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Figure 1. Generation process of Type-I progressive hybrid censored order statistics

1 Introduction
Quite often, survival data come in a form called “censoring” which occurs
when exact survival times are known only for a portion of individuals or units
under study. In this paper, we focus on progressive hybrid censoring. Kundu
and Joarder (2006) and Childs et al. (2008) proposed, respectively, Type-I
and Type-II progressive hybrid censoring procedure by introducing stopping
time T ∗ to a progressive Type-II censored experiment. The termination
times are defined by a given (fixed) threshold time T as follows:

(i) T ∗
1 = min{Xm:m:n, T}, this procedure is called Type-I progressive hy-

brid censoring scheme, where Xi:m:n is the ith progressively Type-II
censored order statistic from a sample of size n with censoring scheme
(R1, R2, . . . , Rm) and prefixed number of removals m. In addition Ri is
the number of units that are randomly withdrawn from surviving units
in the ith stage of censoring. The life testing experiment is stopped
when either m failure have been observed or the threshold time T
has been exceeded. The number of observations may be zero (when
X1:m:n > T ), see Kundu and Joarder (2006).

(ii) T ∗
2 = max{Xm:m:n, T}, this procedure is called Type-II progressive

hybrid censoring scheme. The number of observation is between m
and Rm +m.

For Type-II censored data the first stopping point has been proposed by
Epstein (1954) and the second one by Childs et al. (2008). According
to the above setting, the number of observation is random. In particular,
it’s possible to have less than m observations in Type-I progressive hybrid
censoring, while we will have at least m observations in Type-II progressive
hybrid censoring. In the set up of Type-I progressive hybrid censoring, the
life testing experiment is stopped when either m failures have been observed
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Figure 2. Generation process of Type-II progressive hybrid censored order statistics

or threshold time T has been exceeded. Figure 1 depicts the generation
procedure of Type-I progressive hybrid censored order statistics. The random
variable ∆ represent the removals at the termination time. It’s given by

∆ =

{
Rm, Xm:m:n ⩽ T,

n− k −R1 − · · · −Rk, Xm:m:n ⩾ T.

It is worthwhile to mention that the number of observations may be zero, i.e.,
for the case when X1:m:n ⩾ T . As mentioned before, in Type-II progressive
hybrid censoring the number of observations is at least m. In fact, more
precisely, it is between m and Rm + m. The idea of this procedure is to
guarantee a minimum number of m observations as well as to come as close
as possible to a minimum test duration specified by T . If Xm:m:n ⩾ T , the
experiment terminates as the mth failure so that the progressive censoring
procedure is carried out as initially planned. For Xm:m:n ⩽ T , we want to
come as close as possible from below to the threshold T . This means that
after the mth failure, all occurring failures are observed until the threshold
T is exceeded. Therefore, the censoring scheme is modified as follows:

R∗ = (R1, R2, . . . , Rm−1, 0
∗Rm+1) ∈ ζRm+n

Rm+m,n ;

where ζRm
Rm,n

is the set of all admissible (Type-II) censoring schemes as

ζRm
Rm,n

= {(R1, R2, . . . , Rm) ∈ Nm0 ; Σmi=1Ri = n−m}.

and the notation 0∗k is used for k successive zeros.
The resulting sample is given by XR∗

1:Rm+m:n, . . . , X
R∗
k:Rm+m:n where k stands

with the inequalityXR∗
k:Rm+m:n ⩽ T < XR∗

k+1:Rm+m:n ,XR∗
Rm+m+1:Rm+m:n = ∞.

Figure 2 depicts the generation procedure of Type-II progressive hybrid cen-
sored order statistics, where m∗ = Rm + m and ∆ is defined as n − k −
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∑m−1
j=1 Rj .

A short review on progressive hybrid censoring, distributions and properties
has been provided by Balakrishnan and Kundu (2013). For more details of
progressive hybrid censoring readers are referred to, for example, Balakrish-
nan and Cramer (2014) and Lin and Huang (2012).

In this paper we consider various situations that may occur in both Type
of progressive hybrid censoring schemes under different circumstances:

In Progressive Hybrid Censoring Type-I:

(i) If Xm:m:n ⩽ T then censoring method performs similar to the ordinary
progressive censoring with predetermined censoring scheme (R1, R2, . . . ,
Rm).

(ii) If Xk:m:n ⩽ T < Xk+1:m:n; k < m then Ri units are randomly with-
drawn at the ith stage i = 1, 2, . . . , k and RT units are withdrawn
at time T . Here RT is the number of survived units at time T . Then
predetermined censoring scheme changes to (R1, R2, . . . , Rk, RT ) where
RT = n− k −

∑k
i=1Ri.

In Progressive Hybrid Censoring Type-II:

(iii) If Xk:m∗:n ⩽ T < X(k+1):m∗:n; k ⩾ m then Ri units are randomly
withdrawn at the ith stage i = 1, 2, . . . ,m− 1. Denoting RT as in pro-
gressive hybrid censoring Type-I (ii), RT units are withdrawn at time
T . Therefore in this case the predetermined censoring scheme changes
to (R1, R2, . . . , Rm−1, 0

∗k−m+1, RT ) where RT = n− k −
∑m−1

i=1 Ri.

(iv) If Xm:m:n > T and Xk:m:n ⩽ T < X(k+1):m:n censoring method is
similar to the ordinary progressive censoring with censoring scheme
(R1, R2, . . . , Rk, 0

∗m−k−1, R∗
m) where R∗

m = n−m−
∑k

i=1Ri.

