr
θ
(Xi−1 = xi−1, Xi = xi) =

∏
a,b

{pa(θ)pa,b(θ)}Na,b , (4)

where Prθ{Xi = a} = pa(θ). The quasi Likelihood (QL) forms by products
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of marginal likelihoods for some small subsets. The considered method is a
second order QL method. The higher order QL can also be considered. For
example, the third order version of QL function can be written as

ql3(θ) =
N−1∏
i=1

Pr
θ
(Xi−1 = xi−1, Xi = xi, Xi+1 = xi+1)

=
∏
a,b,c

{pa(θ)pa,b(θ)pa,b,c(θ)}Na,b,c . (5)

In general, with a fixed order k for QL method,

log qlk(θ) =
∑
a

Na,.,. log pa(θ)+
∑
a,b

Na,b,. log pa,b(θ)+(k−2)
∑
a,b,c

Na,b,c log pa,b,c(θ).

In order to establish the limiting distribution of the QL estimator of order
k, say θ̃QLk

, set

H =
∑
a

pauau
T
a , F =

∑
a,b

papa,bua,bu
T
a,b, L =

∑
a,b

papa,bua,bκ
T
a,b,

and

G =
∑
a,b

paγa,buau
T
b , M =

∑
a,b,c

papa,bpa,b,cua,b,cκ
T
b,c,

R =
∑
a,b,c

papa,bpa,b,cua,b,cψ
T
b,c, K =

∑
a,b,c,d

papa,bωa,b,c,dua,bu
T
c,d,

where

κa,b =
∑
k≥0

∑
d

(p
(k)
a,b,d − pd)ud, γa,b =

∑
k≥1

(p
(k)
a,b − pb),

ψb,c =
∑
k≥0

∑
e,f

(r
(k)
b,c,e,f − pepe,f )ue,f , ωa,b,c,d =

∑
k≥1

(
r
(k)
a,b,c,d − pcpc,d

)
,

r
(k)
a,b,c,d =

∑
a1,...ak−1

pa,b,a1pb,a1,a2pa1,a2,a3 . . . pak−2,ak−1,cpak−1,c,d,

r
(0)
a,b,c,d = pa,b,dδb,c, r

(1)
a,b,c,d = pa,b,cpb,c,d , r

(2)
a,b,c,d =

∑
a1

pa,b,a1pb,a1,cpa1,c,d,
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p
(k)
a,b,c = Prθ{Xk+1 = c|X1 = b,X0 = a} and ua denotes the first derivative of

log pa(θ).

The following theorem establishes the asymptotic distribution of θ̃QLk
.

The proof is easily derived by using the one-step Taylor analysis of UN (θ̃QLk
) =

0, and the result given by Hjort and Varin (2008).

Theorem 1. Under the regularity conditions,
√
N(θ̃QLk

− θ0) →d N(0,J−1
k KkJ

−1
k ),

where

Jk = H+ F+ (k − 2)J,

Kk = H+G+GT + F+K+KT + (k − 2)2J+ (L+ LT )

+(k − 2)(M+MT ) + (k − 2)(R+RT ).

In the following example, we consider a second order Markov chain stud-
ied by Azzalini (1983) and discuss about the feasibility and computational
complexity of the QL approach relative to the full likelihood approach.

Example 1. Consider the stationary binary second order Markov chain {Yt},
with transition probabilities

pij = Pr(Yt = 1|Yt−1 = j, Yt−2 = i),

for i, j ∈ {0, 1}. The associated first order Markov chain with states

{(0, 0), (0, 1), (1, 0), (1, 1)},

has transition matrix P and stationary distribution π = (π1, π2, π3, π4)
T ,

where
π2 = π3 = {(1− p10)/p00 + 2 + p01/(1− p11)}−1,

π1 = π3(1− p10)/p00, π4 = π3p01/(1− p11).

Numerical work has been done using the parametrization

pij = iθ(1− θ) +
1

2
j(1− θ) + δ, 0 < θ < 1,
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where δ is a constant regarded as known, 0 < δ < 7
16 . The behavior of the

ML and QL method can be studied and compared by computing the variance
of the limiting distribution, algebraically or numerically. The asymptotic
variance of the full maximum likelihood estimator is

{
∑
a,b,c

papa,bpa,b,cua,b,cu
T
a,b,c}−1,

where Azzalini (1983) considered

p0 = π1 + π2, p1 = π3 + π4,

and
p0,0 =

π1
π1 + π3

, p0,1 =
π3

π1 + π3
,

p1,0 =
π2

π2 + π4
, p1,1 =

π4
π2 + π4

.

Table 1 compares the behavior of ML and QL methods for different order k
and δ = 0.2 by their asymptotic variances. As shown in Table 1, when the or-
der k in QL method increases, as we expected, the asymptotic variance of the
estimator becomes close to the asymptotic variance of the ML estimator. Ta-
ble 1 shows that the QL estimators perform well in the considered model. To
examine the computation time of the QL and ML estimators, a Monte Carlo
simulation is conducted for different sample sizes (n = 50, 100, 200, 500). We
simulated 10000 samples from the Markov chain for true parameter values
θ = 0.4 and θ = 0.6.

Table 1. Asymptotic variances of the estimators for different values of the parameters.

θ AV ar(θ̂ML) AV ar(θ̃QL2) AV ar(θ̃QL3) AV ar(θ̃QL10) AV ar(θ̃QL100)

0.01 0.87 294.29 61.53 3.41 0.88

0.30 4.03 192.86 109.03 16.83 4.02

0.50 2.23 135.01 87.94 17.06 2.34

0.70 1.31 131.79 67.64 8.45 1.35

0.90 0.81 84.40 29.57 2.59 0.81

0.99 0.58 58.25 15.08 1.22 0.57
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Table 2 provides the mean, standard deviation (in brackets) and the com-
putation time of the estimators. As it was expected, the ML method takes
more computational running time than the QL method however the MLEs
give the best performance. Also, as the degrees of QL method increases,
the computational running times increase. As tedious computations exist in
formulating the estimators, more study is needed to confirm the obtained
results in the general case.

4 Conclusions
The limiting distribution of ML and QL estimators of the parameters for
second order Markov chains are studied. In this paper, the quasi-likelihood
(QL), which is the products of marginal likelihoods for many small subsets
is applied for the second order Markov chain models. In the Markov chain
models, the ML would typically be the first choice, because of its simplic-
ity and efficiency. But it is worth studying the QL alternative in situations
where it is still of interest (and appropriate) to compare the statistical be-
havior of the estimators. Simulation results show that the QL estimators
are sufficiently accurate when the order k in the QL estimators increases.
It seems that the order k in QL method is a key variable, which should be
brought into play. Although more study is needed to confirm the obtained
results in the general case.
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