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Abstract. A procedure for detecting outliers in regression prob-
lems is proposed. It is based on information provided by boosting
regression trees. The key idea is to select the most frequently
resampled observation along the boosting iterations and reiterate
after removing it. The selection criterion is based on Tchebychev’s
inequality applied to the maximum over the boosting iterations
of the average number of appearances in bootstrap samples. So
the procedure is noise distribution free. It allows to select outliers
as particularly hard to predict observations. A lot of well-known
bench data sets are considered and a comparative study against two
well-known competitors allows to show the value of the method.
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1 Introduction

We address the problem of detecting outliers in a given sample in regression
problems. Outliers are generally considered as observations which are not “con-
sistent” with most of the data. Many interesting ideas can be found around a
classical way to detect them by considering PCA and related methods dealing
with stability, sensitivity and robust estimation of the principal components
(see Jolliffe, 2002, ch. 10, for a review).

The book of Rousseeuw and Leroy (1987) contains an overview of outlier
detection problems in the regression context and several methods are described
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2 Outlier Detection by Boosting Regression Trees

and proposed. The underlying model, the estimation method and the number of
outliers with respect to the number of observations lead to define various kinds
of outliers. For example, one can consider different ways of contamination:
outliers in the response space, outliers in the covariate space or outliers in
both spaces. Another point of view is to consider as outliers not only atypical
observations but also the observations coming from a second population.

Many methods have been developed to cope with such situations. They
are essentially supported by robustness ideas and are based on linear modeling
(see for example, Rousseeuw and Leroy (1987), Pena and Yohai (1999), or
Verboven and Hubert (2005) for a short software-oriented review). Classical
methods involve robust estimators of the covariance matrix or of the linear fit
like the Minimum Covariance Determinant (MCD) estimator (see Rousseeuw
and Van Driessen, 1999) or the Least Trimmed Squares (LTS) estimator (see
Rousseeuw and Leroy, 1987) or the Least Median of Squares (LMS) estimator
(see Rousseeuw, 1984). Of course, these approaches suffer from the restriction
of the outlier definition related to deviations with respect to the linear model.
More generally, the outlier definition depends on a given parametric regression
design method.

The aim of this paper is to propose a procedure based on boosting and such
that:

e the regression design method is nonparametric and able to explore
different features of the data by adaptive resampling;

e the detection is entirely automatic and the associated parameters are
data-driven,;

e it is possible to detect outliers in the response direction as well as in
the covariate space.

A classical remark about the boosting procedure AdaBoost (introduced for
classification problems by Schapire et al. (1998), and then for regression ones
by Drucker (1997)) and its variants, is its sensitivity to outliers. This property
is in general identified as a drawback, but it can be used (see Gey and Poggi,
2005) to improve the model estimated by a given estimation method to be
better adapted to particularly hard observations. The goal is here to use it
to detect outliers. Our procedure is based on the information provided by the
adaptive resampling process generated when boosting CART regression trees
is used. This adaptive process tells us a lot about the data set and this is one
of the most attractive feature of the boosting from the data analytic point of
view.

Let us recall that the boosting algorithm generates a sequence of regres-
sion function estimates, when the observations are supposed to come from a
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nonlinear regression model of the form (1). Each estimator of this sequence
fits a bootstrap sample obtained from the original training sample by adaptive
resampling, highlighting the observations poorly predicted by its predecessor
in the sequence. It turns out that such a resampling leads to focus on hard
observations with respect to the chosen estimation method, that is to focus on
more often badly predicted observations.

Of course an outlier is such an observation. So the adopted strategy is
two stages: the first highlights the hard observations and the second selects
among them the outliers. The key idea of the first stage is to retain the most
frequently resampled observation along the boosting iterations and reiterate
after removing it, while the second stage defines a data-driven confidence region
to select outliers.

This paper is organized as follows. In Section 2, the principle of CART
regression trees and the boosting for regression problems, are briefly recalled.
The outlier detection procedure is introduced and motivated in Section 3. The
Section 4 is dedicated to experimental results of the application of the detection
procedure to real and artificial data sets and to compare it with some well-
known competitors. Finally some concluding remarks are collected in Section
5.