Let F0(·) be a cumulative distribution function (cdf) with a corresponding
hazard rate function r0(·). The family of random variables with hazard rate
function of the form {θr0(·) : θ > 0} is called proportional hazard rate
(PHR) family and cdf F0(·) is known as the baseline cdf of that family.
Therefore, if X is a member of proportional hazard family with the baseline
cdf F0(·), then cdf of X becomes

F (x; θ) = 1− [F̄0(x)]
θ x ∈ B, θ > 0 ; (1)
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where F 0(·) = 1 − F0(·) is the baseline survival function with support B.
Note that the baseline cdf F0(·) corresponds to the case θ = 1. This model
is originally proposed by Cox (1972) and has been extensively discussed
in statistical and reliability literature. The PHR family includes several
well-known lifetime distributions such as exponential, Pareto (Type-I and
Type-II), beta, Burr Type-XII and so on, see Ahmadi et al. (2009a, 2009b)
and Asgharzadeh and Valiollahi (2009, 2010).
Furthermore as an extension, in PHR model introduced by Cox (1972),
θ is considered as a random variable which is a function of the covariates
z = (z1, z2, . . . , zk). By taking into account this, the resulting model is

r(x|θ(z)) = r(x)θ(z).

Two most commonly used covariate functions in the literatures are the linear

θ(z) = βz,

and the log linear
θ(z) = exp(βz),

models, where β may be a vector parameter. When θ = θ(z) has the form
log linear, the resulting model is often called cox model. Other functions of
the covariates are some times used. For further details, see Lawless (2003)
and Marshall and Olkin (2007).

From PHR model in (1) the probability density function (pdf) is given
by

f(x; θ) = θf0(x)[F̄0(x)]
θ−1, x ∈ B; (2)

where f0(·) is the pdf of F0(·). In what follows, for simplification, we will
use Yi in place of Xi:m∗:n when X1, X2, . . . , Xn denotes the failure times of
n independent units placed in a life testing experiment. Assume sample
X1, X2, . . . , Xn is drawn from the PHR model given in (1). The aim of this
paper is to discuss the prediction of life-length Yj:Ri (j = 1, 2, . . . , Ri ; i =
1, 2, . . . , k) of all censored units in all k stages of censoring and Yj:RT

(j =
1, 2, . . . , RT ). Here Yj:Ri denotes the jth-order statistic out of Ri removed
units at stage i = 1, 2, . . . , k and Yj:RT

denotes the jth-order statistic out of
RT removed units at time T . Note that we only observe Y = (Y1, Y2, . . . , Yk).
We inspired the idea from prediction of times to failure of Yj:Ri at progressive
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censored data discussed by Basak et al. (2006), Basak and Balakrishnan
(2009) and Asgharzadeh and Valiollahi (2010). However, later Asgharzadeh
and Valiollahi (2012, 2015) obtained prediction of time to failure in hybrid
censored sample. See also Zhang and Shi (2017). We illustrate a brief
description of different predictors in Section 2. In Sections 3, 4 and 5 we focus
on BUP , MLP and CMP , respectively. In Section 6 a numerical example
and Monte Carlo simulations are provided to validate the prediction methods
presented in this paper. Here, we also compare CMP with BUP and MLP
in terms of MSPE for exponential distribution. Concluding remarks are
given in Section 7.

2 Point Predictors

Let Y1, Y2, . . . , Yk be a progressive hybrid censoring sample with final cen-
soring scheme (R1, R2, . . . , Rk, RT ). Our interest is to predict Yj:Ri (j =
1, 2, . . . , Ri), (i = 1, 2, . . . , k) and Yj:RT

(j = 1, 2, . . . , RT ) based on the ob-
served progressive hybrid right censored sample Y = (Y1, . . . , Yk). A statistic
T which is used to predict Yj:Ri is called a predictor of Yj:Ri . T is unbiased
predictor if the prediction error T − Yj:Ri has a mean zero. Also a predic-
tor is a linear predictor if it has the form c1Y1 + c2Y2 + · · · + cmYm for real
ci’s. Moreover, the conditional distribution of Yj:Ri given Y is equal to the
conditional distribution of Yj:Ri given Yi due to a Markovian property of
progressive right censored order statistic (see Balakrishnan and Aggarawala,
2000); that is

fYj:Ri
| Y(y) = fYj:Ri

|Yi(y), i = 1, 2, . . . ,m. (3)

In view of (3), BUP of Yj:Ri (j = 1, 2, . . . , Ri), (i = 1, 2, . . . , k); E(Yj:Ri |Y)
is nothing but E(Yj:Ri |Yi), hence it depends only on Yi. If the parameter θ
is unknown it has to be estimated. A technique to obtain BUP , when the
parameter is unknown, is to apply the result obtained by Ishii and Tokeiteki
(1978) and mentioned in Takada (1981). It states that an unbiased predictor
Y ∗
j:Ri

of Yj:Ri is its BUP if and only if

Eθ((Yj:Ri − Y ∗
j:Ri

)γ(Y)) = 0, for all θ,

where γ(·) is an unbiased estimator of zero. As the best of our knowledge, the
most popular predictor of censored order-statistics, for a location-scale family
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F is the best linear unbiased predictor (BLUP ). Kaminsky and Nelson
(1975) obtained BLUP of censored order-statistics by applying the results of
Goldberger (1962) in the context of ordinary Type-II right censored samples.
Raqab and Nagaraja (1997) used order statistics X1:n, X2:n, . . . , Xr:n to
predict the future order statistics Xs:n for 1 ⩽ r < s ⩽ n.

In the literature, one frequently used predictor is MLP which has been
discussed by Kaminsky and Rhodin (1985) for ordinary Type-II right cen-
sored samples. CMP is another possible predictor. A statistic T is said to be
the CMP of Yj:Ri if it is the median of the conditional distribution of Yj:Ri

given Yi. A CMP is a special type of median unbiased predictor (MUP ).
The idea of median unbiasedness is used to define a MUP . A statistic T is
said MUP of Yj:Ri if for all θ,

Pθ(T ⩽ Yj:Ri) = Pθ(T ⩾ Yj:Ri).

