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Abstract. In many life-testing and reliability studies, the exper-
imenter might not always obtain complete information on failure
times for all experimental units. One of the most common cen-
soring schemes is progressive type-II censoring. The aim of this
paper is characterizing the parent distributions based on Shannon
entropy of progressive type-II censored order statistics. It is shown
that the equality of the Shannon information in progressive type-
IT censored order statistics can determine the parent distribution
uniquely. We establish some characterization through the differ-
ence of Shannon entropy of the parent distribution and respective
progressive type-Il censored order statistics. We also prove that
the dispersive ordering of the parent distributions implies the en-
tropy ordering of their respective progressive type-II censored order
statistics.

Keywords. exponential distribution; Miintz-Szasz theorem; order
statistics; reliability properties; stochastic orders; Weibull distribu-
tion; Pareto distribution.

1 Introduction

Progressive censored samples arise in life-time and reliability studies when life
items are removed at various stages from the experiment. Saving on costs and
time may be the consequence of such a sampling scheme. For a detailed and
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comprehensive discussion of progressive censoring scheme we refer to Balakr-
ishnan and Aggrawala (2000) and the literatures cited therein.

Consider a reliability experiment in which n identical units are placed
on a life-time test. Let X1, Xs,..., X, denote the life-times of these exper-
imental units, with life-time cumulative distribution function, c.d.f., F(z) and
probability density function, p.d.f., f(x). Suppose that a censoring scheme
R= (R1,...,Rm), m < n,is fixed, such that immediately after the first failure
time of one of the units, R; units are randomly withdrawn from the n — 1
remaining surviving units; at the second failure time, Ry surviving units are
selected at random and taken out of the experiment, and so on; finally, at the
time of the mth failure, the remaining R,, = n —m — S/"," R; objects are
removed. The withdrawal of units may be seen as a model describing drop-outs
of units due to failures, which have causes other than the specific one under
study. The ordered values of m observed failure times, which are denoted by

XE ... XE are referred to as progressive type-II right censored order
statistics of size m from a sample of size n with progressive censoring scheme
R = (Ry,...,Rp). In this paper, we denote them by Xi.mun,- -, Xmim:n fOr
simplicity. For the censoring scheme R = (0,...,0,m — m), this scheme re-
duces to the conventional type-II right censoring scheme, in which case just
the first m usual order statistics are observed. Also, for the censoring scheme
R = (0,...,0) so that m = n, we obtain the ordinary order statistics of
X1,...,X,, where no withdrawals are made. Thus, usual order statistics form
a special case of progressive type-II right censored order statistics. So any re-
sult established for progressive type-II right censored order statistics becomes
a generalization of the corresponding result for the ordinary order statistics
(see Balakrishnan and Aggrawala, 2000, and also Balakrishnan, 2007, for more

details).

The concept of Shannon’s information (Shannon, 1948) plays the central
role in information theory, sometimes referred as measure of uncertainty. The
entropy of a random variable is defined in terms of its probability distribution
and can be shown to be a good measure of randomness or uncertainty. A
little work has been done in the context of Shannon’s information properties
of ordinary order statistics (see Wong and Chen, 1990; Park, 1995; Ebrahimi
et al., 2004; Baratpour et al., 2007). In this paper, we consider some charac-
terizations based on Shannon information of progressive type-II right censored
order statistics. Recently, some authors have used the Fisher information in
the usual order statistics as well as the usual type-I and type-II censored data
to characterize some families of distributions (see, for example, Gertsbakh and
Kagan, 1999; Zheng, 2001; Hofmann et al., 2005). Now, we ask the following
question: can the parent distribution be characterized by its entropy? This
question was also addressed by Baratpour et al. (2007, 2008) in the sense of
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Shannon’s and Rényi’s entropies of usual order statistics, and they obtained
several characterization results. Here, we describe conditions under which the
Shannon information of progressive type-II right censored order statistics can
uniquely determine the parent distribution F'.