2 CART Regression Trees and Boosting

Let us consider the following regression model:
Y = f(X)+¢, (1)

where (X,Y) € RP x R, f is the unknown regression function, and ¢ is an
unobservable additive noise centered conditionally to X with unknown variance
aZ.

Let us consider a sample L of size n composed of realizations of the variable
(X,Y) and possibly some outliers.

2.1 CART Regression Trees

We focus on CART regression trees to generate estimators of f, generically
denoted by f in the sequel. Since we are mainly interested in the sequence
of resampling probabilities produced by the boosting sequence, a particularly
attractive property of this estimation method is, in this context, its instability.
Therefore, the booststrap regression trees do not have the same number of
terminal nodes for random perturbations of the sample L and involve different
features of the data.

J. Statist. Res. Iran 3 (2006): 1-21



4 Outlier Detection by Boosting Regression Trees

We use here the well-known CART for regression (see Breiman et al., 1984)
allowing to construct from L an estimator f of f having low generalization
error. Since the joint distribution is unknown, the resubstitution error is used
to generate the models and the prediction error of f is evaluated (and then
the final tree is chosen) using a 10-fold cross validation, when the number of
observations is sufficient (more precisely when the sample size is greater than
100). Otherwise, the maximal tree is retained.

2.2 Boosting

The aim of boosting is to improve the performance of the chosen estimation
method (here CART) by generating a sequence of estimators using a suitably
chosen adaptive resampling scheme, and aggregating them. Starting from the
uniform distribution, the current sampling distribution is modified in such a
way that each estimator copes with a bootstrap sample obtained from the orig-
inal one by adaptive resampling, highlighting the observations poorly predicted
by its predecessor in the sequence.

The AdaBoost algorithm for classification problems, has been proposed
by Freund and Schapire (1997) and really impressive results are obtained for
prediction purposes. Some papers partially elucidate the surprisingly good
behaviour of this algorithm in the classification context (let us mention among
others Schapire et al., 1998; Friedman et al., 2000).

Drucker (1997) provides a direct adaptation of AdaBoost to the regression
framework, which exhibits interesting performance by boosting CART regres-
sion trees (see Borra and Di Ciacco, 2000; Gey and Poggi, 2005). The boosting
algorithm used here can be found in Table 1. Let us mention that, since usually
boosting is used to design an aggregated estimator, the final output (omitted

here) is f, the median of (fk)1<k<K weighted by (log (ﬁ))KKK.

In addition, let us mention that KX = 50, the value selected here for the
number of iterations within the boosting loop, is sufficiently large according to
experimental results about AdaBoost algorithm stabilization, both for classifi-
cation and regression cases (see Breiman, 1998; Gey and Poggi, 2005).

3 Outlier Detection Procedure

The proposed outlier detection procedure has two stages. The first step is
iterative. At each boosting iteration, we retain the most frequently resampled
observation along the iterations and reiterate after removing it. We obtain then
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Table 1. Boosting algorithm

[M,io] = boost(L, K)

Input: L: the sample of size n and K the number of iterations
Initialization: Set p; = D the uniform distribution on {1,...,n}

Loop: fork=1to K do

step 1 e randomly draw from L with replacement, according to pi, a sample
Ly, of size n,

step 2 e using CART, construct an estimator fk of f from Ly,
step 3 e set from the original sample L: ¢t =1,...,n
(i) = (¥i— fux0) and e, = S0y pr(i)le),
By = /(1125 (i) ) and di (i) = 1u(3)/ max 40,
Pt (D) = B Ope (i),
normalize pj41 to be of sum 1,

step 4 e compute I; ; the number of times the observation i appears in Ly,

K
Output: M = max;cr Si, io = argmax;cy, S;, where S; = % Zk—l I; 1

a set H containing the hard observations with respect to CART (the considered
estimation method) and, in addition, sufficiently many typical observations. In
the second stage, we select among them the outliers by defining a data-driven
confidence region. The detailed outlier detection procedure can be found in
Table 2. We emphasize that it is noise distribution free.