Takada (1991) discussed some properties of MUP in the case of ordinary
Type-II right censored samples. He showed that for a location-scale family,
a particular MUP is better than the BLUP under Pitman’s measure of
closeness (PMC). It is known that under PMC, the predictor T1 is better
than T2 for predicting Yj:Ri if

Pθ(|T1 − Yj:Ri | ⩽ |T2 − Yj:Ri |) ⩾
1

2
, for all θ.

Our contribution in Section 3 and 4 is to discuss BUP and MLP of Yj:Ri

respectively. We have focused on exponential population there. In Section 5
Takada’s CMP of Yj:Ri is considered. In Section 6, a set of numerical simu-
lation is provided to validate all the proposed prediction methods discussed
in this paper. We also set comparison between CMP , BUP and MLP in
terms of MSPE for exponential distribution. Throughout this paper we will
use the following notations:

X
d
= Y : X and Y are identically distributed

X ∼ F : X is distributed as F

Exp(θ) : exponential distribution with support (0,∞) and mean 1

θ
Yj:Ri : jth order statistic out of Ri units of Y
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Y ∗
j:Ri

: BUP of Yj:Ri

Y L
j:Ri

: MLP of Yj:Ri

Y CMP
j:Ri

: CMP of Yj:Ri

3 Best Unbiased Predictor

A statistic Y ∗
j:Ri

which is used to predict Yj:Ri is called BUP of Y , if (Y ∗
j:Ri

−
Yj:Ri) has a mean zero and its prediction error variance, i.e., var(Y ∗

j:Ri
−Yj:Ri)

is less than or equal to that of any other unbiased predictor of Yj:Ri .
Since the conditional distribution of Yj:Ri given Y is just the distribution of
Yj:Ri given Yi, therefore the BUP of Yj:Ri is

Y ∗
j:Ri

= ŶBUP = E(Yj:Ri |Yi = yi),

see Nayak (2000).
As mentioned before due to the Markovian property of progressive censored
order statistic the density of Yj:Ri given Y = y is the same as the den-
sity of jth order statistic out of Ri units from the population with density
f(y)

1−F (yi)
, y ⩾ yi (left truncated density at yi). Therefore the conditional

density of Yj:Ri given Yi for y ⩾ yi is given by (in case (i), (iv)):

f(y|yi; θ) = j

(
Ri
j

)
fθ(y)[Fθ(y)−Fθ(yi)]j−1[1−Fθ(y)]Ri−j [1−Fθ(yi)]−Ri . (4)

Using (2), (4) reduces to

f(y|yi; θ) = j

(
Ri
j

)
θ
f0(y)

F̄0(y)
[F̄ θ0 (yi)−F̄ θ0 (y)]j−1[F̄ θ0 (y)]

Ri−j+1[F̄0(yi)]
−Ri ; y ⩾ yi.

(5)
Likewise, for cases (ii) and (iii) fYj:Ri

(y|yi) takes the form (4) for i = 1, 2, . . . , k,
in other cases due to Markovian property of progressive censored order statis-
tic, it is well-known that fYj:RT

|Y,T (y|y, T ) is fYj:RT
|T (y|T ). This means that

the density of Yj:RT
given Y = y and T is the same as the density of jth order

statistic out of RT units from the population with density f(y)
1−F (T ) , y ⩾ T

(left truncated density at T ). Therefore the conditional density of Yj:RT
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given T for y ⩾ T is derived by:

f(y|T ; θ) = j

(
RT
j

)
θ
f0(y)

F̄0(y)
[F̄ θ0 (T )−F̄ θ0 (y)]j−1[F̄ θ0 (y)]

RT−j+1[F̄0(T )]
−RT ; y ⩾ T.

(6)
By (5) and (6) we have

E(Yj:Ri |Yi = yi) =

∫ ∞

yi

yf(y|yi)dy =

∫ 1

0
F̄0

−1
(u

1
θ F̄0(yi))

uRi−j(1− u)j−1

Beta(Ri − j + 1, j)
du.

(7)

E(Yj:RT
|T ) =

∫ ∞

yi

yf(y|yi)dy =

∫ 1

0
F̄−1
0 (u

1
θ F̄0(T ))

uRT−j(1− u)j−1

Beta(RT − j + 1, j)
du.

(8)
We consider exponential distribution as an example in order to illustrate

our achievements. Suppose that the lifetimes of the n units put on test
are independent and identically distributed as exponential random variables
with pdf F̄θ(x) = e−θx so F̄0(x) = e−x then we compute BUP of Y as:

E(Yj:Ri |Yi = yi) =

∫ 1

0
− ln(u

1
θ e−Yi)

uRi−j(1− u)j−1

Beta(Ri − j + 1, j)
du

= yi +
1

θ
E(− lnU), (9)

where random variable U has beta distribution with parameters Ri − j + 1
and j. So in this case

Y ∗
j:Ri

= yi +
1

θ
E(− lnU)

= yi +
1

θ
E(Zj:Ri)

= yi +
1

θ
ΣRi
r=Ri−j+1

1

r
, (10)

where Zj:Ri stands for the jth order statistic of sample size Ri from standard
exponential distribution.
Hence analogously

Y ∗
j:RT

= T +
1

θ
ΣRT
r=RT−j+1

1

r
. (11)
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If θ is unknown we can approximate it by using its MLE and plug it into
(10) and (11). In case exponential distribution MLE of θ under progressive
hybrid censoring scheme obtained by Childs et al. (2008)

θ̂ =


k∑k

l=1(Rl+1)Yl+TRT
for k ̸= m

m∑m
l=1(Rl+1)Yl

for k = m.

4 Maximum Likelihood Predictor

Regarding the prediction context, the maximum likelihood (ML) method-
ology has been the solution of many problems in statistics and reliability
analysis. For this, see, Kaminsky and Rhodin (1985), Basak and Balakrish-
nan (2003) and Basak et al. (2006).

In MLP , the principle of maximum likelihood is applied to the joint pre-
diction and estimation of future random variable and an unknown parameter.