The rest of the paper is organized as follows. Section 2 contains some prelim-
inaries and auxiliary results. In section 3, we present several characterization
results in terms of entropy of progressive type-II censored order statistics. It is
shown that the equality of the Shannon information in progressive type-II cen-
sored order statistics can uniquely determine the parent distribution uniquely
up to a location shift. We prove that the difference between the entropy of
the parent distribution and the entropy of appropriately chosen subsequences
of the progressive type-1I censored order statistics characterizes the parent dis-
tribution, but for a change of location and scale. In section 4, we give some
ordering results. It is proved that the dispersive ordering of the parent dis-
tributions implies the entropy ordering of their respective progressive type-II
censored order statistics.

2 Auxiliary Results

If X is a random variable having an absolutely continuous c.d.f. F with p.d.f.
f, then the basic uncertainty measure for distribution F'is defined as

1) =~ [ fo)tog f(2) da. (1)

H(X) is commonly referred to as the entropy of X or Shannon information
measure. The probability integral transformation provides the following useful
representation of the entropy of X:

H(X)= —/0 log f (F~'(z)) dx. (2)

For a non-negative random variable X, we have

HX) =1~ [ f)loghx (o) do. (3)

where hx (t) = f(t)/F(t) is the hazard rate function of X, and F(t) = 1 — F(t)
is the survival function of X.

In this paper, we explore properties of the entropy for progressive type-II
right censored order statistics. If the failure times X;, Xo,..., X, are indepen-
dent and identically distributed (i.i.d.) with common absolutely continuous
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c.df. F(z) and p.df. f(x), then the joint density of Xi.mum, ... Xmmen 18
given by

FramenrooXoimn (@15 2m) = [ [ F@)F @)™, w1 <2 < <am
=1
(4)
wherec=n(n—R;—1)---(n— Ry —---— Ry—1 —m+1). Kamps and Cramer

(2001) derived a simpler expression for the marginal distribution by carrying
out necessary integration. Their expression for the c.d.f. of X,.,,., is given by

a

Fx,,.(2)=1—c1 > —“[F@)], r=1...m (5)
=1 v

v

where

'yT:m—r+1+ZRi and Cr_1=H%', r=1,...,m

i=r =1

and
T

1
'Yj—’Yi7

Wi = r=1,....m
j=1
J#i

the empty product [], is defined to be 1.
Upon differentiating the expression in (5) with respect to x, we readily

obtain the p.d.f. of X,.,,., as

I (1) =cry Z ai, f(x)[F(2)]" r=1,...,m (6)

Note that since v = m+ Z:’;l R; = n, the p.d.f. of X;.,,., does not involve m

and the distributional properties of X7.,,.,, is exactly the same as the distribu-

tion of the usual smallest order statistic X;., (see Balakrishnan and Aggrawala,

2000, p. 7). Thus the results known in terms of Xj.,, will hold for X7.,,.».
From (5) and (6) we get

DX, (B) = hx (). (1), r=1,...,m (7)
where , B .
D aim[}i(t)]%_
S T FORT
It can be shown that £,.(#) is an increasing function in ¢, so by the afore-
mentioned identity (7), we can obtain some reliability relations between the

k(1) =

=1,...,m
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original variable X and the corresponding progressive type-II right censored
order statistics (not presented here). Block et al. (1985) obtained a relation
similar to equation (7) for two non-negative random variables and studied the
conditions for transmitting some reliability relations between them (see also
Kamps, 1995, chapter V).

For the standard uniform distribution, denoting the rth progressive type-II
right censored order statistic by Uy.m.n, from (6) we have

fu,mm (@) = crq Zaw(l — )"t O<u<l, r=1,....m (8)
=1

Using the expression in (1)
1 T T
H(Ur:m:n) = - / Cr—1 Z ai,ru’yi_l IOg Cr—1 Z ai,ru’yi_l du
0 i=1 =1
T 1 T
=—logcr,—1 — Crq Zai,r/ u " log Zawu""_l du. (9)
0

=1 i=1

For r =1, (9) is simplified as

1
H(Ulzm:n) =1- ’7—1 — log’yl. (10)

The transformation formula for the entropy applied to X,.;m.n = F = (Upimin)
gives the following representations of the entropy of progressive type-II right
censored order statistics.