For sure, the second stage needs to be motivated. To construct the rejection
region (M; > C,) of stage 2, let us assume that J is chosen sufficiently large
so that it exists an integer jo such that (M;);=,,....,; are not associated with
indices corresponding to outliers and then can be assimilated to weakly depen-
dent identically distributed observations of common mean m and variance 2.
The plot on the top right of Figure 3 shows a simulated example for which
Jo =5 and J = 30.

For each j € (1,...,J), let us assimilate the outlier detection problem to the
individual test of the null hypothesis:

Hy : The observation i(j) is not an outlier,

against the alternative hypothesis:

H; : The observation i(j) is an outlier.

J. Statist. Res. Iran 3 (2006): 1-21



6 Outlier Detection by Boosting Regression Trees

Table 2. Outlier detection algorithm

Outlier detection

Input: J: the number of applications of boosting,
L: the initial sample,
«: the significance level of confidence interval, and
K: the number of iterations of each boosting.

Initialization: Set L' =T
Stage 1: for j =1to J do
[M;,i(5)] = boost(L7, K);
L+t = LI\ i(5);
H=L\L’

Stage 2:  Outliers are defined as the observations of index
i(j) € H such that (M; > Cy)

Since if i(j) is associated to an outlier then M; is large, it is consistent to
choose the rejection region W of the form W = (M; > C,) for a given level
of significance . By applying Tchebychev’s inequality to M, under Hy, we

obtain:
M, — 1 M, — 1
Pa. (J y /_> < P, (liml . /_> <o
g Q g Q

and then deduce C, after estimating unknown parameters leading to (2).
The gap between M; and m = Ep,(M;) under Hy allows to circumvent the
usual Tchebychev’s inequality conservativeness. Indeed, even if

Py, (|M] — m| > 0’0[71/2) << «a,

leads to shrink the rejection region, the hypotheses to be tested are sufficiently
separated to correctly select the outliers. In addition, let us remark that if one
think to « as an individual level in the interval [0.05,0.25], the key quantity
v/1/a controlling the bound (see Equation 2) varies between 2 and 4.5, which
generates quite small variations with respect to (M; — m) for i(j) associated
to an outlier. In the sequel, we use a = 5% for all the computations. The
unknown parameters m and o2 must be estimated under Hy. An entirely data-
driven solution is to use robust estimators denoted respectively by 1., and
62.,. Then, we select the outliers in the set H by taking the elements i(j) for

which (M; > C,) with

Co = 1rop + m' (2)
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Finally, let us make some additional remarks by answering three questions:

o Why boosting instead of bagging?

The bagging procedure can be defined as a special case of boosting by
defining Ly = L and py = D the uniform distribution on {1,...,n} in
Table 1. So the bagging seems to be a good candidate to build a robust
estimate of the regression function. In fact, it is true only when the
number of outliers is small with respect to the sample size. An idea
could be to select observations badly predicted by this robust estimate
and threshold the residuals according to the noise distribution. Of
course, this strategy requires assumptions about it.

o Why to reiterate boosting?

As a matter of fact, the j, most frequently resampled observations
along the iterations of a single boosting are different from the first
Jjo observations selected stepwise using J boosting reiterations. The
reason is that for a given boosting application, the most frequently
resampled observation would mask other hard observations.

e How to choose the number of boosting iterations?

Boosting is reiterated until all the outliers have been removed and
in addition a sufficient number of observations non-contaminated by
outliers are available to estimate the mean and variance under Hj
to plug in the Tchebichev’s inequality. When n is not too large, a
convenient choice for J is to take the integer part of 0.75n.

The lack of theoretical results (due to the difficulty to handle analysis of boost-
ing) necessitates an extended experimental study to evaluate the performance
of our method.

4 Experimental Results

We examine various well-known bench data sets allowing to study the behavior
of the proposed method for various kinds of outliers depending on the way of
contamination, for various sample sizes including small ones (which could be
critical for nonparametric estimation method) as well as larger ones.