Let Y = (Y1, Y2, . . . , Yk) and Yj:Ri have the joint pdf f(y,y; θ). We know
that both cases (i) and (iv) are similar to the ordinary progressive censoring
so the predictive likelihood function (PLF ) of Yj:Ri and θ is given by

L = L(y, θ,y) = fθ(y,y) = fθ,Yj:Ri
|Y(y|y)fYi,θ(y) = fθ,Yj:Ri

|Yi(y|yi)fY,θ(y).

In addition note that in cases (i) and (iv):

fY(y; θ) = c

m∏
l=1

f0(yl)

F̄0(yl)
θ(F̄0(yl))

θ(Rl+1),

and in cases (ii) and (iii)

fY,T (y; θ) = cθk
k∏
l=1

f0(yl)

F̄0(yl)
(F̄0(yl))

θ(Rl+1)F̄RT θ
0 (T ),

where k is the number of failure before time T . We can assume RT = 0 and
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k = m in cases (i) and (iv), so we have the general form

fY,T (y; θ) = c
k∏
l=1

f(yl)F̄
Rl(yl)F̄

RT (T )

= cθk
k∏
l=1

f0(yl)

F̄0(yl)
(F̄0(yl))

θ(Rl+1)F̄RT θ
0 (T ). (12)

From (5) and (12), one can write

L = L(y, θ,y) = cθm+1
m∏
l=1

f0(yl)

F̄0(yl)
(F̄0(yl))

θ(Rl+1)j

(
Ri
j

)
f0(y)

F̄0(y)

× [F̄ θ0 (yi)− F̄ θ0 (y)]
j−1[F̄ θ0 (y)]

Ri−j+1[F̄0(yi)]
−Riθ, y ⩾ yi.

So

lnL(y, θ;y) = ln fθ(y) + (j − 1) ln[Fθ(y)− Fθ(yi)] + (Ri − j) ln[1− F (y, θ)]

+

m∑
l=1

ln fθ(yl) +
∑

l=1;l ̸=i
Rl ln[1− Fθ(yl)], y ⩾ yi.

Again from (5) and (12) we have

lnL(y, θ;y) = (m+ 1) ln θ + ln

[
f0(y)

F̄0(y)

]
+ (j − 1) ln

[
1−

(
F̄0(y)

F̄0(yi)

)θ]

+ θ(Ri − j + 1)[ln F̄0(y)− ln F̄0(yi)] + θ

m∑
l=1

(Rl + 1) ln F̄0(yl).

(13)

Assuming Y L
j:Ri

= t(Y) and θ∗∗ = u(Y) are two statistics such that
L(t(y), u(y);y) = supy,θ L(y, θ;y), then t(Y) is said to be the MLP of
Yj:Ri and u(Y) is the predictive maximum likelihood estimator (PMLE) of
θ. Since f is continuos then L converges to zero as y ↓ yi and y ↑ ∞ also
L > 0 for y > yi. This means that if there exists a unique solution Y L

j:Ri
of

the likelihood equation ∂ lnL

∂y
= 0, then Y L

j:Ri
must be the unique MLP of
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Yj:Ri .
From (13), predictive likelihood equations for y and θ are given by:

∂ lnL(y, θ;y)
∂θ

=
m+ 1

θ
+ (Ri − j + 1)[ln F̄0(y)− ln F̄0(yi)]

+
m∑
l=1

(Rl + 1) ln F̄0(yl)

− (j − 1)

(
F̄0(y)

F̄0(yi)

)θ ln

(
F̄0(y)

F̄0(yi)

)
1−

(
F̄0(y)

F̄0(yi)

)θ = 0, (14)

and

∂ lnL(y, θ;y)
∂y

=
1

F̄0(y)

[
f ′0(y)F̄0(y) + f20 (y)

f0(y)
+ θ(j − 1)

f0(y)

(
F̄0(y)

F̄0(yi)

)θ
1−

(
F̄0(y)

F̄0(yi)

)θ
− θ(Ri − j + 1)f0(y)

]
= 0. (15)

Going back to (i) and (iv), if θ is known we can find Yj:Ri by solving equation
(15), but if θ is unknown we have to solve (14) and (15) simultaneously.
Similarly for cases (ii) and (iii), from (12) we have

L(y, θ,y) = cθk+1
k∏
l=1

f0(yl)

F̄0(yl)
(F̄0(yl))

θ(Rl+1)

(
RT
j

)
f0(y)

F̄0(y)

× [F̄ θ0 (T )− F̄ θ0 (y)]
j−1[F̄ θ0 (y)]

RT−j+1, y ⩾ T,

consequently we write

lnL(y, θ;y) = (k + 1) ln θ + (j − 1) ln

[
1− (

F̄0(y)

F̄0(T )
)θ
]
+ ln

(
f0(y)

F̄0(y)

)
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+ θ
m∑
l=1

(Rl + 1) ln F̄0(yl) + θRT ln F̄0(T )

+ θ(RT − j + 1)[ln F̄0(y)− ln F̄0(T )]. (16)

Now, the expression (16) implies

∂ lnL(y, θ;y, T )
∂y

=
1

F̄0(y)

[
f ′0(y)F̄0(y) + f20 (y)

f0(y)
+ θ(j − 1)

f0(y)

(
F̄0(y)

F̄0(T )

)θ
1−

(
F̄0(y)

F̄0(T )

)θ
− θ(RT − j + 1)f0(y)

]
= 0, (17)

∂ lnL(y, θ;y, T )
∂θ

=
k + 1

θ
+ (RT − j + 1)[ln F̄0(y)− ln F̄0(T )] +RT ln F̄0(T )

+
k∑
j=1

(Rl + 1) ln F̄0(yl)

− (j − 1)

(
F̄0(y)

F̄0(T )

)θ ln

(
F̄0(y)

F̄0(T )

)
1−

(
F̄0(y)

F̄0(T )

)θ = 0. (18)

As an example, let F0 be standard exponential distribution, then the
predictive likelihood equations reduce to:

∂ lnL(y, θ;y)
∂θ

=
m+ 1

θ
+ (Ri − j + 1)(yi − y)

−
m∑
l=1

(Rl + 1)yl(Rl + 1)− (j − 1)
(yi − y)e−(yi−y)θ

1− e−(yi−y)θ
= 0,

and

∂ lnL(y, θ;y)
∂y

= −θ(Ri − j + 1) + θ(j − 1)
eθ(yi−y)

1− eθ(yi−y)
= 0.
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In all four cases (i)-(iv), for j = 1, 2, . . . , Ri and i = 1, 2, . . . , k, MLP of
Yj:RT

is obtained by

Y L
j:Ri

= Yi +
1

θ̂
ln

Ri
Ri − j + 1

, (19)

where θ̂ stands with the PMLE of θ is given by

θ̂ =
m+ 1∑m

l=1(Rl + 1)Yl
. (20)

In this regard, we again consider cases (ii) and (iii), so we have

Y L
j:RT

= T +
1

θ̂
ln

RT
RT − j + 1

, (21)

where θ̂ is the PMLE of θ and is given by

θ̂ =
k + 1∑k

l=1(Rl + 1)Yl +RTT
. (22)

5 Conditional Median Predictor

For the first time, Raqab and Nagaraja (1997) introduced the CMP . In
their work the predictor Y CMP

j:Ri
is called CMP of Yj:Ri , if it is the median

of the conditional distribution of Yj:Ri given Yi = yi. So, the analytical
interpretation would be

Pθ(Yj:Ri ⩽ Y CMP
j:Ri

|Yi = yi) = Pθ(Yj:Ri ⩾ Y CMP
j:Ri

|Yi = yi).

On the other side we know

Pθ(Yj:Ri ⩽ Y CMP
j:Ri

|Yi = yi) = Pθ

( F̄0(Y )

F̄0(Yi)

)θ
⩾
(
F̄0(Y

CMP
j:Ri

)

F̄0(Yi)

)θ
|Yi = yi

 .
By using the fact that expression

(
F̄0(Y )

F̄0(Yi)

)θ
given Yi = yi has the Beta(Ri−
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j + 1, j) distribution, we have

Y CMP
j:Ri

= F̄−1
0

F̄0(yi) (med(U))

1

θ

 , (23)

here med(U) stands for median of U =

(
F̄0(Y )

F̄0(yi)

)θ
.

Also, for (ii) and (iii) we have

Y CMP
j:RT

= F̄−1
0

F̄0(T )(med(V ))

1

θ

 , (24)

where V = (
F̄0(Y )

F̄0(T )
)θ ∼ Beta(RT − j + 1, j).

Remember again that we substitute the MLE θ̂ when the parameter θ is
unknown.

As an example assume F̄0(x) = e−x, x > 0, then we have

Y CMP
j:Ri

= − ln
(
e−Yi [med(U)]

1

θ̂

)
= Yi +

1

θ̂
[med(− lnU)]

= Yi +
1

θ̂
(med(Zj:Ri)), (25)

here Zj:Ri denotes jth order statistic out of Ri units from a standard expo-
nential distribution. In addition for (ii) and (iii) we can obtain

Y CMP
j:RT

= T +
1

θ̂
(med(Zj:Ri)). (26)

6 Numerical Computations
In this section, we intend to present the result of numerical study to inves-
tigate the performances of the different methods of prediction discussed in
previous sections with respect to biases and mean squared prediction error
from progressive hybrid Type-I censored data. In this regard, some results
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Table 1. Progressively hybrid type-I censored data.
i 1 2 3 4 5 6 7 T = 1

Yi 0.0123 0.0533 0.0656 0.0944 0.1247 0.4286 0.6615
Ri 0 0 3 0 0 3 0 6

based on Monte-Carlo simulations are presented. In obtaining the numerical
results, we used the statistical software R. As a special case of PHR family,
we consider the exponential distribution with cdf

F̄θ(x) = θe−θx, x > 0, θ > 0,

the baseline cdf is
F̄0(x) = e−x, x > 0.

For generating progressive hybrid Type-I censored data, we first generate
progressive Type-II censored sample Y1, . . . , Ym according to the algorithm
presented in Balakrishnan and Aggarawala (2000). Then if Ym < T then,
above progressive Type-II censored sample is also progressive hybrid Type-I.
If Ym > T , then we find k such that Yk < T < Yk+1. In this case, the
progressive hybrid Type-I sample becomes Y1, . . . , Yk.

We draw m = 8 progressively hybrid Type-I censored samples from ex-
ponential distribution with parameter θ = 1.952, n = 19 and T = 1. Also
the censoring scheme here is R = (0, 0, 3, 0, 0, 3, 0, 5). The sample is stated
in Table 1. Moreover, the point predictors MLP , BUP and CMP for Yj:Ri

(j = 1, 2, . . . , Ri; i = 1, 2, . . . , k) and Yj:RT
(j = 1, 2, . . . , RT ) are given in

Table 2.
In Table 1 we see that k = 7 which means Y7 < T < Y8.
Table 2 shows that an analytical comparison of predictors is not possi-

ble. We use Monte Carlo approximation method to evaluate the biases and
MSPE for three predictors BUP , MLP and CMP when sample is drawn
from exponential distribution. Randomly, we generate 1000 progressively
hybrid Type-I censored samples from exponential distribution with parame-
ters θ = 0.75, θ = 1 and θ = 2. We consider threshold time T = 1 and use
two censoring scheme R1 = (0, 0, 3, 0, 3, 0, 0, 5), R2 = (0, 0, 0, 0, 5). Results
obtained from this simulation study are presented in Tables 3 to 8. In these
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Table 2. Different point predictions.
θ = 1.952 BUP MLP CMP Yj:Ri

Y1:R3 0.1494 0.0656 0.1237 0.1590
Y2:R3 0.2751 0.1675 0.2398 0.4020
Y3:R3 0.5265 0.3418 0.4624 0.7426

Y1:R6 0.2085 0.1247 0.1828 0.3369
Y2:R6 0.3342 0.2266 0.2989 1.2434
Y3:R6 0.5856 0.4009 0.5215 1.4249

Y1:RT 1.0419 1.0000 1.0290 1.0119
Y2:RT 1.0922 1.0458 1.0772 1.1125
Y3:RT 1.1550 1.1019 1.1375 1.3332
Y4:RT 1.2388 1.1743 1.2172 1.3973
Y5:RT 1.3650 1.2762 1.3344 1.4604
Y6:RT 1.6159 1.4504 1.5569 1.6704

tables the MSPEs and biases of different predictors of Yj:Ri and Yj:RT
are

provided.