Lemma 1. Let X1, X5, ..., X, bei.i.d. continuous random variables from the
common absolutely continuous c.d.f. F(x), p.d.f. f(x) and entropy H(X) < oo.
Then,

H(Xr:m:n) = H(Ur:m:n) -K [log f(F_l(Ur:m:n))] ) fO’/’ 1 < T < m < n.
an

Proof. The proof is easy, so it is omitted.

Note that only the second term in (11) involves F. It is obvious that for
n =1, the result in Lemma 1 reduces to the entropy of the parent distribution.
For R =(0,...,0) where m = n, the result in Lemma 1 turns into the entropy
of the ordinary order statistics of X1,...,X,.

J. Statist. Res. Iran 4 (2007): 191-202



196 Some Results Based on Entropy Properties of ...

3 Characterization Results

In this section, we assume that {n;,j > 1} is a subsequence of N with

0<n; <mz<--- and an_lzoo. (12)

We characterize the parent distribution on the basis of entropy properties of
progressive type-II right censored order statistics.

Theorem 1. Let X1, X5, ..., X, be i.i.d. random variables with common strictly
continuous c.d.f. F(x), p.d.f. f(x) and entropy H(X) < oo, then for fized r
and m (1 <7 <m), the sequence H( X, mim,;) — H(X), n; > m, such that the
sequence {nj,j > 1} satisfies (12), characterizes the distribution function F up
to location and scale parameters.

Proof. Using Lemma 1, we find
H(Xpomn) = HUpimen) — Cr1 Z a;, / wtlog f(F~H(1 —w)) du. (13)

Suppose for two c.d.f.’s F' and G with corresponding p.d.f.’s f and g, respec-
tively,
H(Xr:m:n) - H(X) = H(Yr:m:n) - H(Y)a

where X,. ., and Y,.,,., are the rth progressive type-II right censored order
statistics of X and Y in a sample of size n, respectively. Then from (13) we
ave

'S 9(G7'(1 - u)) " — ! 9(G~'(1 —u)) 5
et | 2 aurt ! log [f(F‘l(l = u))] tu= | 10 [f(F‘l(l = u))] -
Let ¢ = fol [log g(G™*(1 —w)) —log f(F~'(1 — u))] du. Noting that

1 T
cr_l/ E a¢7ru7"_1 du =1,
0 =1

we can re-express (14) as follows.

A (== R
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If (15) holds for n = n;, j > 1, such that ny < ny, < --- and Z i, =00,
then using the completeness property of the sequence of functlons {u”l 0 <
u < 1,7 > 1}, and the classical Miintz-Szdsz theorem (see, for example, Kamps,
1995, p. 103), we obtain

g(G~t(A —w))
FIFEH(1 = u))

Then we can conclude that f(F~1(t)) = e ¢g(G~1(t)), for all t € (0,1). Since
LF=1(t) = 1/f(F~1(t)), it then follows that F~'(v) = e °G~1(v) + d, for all

€ (0,1), where d is a constant. This means that F' and G are identical but
for a change of location and scale, thus the result follows.

log[ ]:c, forall 0<u<1.

Theorem 2. Under the assumptions of Theorem 1, for fivzed r and m, (1 <
r < m), the two following statements are equivalent:

(i) X is identical in distribution with Y, but for a location shift;

(1) H(Xrimin;) = H(Yrimin;), nj = m, such that the sequence {n;,j > 1}
satisfies (12).

Proof. The first part, [(i) = (ii)], is obvious. We will prove that the second
part, [(ii) = (i)], holds. By the assumptions and Lemma 1, for n > m we have

H(Urzm:n) - E [log f(F_l(UT:m:n))]

H(szm:n)
(Yr:m:n)
(Ur:m:n) - B [lOg g(G_l(UTimin))] .

H
H

Then
[IOg f(F™ ( rim: n))] =FE [log g(G_l(Ur:m:n))] .

Thus from (8) we get

1 G711 —u))
Cr— a;u" "o [g(—] du = 0. 16
Y 2 air™ o8 | T ) (16)
If (16) holds for n = n;, j > 1, such that ny < ny < --- and Z] \n; =00,

then we conclude that
FIFY1—=u)—g(G7'(1—u)) =0, ae u€c(0,1).