The results are organized following four paragraphs in this section. Many
figures illustrate typical situations. Each figure contains four plots: at the top
left, the relevant data are displayed (a legend specifies the concerned useful
data); at the top right, the plot represents the value of M; for 1 < j < J
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8 Outlier Detection by Boosting Regression Trees

(defined in Table 2) obtained by our method (using a = 5%); at the bot-
tom, two plots give the results obtained by two alternative methods, Least
Trimmed Squares (LTS) and Minimum Covariance Determinant (MCD). The
estimates M,..p and .05 in (2) are obtained from the MCD estimators applied
to (M;)1gj<s- These estimates and the results obtained by these alternative
methods have been carried out using the library LIBRA (Verboven and Hubert,
2005) developed using MATLAB® (for a SAS® counterpart see Chen, 2002).
We use for each method, the default values for the corresponding parameters.
For our method and the MCD one, outliers are indices associated with
points located upside the solid horizontal line while for the LTS method, outliers
are located outside the interval delimited by two horizontal lines. In addition,
we indicate, for simulated data sets, the indices of outliers and for real data
sets, those of some observations chosen to facilitate the interpretation of the
plots. Let us remark that in the plot corresponding to our method only J
points are drawn while for the two other methods, all the points are present.

4.1 Outliers in Small Size Real Data Sets

Outlier detection is a well-documented topic and, thanks to the book of
Rousseeuw and Leroy (1987), a lot of interesting and intensively studied real
examples of small sample size, have been examined during twenty years by
many authors. All but a few examples extracted from this book are available
from the website http://www.uni-koeln.de/themen/statistik/data/roussecuw/.
In the sequel, we refer to a specific data set by giving the corresponding page
number in the above mentioned book (the same convention is also used in the
website).

We apply our method to all the examples (see Table 5 in Appendix). In
this section, we have taken the results given by the LTS method as a reference,
because it has been considered as a convenient one for such small data sets (see
for example, discussions of Rousseeuw and Leroy, 1987). The main conclusion
is that in many cases, we obtain results very close to those obtained using
MCD and LTS methods in spite of the small sample size (around twenty for
most of these data sets) and the parametric model. More precisely, we obtain
unsuccessful results for only three examples among eighteen. For the others,
we obtain always satisfactory detection with partial or total selection.

Let us be a little more precise by examining some examples of each typical
situation.

4.1.1 Why the Method Can Fail?

First of all, let us focus on the three examples for which the method fails. A
careful examination of the decision trees leads to easily explain this drawback:
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when CART creates a single node containing all the outliers, the method cannot
highlight them.

Figure 1 illustrates such a situation: as it can be seen at the top left plot,
the four outliers (identified using LTS) of indices 11, 20, 30 and 34, are atypical
both in response and covariate directions. We detect only two of them, LTS
captures the four and MCD identifies the four same observations plus three
others. The explanation is that CART is sufficiently flexible to create a node
containing the four outliers which are atypical in a similar way: their X-values
are close to each other and far from the other observations, and their Y-values
are the four first maxima. Let us observe that, along the iterations of the
detection algorithm (see the top right plot), as soon as the observations 34 and
30 are suppressed from the learning sample, outliers of index 20 and 11 are
then easily detected.

4.1.2 Examples of Correct Detection

Second, when the percentage of outliers is less than 10%, our method performs
correctly except, of course, when the above mentioned drawback occurs. A first
example without outliers is given by Figure 2. Our method performs correctly
as well as the two other methods. The second example (see Figure 3) exhibits
interesting behaviour and highlights an important difference with MCD and
LTS methods.

Boosting Method

5
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Robust distance
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Figure 1. Data set page 27 in Rousseeuw and Leroy (1987), n = 47, p = 1, nfuTtS =

Our method fails partially and detects only two outliers among four. This comes from
the fact that CART creates a single node containing all the outliers.
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Figure 2. Data set page 22 in Rousseeuw and Leroy (1987), n = 20,p = 1, nLTS =
Our method performs correctly on this data set without outliers.
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Figure 3. Data set page 94 in Rousseeuw and Leroy (1987), n = 75, p = 3, nout = 4.
Our method detects correctly the four outliers without any false detection while the
two other methods assimilate the first population to outliers.

outliers but LTS fails.