7 Discussion
In this paper, we have considered different predictor of failure times of units
censored in multiple stages of progressively hybrid censored sample. A nu-
merical simulation has been conducted to compare the performances of dif-
ferent point predictors. We generated 1000 random values of Yj:Ri truncated
at Yi from exponential distribution. Bias and MSPE of this Yj:Ri for each
predictors are generated and reported. According to tables 3 to 8 one can
find that BUP has smaller bias and MSPE than CMP and CMP has
smaller bias and MSPE than MLP . So it is observed that BUP is better
than CMP and CMP is better than MLP .
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Table 3. Biases and MSPEs of point predictors for the censoring scheme R1.
θ = 0.75 and T = 1

BUP MLP CMP

Y1:R1

Bias 0.1368 0.4369 0.2289
MSPE 0.1987 0.3664 0.2291

Y2:R1

Bias 0.3450 0.7753 0.4720
MSPE 0.8205 1.2677 0.9097

Y3:R1

Bias 0.7952 1.5769 1.0246
MSPE 3.2153 4.8855 3.5656

Y1:R5

Bias 0.1525 0.4531 0.2448
MSPE 0.2544 0.4331 0.2881

Y2:R5

Bias 0.3684 0.7986 0.4949
MSPE 0.7985 1.2596 0.8917

Y3:R5

Bias 0.7595 1.5420 0.9890
MSPE 3.2182 4.8246 3.5496

Y1:R8

Bias 0.0677 0.2705 0.1299
MSPE 0.0759 0.1434 0.0873

Y2:R8

Bias 0.1609 0.4159 0.2353
MSPE 0.2356 0.3727 0.2613

Y3:R8

Bias 0.2868 0.6204 0.3782
MSPE 0.5439 0.8188 0.5956

Y4:R8

Bias 0.4717 0.9467 0.5977
MSPE 1.1788 1.7926 1.2949

Y5:R8

Bias 0.7621 1.6260 1.0041
MSPE 3.0673 4.9506 3.4350

Y1:RT

Bias 0.0983 0.2105 0.1328
MSPE 0.0609 0.0949 0.0681

Y2:RT

Bias 0.2029 0.3424 0.2425
MSPE 0.1551 0.2272 0.1712

Y3:RT

Bias 0.3165 0.4915 0.3619
MSPE 0.3165 0.4506 0.3450

Y4:RT

Bias 0.4649 0.6898 0.5199
MSPE 0.5819 0.8290 0.6319

Y5:RT

Bias 0.6974 1.003 0.7687
MSPE 1.1437 1.6435 1.2436

Y6:RT

Bias 1.1592 1.6493 1.2798
MSPE 3.2225 4.6450 3.5317

Y7:RT

Bias 1.2021 1.8457 1.3561
MSPE 4.3246 6.1577 4.6839

Y8:RT

Bias 1.0497 1.8834 1.2405
MSPE 4.6839 7.0791 5.0882

Y9:RT

Bias 0.5165 0.8015 0.5579
MSPE 0.6837 0.9649 0.7127

Y10:RT

Bias 0.9380 1.2975 0.9914
MSPE 1.6036 2.1990 1.6727
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Table 4. Biases and MSPEs of point predictors for the censoring scheme R2.
θ = 0.75 and T = 1

BUP MLP CMP

Y1:R5

Bias 0.0458 0.2518 0.1090
MSPE 0.0703 0.12599 0.0774

Y2:R5

Bias 0.1458 0.4178 0.2214
MSPE 0.2281 0.3627 0.2492

Y3:R5

Bias 0.2479 0.6163 0.3408
MSPE 0.4765 0.7490 0.5170

Y4:R5

Bias 0.4339 0.9693 0.5620
MSPE 1.1610 1.8089 1.2586

Y5:R5

Bias 0.7366 1.7071 0.9827
MSPE 3.6209 5.6630 3.9425

Y1:RT

Bias 0.1348 0.2019 0.1554
MSPE 0.0652 0.0875 0.0709

Y2:RT

Bias 0.3210 0.4116 0.3448
MSPE 0.2337 0.2973 0.2486

Y3:RT

Bias 0.5095 0.6301 0.5368
MSPE 0.4843 0.6187 0.5121

Y4:RT

Bias 0.7419 0.9036 0.7748
MSPE 0.8828 1.1440 0.9316

Y5:RT

Bias 1.1252 1.3515 1.1690
MSPE 1.9420 6.9540 2.0420

Y6:RT

Bias 1.8534 2.2221 1.9303
MSPE 5.4555 2.4944 5.7523

Y7:RT

Bias 2.0870 2.5418 2.1711
MSPE 6.6571 8.6936 7.005

Y8:RT

Bias 2.4374 3.0599 2.5391
MSPE 8.4680 11.7869 8.9441

Y9:RT

Bias 1.4608 2.5083 1.5982
MSPE 3.1412 7.7821 3.5949
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  Table 5. Biases and MSPEs of point predictors for the censoring scheme R1.
θ = 1 and T = 1