MCD detects the

© 2006, SRTC Iran



N. Cheze and J.-M. Poggi 11

Since it is the only one simulated in Rousseeuw and Leroy (1987), the
number of “true” outliers is known and equals to 4. The top left plot shows
that the sample can be divided in three parts, two different populations and
the outliers: the observations of index from 1 to 10, those of index greater than
15 and the four outliers from 11 to 14. Our method detects correctly the four
outliers without any false detection while the two other methods assimilate the
first population to outliers. MCD detects the outliers but LTS fails.

4.1.3 Examples of Good Selection but Poor Detection

Third, when the percentage of outliers is greater than 10%, the outliers are
brought at the top of the set H but the threshold is too large to automatically
select all the outliers. Let us examine two examples.

Figure 4 shows a perfect detection for both MCD and LTS methods, while
our method fails to correctly detect the seven outliers which are the observations
of index from 15 to 20, as it can be seen in the top left plot showing the sample
values of the explained variable Y. Nevertheless, the boosting method selects
correctly the outliers: the top eight values of the set H do contain all the
outliers but the bound is too large. This comes from the following fact: n = 24
and J —jp = 19— 6 are too small to have a sufficient number of observations to
conveniently estimate the unknown parameters involved in the detection region
definition (see (2)).

20

Standardzed LTS residual

5 : — — LTS _—
Figure 4. Data set page 26 in Rousseeuw and Leroy (1987), n = 24, p = 1, n>.°> = 6.

Perfect detection for both MCD and LTS methods, while our method fails to correctly
detect the six outliers which are the observations of index from 15 to 20. Nevertheless,
the boosting method selects correctly the outliers: the top eight values do contain all
the outliers.
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12 Outlier Detection by Boosting Regression Trees

A second example of such a situation is given by the Figure 5. The MCD and
LTS methods detect the two outliers corresponding to indices 2 and 18. The
observation 19 is detected by MCD. Our method selects first the three outliers
but the bound is slightly too large and then only one outlier is detected. Of
course at the naked eye, one would obviously select the three outliers.

Let us remark that, by taking 20% instead of 5%, the three outliers are
correctly selected and detected.

4.2 Outliers in Simulated Data Sets of Large Size

Table 3 presents three large sample size (n = 500) simulated data generated
from models FR#1, FR#2, FR#3 used in Gey and Poggi (2006) and first
considered by Friedman (1991). They exhibit different difficulties with respect
to CART regression trees: model FR#1 is defined using a simple nonlinear
function but involves five useless variables, models FR#2 and FR#3 correspond
to highly nonlinear functions with strong interactions.

For each model, some outliers have been introduced. We present some
selected and typical examples among numerous numerical trials. The main
conclusion is that the boosting method performs very well (and much better

Boosting Method

Standardized LTS residual
)
Robust distance
o+ v w s o o N
o
~

o 5 10 15 20 25 o 5 10 15 20

Figure 5. Data set page 47 in Rousseeuw and Leroy (1987), n = 21,p =1, n({‘g‘ts =

MCD and LTS methods detect the two outliers 2 and 18. The observation 19 is
detected by MCD method. Boosting method selects first the three outliers but the
bound is slightly too large and then only one outlier is detected. Of course at the
naked eye, one would obviously select the three outliers.

© 2006, SRTC Iran



N. Cheze and J.-M. Poggi

13

Table 3. Outliers and simulated data sets
Data Predictors Regression function f Noise
FR#1  X; ~U([0,1]) 10sin(rz122) + 20(x3 — 0.5)2  N(0,1)
i=1,...,10 +1024 + 525 + 010
FR#2 X1 ~ U ([0,100]) Va3 + {maws — (1zaza)}? N(0,02)
Xa /27 ~ U ([20,280]) such that
Xz ~U([0,1]) signal-to-noise
X4 ~U([1,11]) ratio about 3/1
_1 (2223 — (1/x224)
FR#3 Same as FR#2 tan e Same as FR#2

1

than the two considered competitors which are obviously not well suited to deal
with such nonlinear situations; the results provided by these two methods are
only given for illustration).