BUP MLP CMP

Y1:R1

Bias 0.04210 0.3238 0.1285
MSPE 0.1056 0.1991 0.1158

Y2:R1

Bias 0.1209 0.5215 0.2393
MSPE 0.3972 0.6158 0.4253

Y3:R1

Bias 0.2845 1.0111 0.4999
MSPE 1.6639 2.4236 1.7681

Y1:R5

Bias 0.0531 0.3349 0.1396
MSPE 0.1219 0.2245 0.1349

Y2:R5

Bias 0.1126 0.5132 0.2310
MSPE 0.4596 0.6754 0.4868

Y3:R5

Bias 0.3518 1.0784 0.5672
MSPE 1.7798 2.6696 1.9229

Y1:R8

Bias 0.0118 0.1903 0.0666
MSPE 0.0352 0.0698 0.0385

Y2:R8

Bias 0.0551 0.2796 0.1205
MSPE 0.1159 0.1839 0.1245

Y3:R8

Bias 0.1023 0.3961 0.1828
MSPE 0.2607 0.3891 0.2774

Y4:R8

Bias 0.1392 0.5575 0.2502
MSPE 0.5586 0.7968 0.5851

Y5:R8

Bias 0.2612 1.0219 0.4743
MSPE 1.7428 2.5295 1.8376

Y1:RT

Bias 0.0589 0.1564 0.0889
MSPE 0.0250 0.0453 0.0291

Y2:RT

Bias 0.1355 0.2567 0.1701
MSPE 0.0749 0.1209 0.0848

Y3:RT

Bias 0.2188 0.3714 0.2588
MSPE 0.1711 0.2549 0.1882

Y4:RT

Bias 0.3314 0.5293 0.3800
MSPE 0.3165 0.4769 0.3482

Y5:RT

Bias 0.4641 0.7389 0.5298
MSPE 0.6099 0.9225 0.6705

Y6:RT

Bias 0.7611 1.2274 0.8805
MSPE 1.7756 2.6623 1.961

Y7:RT

Bias 0.8795 1.4711 1.0237
MSPE 2.4874 3.6653 2.704

Y8:RT

Bias -0.0509 0.8235 0.1523
MSPE 1.1802 1.6007 1.1357
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Table 6. Biases and MSPEs of point predictors for the censoring scheme R2.
θ = 1 and T = 1

BUP MLP CMP

Y1:R5

Bias 0.0294 0.2046 0.0832
MSPE 0.0419 0.0796 0.0461

Y2:R5

Bias 0.0584 0.2896 0.1227
MSPE 0.1231 0.1873 0.1288

Y3:R5

Bias 0.1067 0.4198 0.1856
MSPE 0.2919 0.414 0.3018

Y4:R5

Bias 0.1895 0.6446 0.2984
MSPE 0.6829 0.9622 0.7070

Y5:R5

Bias 0.3241 1.149 0.5333
MSPE 2.2402 3.0859 2.3087

Y1:RT

Bias 0.111 0.1800 0.1326
MSPE 0.0452 0.0634 0.0497

Y2:RT

Bias 0.1939 0.2858 0.2182
MSPE 0.1012 0.3328 0.1104

Y3:RT

Bias 0.3283 0.4502 0.3564
MSPE 0.2422 0.1425 0.2603

Y4:RT

Bias 0.5464 0.7101 0.5804
MSPE 0.5177 0.7172 0.5547

Y5:RT

Bias 0.8149 1.0458 0.8608
MSPE 1.1200 1.5304 1.1933

Y6:RT

Bias 1.3423 1.7275 1.4252
MSPE 3.3585 4.4793 3.5772

Y7:RT

Bias 1.1803 1.6669 1.2727
MSPE 2.2093 3.5065 2.4124

Y8:RT

Bias 1.2488 1.9268 1.3654
MSPE 3.3043 4.9799 3.5136
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Table 7. and MSPEs of point predictors for the censoring scheme R1.

θ = 2 and T = 1

BUP MLP CMP

Y1:R3

Bias -0.0052 0.1607 0.0457
MSPE 0.0322 0.0546 0.0326

Y2:R3

Bias 0.0023 0.2378 0.0721
MSPE 0.1186 0.1584 0.1174

Y3:R3

Bias 0.0105 0.4371 0.1375
MSPE 0.4778 0.5974 0.4708

Y1:R5

Bias 0.0071 0.1731 0.0581
MSPE 0.0341 0.0607 0.0357

Y2:R5

Bias -0.0063 0.2291 0.0634
MSPE 0.1045 0.1401 0.1021

Y3:R5

Bias 0.0408 0.4673 0.1677
MSPE 0.4842 0.6239 0.4832

Y1:R8

Bias 0.0009 0.1005 0.0315
MSPE 0.0128 0.0219 0.0133

Y2:R8

Bias -0.0009 0.1243 0.0356
MSPE 0.0330 0.0435 0.0324

Y3:R8

Bias -0.0035 0.1604 0.0414
MSPE 0.0730 0.0864 0.0707

Y4:R8

Bias -0.010 0.2233 0.0518
MSPE 0.1605 0.1802 0.1538

Table 8. Biases and MSPEs of point predictors for the censoring scheme R2.
θ = 2 and T = 1

BUP MLP CMP

Y1:R5

Bias -0.0007 0.0977 0.0295
MSPE 0.0109 0.0186 0.0108

Y2:R5

Bias 0.0055 0.1355 0.0416
MSPE 0.034 0.0446 0.0331

Y3:R5

Bias 0.0219 0.1979 0.0663
MSPE 0.0837 0.1027 0.0815

Y4:R5

Bias 0.0312 0.2871 0.09245
MSPE 0.1921 0.2262 0.1860

Y5:R5

Bias 0.0581 0.5219 0.1757
MSPE 0.6461 0.7552 0.6251

© 2017, SRTC Iran



S. Ameli, M. Rezaie and J. Ahmadi 153

References
Ahmadi, J., Jafari Jozani, M., Marchand, E. and Parsian, A. (2009). Prediction of k-records
from a General Class of Distributions under Balanced Type Loss Functions. Metrika, 70,
19-33.