The first example is given by Figure 6. The top left plot shows the Y values
containing four outliers located at time instants: 90,110, 250, 380. It should be
noted that the outliers are not detectable at the naked eye (the same occurs

Boosting Method

Standardized LTS residual

Robust distance
@ »

n

Index

200
Index

Figure 6. Model FR#1, n = 500, nowt = 4 outliers located at time instants: 90, 110,
250, 380. The LTS and the boosting methods detect correctly three outliers. But LTS
generates some false detections and the MCD method fails to identify the outliers
and leads to too many false detections. In addition our method selects correctly the
last outlier at the fifth position in the set H.
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Figure 7. Model FR#2, n = 500, nout = 4 outliers located at time instants: 30,
180, 300, 460. Our method detects correctly the four outliers and generates only one
false detection. MCD and LTS detect only one or two outliers. LTS generates seven
false detections and the MCD method leads to too many false detections.
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= 4 outliers located at time instants:
50, 125, 240, 300. MCD method generates too many false alarms.
detects correctly the outliers but the price to pay is to diagnose erroneously atypical
observations. The boosting method highlights the four outliers with only one false

LTS method
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for the two other examples, see Figures 7 and 8). The LTS and the boosting
methods detect correctly three outliers. But LTS generates some false de-
tections and the MCD method fails to identify the outliers and leads to too
many false detections. In addition our method selects correctly the last outlier
bringing it at the fifth position in the set H of hard observations.

The second example is considered in Figure 7. Our method detects correctly
the four outliers and generates only one false detection. MCD and LTS detect
only one or two outliers. LTS generates seven false detections and the MCD
method again leads to too many false detections. A similar example is given
by the plots of Figure 8 confirming that in the presence of highly nonlinear
components in the regression function, the MCD method is useless and the
LTS method can detect correctly the outliers but the price to pay is to diagnose
erroneously atypical observations. Again the boosting method highlights the
four outliers with only one false detection.

4.3 A Small Size AR Example with Outliers

In this section, we try to apply our detection algorithm to the time series
framework for which, of course, it is not designed. Let us consider a sim-
ple time series model assuming that the order is known. An AR(3) model is
considered by Justel et al. (2001) and two time series are involved: a single
small size realization denoted by (Z;)1<i<50 and a contaminated version which
exhibits two kinds of outliers (these two signals are available from the web-
site http:/www.uam.es/personal_pdi/ciencias/ajustel/jpt.html). The first one
is classical and consists of an additive perturbation at instant 24 while the
second one is innovative (a constant is added to the innovation term in the
AR equation, see Catoni and Karioti (2004) for a specific development of a
time series oriented approach) and located at instant 35 which may generate
atypical events up to instant 38. As usual in the time series situation, we set
Y: =27, and Xy = (Z4_1, Z4—2, Z4—3), since the order is known.

To illustrate the behavior with respect to false detections, let us first con-
sider the situation under Hy. Figure 9 shows that the boosting method works
correctly and detects none. At the contrary, two observations are borderline
for the LTS detection limit and MCD generates six false detections.

We examine in Figure 10 a corresponding alternative situation (under Hy).
The LTS method detects correctly the isolated outlier (¢ = 24) and instants
35, 36 and 38 associated with the innovative outlier plus three false detections.
The MCD method detects correctly all the outliers but generates six false
detections. The boosting method fails to select the isolated outlier but selects
the beginning (¢ = 35) and the end (¢ = 38) of the events generated by the
innovative outlier without generating any false detection.
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Figure 9. An AR(3) time series without outliers, n = 47, noyt = 0. The boosting
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borderline for the LTS detection limit and MCD generates six false detections.

method works correctly and detects none.
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Figure 10. An AR(3) time series with an additive and an innovative outliers, n = 47,
nout = 5 (24 and the interval 35 to 38). LTS method detects correctly the isolated
outlier and instants 35, 36 and 38 associated with the innovative outlier plus three
false detections. MCD method detects correctly all the outliers but generates six false
detections. The boosting method fails to select the isolated outlier but selects the
beginning (¢t = 35) and the end (¢t = 38) of the events generated by the innovative

outlier without generating any false detection.
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Table 4. Hard real data sets without outliers

. Number
Data Response Predictors of Obs.
Boston Housing  Median housing 13 predictors. 506
price in the tract. Fully described in
Breiman et al. (1984).
Paris Pollution Daily maximum 3 predictors. 1200

ozone concentration.  Fully described in
Cheze et al. (2002).

4.4 Two Real Data Sets of Large Size, without Outliers

To end, we examine two hard real data sets (described in Table 4) which do
not contain any outliers, in order to test the method on real data to illustrate
the good behavior with respect to false detections. The first real data set,
called Boston Housing, is fully described in Breiman et al. (1984, pp. 217-
220) and extensively used in regression literature. The Paris Pollution data are
used to deal with the analysis and prediction of ozone concentration in Paris
area (see Bel et al., 1999). Highly polluted days are often hard to predict:
usual estimation methods need to be suitably post-processed to improve the
performance on these observations. In Cheze et al. (2003), it is shown that
starting from a CART regression tree, boosting performs automatically this
improvement. The conclusion is that it seems that the highly nonlinear nature
of the data lead to over estimations by the two considered alternative methods.

The results for Boston Housing are given in Figure 11. All the methods
generates false detections but only six for the boosting one to be compared to
very large numbers for the two other ones. A similar situation occurs for the
Paris Pollution data (see Figure 12). The LTS and MCD methods lead to very
large numbers of false detections while the boosting one highlights only one
day.

A deeper examination of this day selected by the boosting-based algorithm,
shows that it corresponds to a day where the temperature is high (about 28°C),
the day before is polluted (about 126 ug/m?) and there is no wind, so the ozone
concentration should be about 120 ug/m? but only 15 ug/m? is observed, which
is particularly hard to predict and atypical with respect to the small set of
explanatory variables considered in this model.
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Figure 11. Boston Housing real data set. All the methods generates false detections:
six for the boosting one and very large numbers for the two other ones.
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LTS and MCD methods lead to very large
numbers of false detections while the boosting one highlights only one day which is
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5 Conclusion

We have proposed in this paper, an outlier detection algorithm for regres-
sion problems based on the use of a flexible nonparametric estimation method
and the information provided by the adaptive resampling process generated
by boosting. An entirely data-driven procedure can be defined without any
specific assumption about the noise distribution.

Due to the difficulty to handle theoretical analysis of boosting, an extended
experimental study is provided. A lot of well-known bench data sets are con-
sidered: examples of small sample size as well as larger ones, real data sets
as well as simulated ones, slightly nonlinear underlying regression function as
well as highly nonlinear ones. A comparative study with two well-known com-
petitors (which are taken here to provide reference results) allows to show the
value of the method despite the computational effort needed to perform outlier
detection especially when both the sample size and the number of outliers are
large.

Finally, let us remark that, since CART allows to construct classification
trees and since AdaBoost algorithm was originally designed to cope with classi-
fication problems, it would be straightforward to extend this kind of algorithm
to the classification case.
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Appendix

Table 5. Synthetic results of our method for the small size data sets from Rousseeuw
and Leroy (1987). The table gives the book page number, the number of observations,
the number of explanatory variables and, for the two methods LTS and MCD, the
supposed numbers of outliers (the one given using LTS is taken as reference value
in the sequel) and the corresponding percentages. Finally, the last column classifies
the data sets in three categories: 1 stands for successful results, 2 for satisfactory
detection but poor selection and 3 for unsuccessful results.

Page number in
Rousseeuw and n p =l % 2M¢P % Category
Leroy (1987)

22 20 1 0 0 0 0 1
26 24 1 6 25% 7 26% 2
27 47 1 4 8% 7 15% 3
47 21 1 2 9% 3 14% 2
57 28 1 4 14% 6 21% 2
62 20 1 0 0 2 10% 1
73 18 1 2 11% 4 22% 2
76 21 3 0 0 4 19% 2
79 21 5 2 9% 4 18% 3
82 28 3 1 3% 4 12% 3
86 31 3 1 3% 5 12% 1
94 73 10 13% 14 18% 1
96 19 1 0 0 4 21% 2
103 12 2 0 0 2 16% 2
110 50 3 1 2% 5 10% 1
154 23 4 1 4% 5 20% 2
155 25 2 2 8% 5 20% 2
156 18 2 0 0 4 22% 2
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