Ahmadi, J., Jafari Jozani, M., Marchand, E. and Parsian, A. (2009). Bayes Estimation based
on k-record Data from a General Class of Distributions under Balanced Type Loss Functions.
J. Statist. Plann. Inference. 139, 1180-1189.

Asgharzadeh, A. and Valiollahi, R. (2009). Inference for the Proportional Hazards Family
under Progressive Type-II Censoring. J. Iranian Statist. Soc., 8, 35-53.

Asgharzadeh, A. and Valiollahi, R. (2010). Point Prediction for the Proportional Hazards
Family under Progressive Type-II Censoring. J. Iranian Statist. Soc., 9, 127-148.

Asgharzadeh, A. and Valiollahi, R. (2012). Prediction of Times to Failure of Censored Units
in Hybrid Censored Samples from Exponential Distribution for the Proportional Hazards
Family under Progressive Type-II Censoring. J. Statist. Res. Iran, 9, 11-30.

Asgharzadeh, A., Valiollahi, R. and kundu, D. (2015). Prediction for Future Failures in
Weibull Distribution under Hybrid Censoring. J. Stat. Comput. Simul., 85, 824-838.

Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods, and
Applications. Birkhäuser, Boston.

Balakrishnan, N. and Kundu, D. (2013). Hybrid Censoring: Models, Inferential Results and
Applications (with Discussions). J. Comput. Stat. Data. Anal., 57, 166-209.

Balakrishnan, N. and Cramer, E. (2014). The Art of Progressive Censoring: Applications to
Reliability and Quality. Birkhäuser, Boston.

Basak, P. and Balakrishnan, N. (2003). Maximum Likelihood Prediction of Future Record
Statistic. Mathematical and Statistical Methods in Reliability. In: Lindquist, B.H., Dok-
sum, K.A., (Eds.), Series on Quality, Reliability and Engineering Statistics. World Scientific
Publishing, Singapore. 159-175.

Basak, I., Basak, P. and Balakrishnan, N. (2006). On Some Predictors of Times to Failure
of Censored Items in Progressively Censored Samples. J. Comput. Stat. Data. Anal., 50,
1313-1337.

Basak, I. and Balakrishnan, N. (2009). Predictors of Failure Times of Censored Units in
Progressively Censored samples from Normal Distribution. Sankhya. 71-B, 222-247.

Childs, A., Chandrasekar, B. and Balakrishnan, N. (2008). Exact Likelihood Inference for an
Exponential Parameter under Progressive Hybrid Censoring Schemes. In: Vonta, F., Nikulin,
M., Limnios, N., Huber-Carol, C. (Eds.), Statistical Models and Methods for Biomedical and
Technical Systems. Birkhäuser, Boston. 323-334.

J. Statist. Res. Iran 14 (2017): 131–155



154 Prediction of Times in Progressive Hybrid Censored Samples

Cox, D.R. (1972). Regression Models and Life Tables (with Discussion). J. R. Stat. Soc. Ser
B, (methodol)., 34, 187-220.

Epstein, B. (1954). Truncated Life Tests in the Exponential Case. Ann. Math. Stat., 25,
555-564.

Goldberger, A.S. (1962). Best Linear unbiased Prediction in the Generalized Linear Regres-
sion Model. J. Amer. Statist. Assoc., 57, 369-375.

Ishii, G. and Tokeiteki, Y. (1978). Statistical Prediction. Basic Sugaku. vol. 7, Gendai-
Sugakusha, Tokyo, Japan.

Kaminsky, K.S. and Nelson, P.I. (1975). Best Linear unbiased Prediction of Order Statistic
in Location and Scale Families. J. Amer. Statist. Assoc., 70, 145-150.

Kaminsky, K.S. and Rhodin, L.S. (1985). Maximum Likelihood Prediction. Ann. Inst. Statist.
Math., 37, 707-717.

Kundu, D. and Joarder, A. (2006). Analysis of Type-II Progressively Hybrid Censored Data.
J. Comput. Stat. Data. Anal., 50, 2509-2528.

Lawless, J.F. (2003). Statistical Models and Methods for Life Time Data. John Wiley and
Sons, New York.

Lin, Ch. and Huang, Y. (2012). On Progressive Hybrid Censored Exponential Distribution.
J. Stat. Comput. Simul., 82, 689-709 .

Marshall, A.W. and Olkin, O. (2007). Life Distributions. Springer, New York.

Nayak, T.K. (2000). On Best unbiased Prediction and its Relationships to unbiased Estima-
tion. J. Statist. Plann. Inference, 84, 171-189.

Raqab, M.Z. and Nagaraja, H.N. (1997). On Some Predictors of Future Order Statistics.
Austral. J. Statist., 39, 69-78.

Takada, Y. (1981). Relation of the Best Invariant Prediction and the Best unbiased Predictor
in Location and Scale Families. Ann. Statist., 9, 917-921.

Takada, Y. (1991). Median unbiasedness in an Invariant Prediction Problem. Statist. Probab.
Lett., 12, 281-283.

Zhang, Ch. and Shi, Y. (2017). Statistical Prediction of Failure Times under Generalized
Progressive Hybrid Censoring in a Simple Step-stress Accelerated Competing Risks Model.
J. Syst. Eng. Electron., 28, 282-291.

© 2017, SRTC Iran



S. Ameli, M. Rezaie and J. Ahmadi 155

Samaneh Ameli Majid Rezaei
Department of Statistics, Department of Statistics,
School of Mathematical Sciences School of Mathematical Sciences
and Statistics, and Statistics,
University of Birjand, University of Birjand,
Birjand, Iran. Birjand, Iran.
email: s.ameli@birjand.ac.ir email: mjrezaei@birjand.ac.ir

Jafar Ahmadi
Department of Statistics,
Ferdowsi University of Mashhad,
Mashhad, Iran.
email: ahmadi-j@um.ac.ir

J. Statist. Res. Iran 14 (2017): 131–155