By proceeding as in the proof of Theorem 1, we deduce that F~1(t) = G~ +¢;
in other words, F' and G are identical but for a location shift.
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Corollary 1. Suppose that the sequence {n;,j > 1} satisfies (12) and the
assumptions of Theorem 2 hold. Then the following statements are equivalent:

(i) X is identical in distribution with Y, but for a location shift;
) H(Xvmin) = HViinin);

(i1) H(Xmimin) = HYVmimin);
)

(i

(iU H(Xm—T-i-l:m:n) = H(Ym—T-i-l:m:n), fO"' _ﬁl'@d T, (1 <r< m)

For the censoring scheme R = (0,...,0), ordinary order statistics, Barat-
pour et al. (2008) obtained similar results of Theorems 1, 2 and Corollary 1
based on Rényi entropy of order statistics.

Using the classical Miintz-Szasz Theorem, Theorem 2.1 of Baratpour et al.
(2007) can be improved, which is stated in the following.

Theorem 3. Let X, Xo,..., X, be i.i.d. continuous non-negative random
variables with common c.d.f. F(x), p.d.f. f(x) and entropy H(X) < oo, then
the two following statements are equivalent.

(2) The hazard rate satisfies hx(t) = ¢ (positive constant),

(1) H(Xiimin;) — H(X) = —logyi, for fived m and n; > m, such that
ny <ny <. and Y yn;' = oc.

Noting that hx(t) = ¢ (positive constant) if and only if X has exponential
distribution with hazard rate ¢, then we have the following result.

Corollary 2. Suppose the conditions of Theorem 8 hold. Then the following
two statements are equivalent.

(7)) X has exponential distribution;

(1) H(Xiimin;) — H(X) = —logyi, for fived m and n; > m, such that
ng <ng < --- andz;;“fnj_l = 0.

Suppose X has the Weibull distribution with scale and shape parameters «
and 3, respectively, i.e. F(x) = exp{—(x/a)”}, where a > 0 and 3 > 0. Then
it can be shown that H(X1.mn,)—H(X) = —% log 71 and hence by Theorem 1,
it is the only distribution with this property. This covers Weibull distributions
with location-shift as well. Thus we have the following result.

Corollary 3. Suppose the conditions of Theorem 8 hold. Then the two follow-
ing statements are equivalent.

(0) X has Weibull distribution with shape parameter [3;
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(1) H(Xyimn,)—H(X) = —%log'yl, form; > m, such thatng <ng < ---
and Y11 n;

; Yis infinite.

We have similar result for Pareto distribution. Let X be a random vari-
able having the Pareto distribution with scale and shape parameters § and o
respectively, i.e, F(x) = (g)a, where o > 0 and > 3 > 0. Then we have the
following corollary.

Corollary 4. Suppose the conditions of Theorem & hold. Then the two follow-
ing statements are equivalent.

(i) X has Pareto distribution with shape parameter a;

(”) H(Xlim:nj) - H(X) = —logryl + I-n

a1
Ny < -+ and Z;;OT nj_l is infinite.

, for n; > m, such that ny <

By Corollaries 2, 3, and 4, we conclude that the uncertainty about the X
is always more than the Xj.,,., in cases of exponential, Weibull and Pareto
models. We give general results in the next section.

4 Ordering Results

There are several notions of stochastic ordering among random variables with
varying degree of strength. In the following, we briefly review some of these
notions that will be used later on in this section (see Shaked and Shantikumar,
2007, for more details).

Definition 1. Let X and Y be two random variables with distributions F and

G, density functions f and g, and failure rate functions hx and hy, respec-
tively.

(a) A random variable X is said to have increasing [decreasing] failure rate
(IFR)[DFR] if its failure rate function hx (t) = f(t)/F(t) is increasing
[decreasing] in t > 0.

(b) The random variable X is said to be stochastically less than or equal
to Y, denoted by X<, Y, iof F(t) < G(t), for all t.

(¢) The random variable X is said to be smaller than'Y in the hazard rate
order, denoted by X<y.,Y, if hx(t) = hy(t), fort > 0.

(d) The random variable X is said to be smaller than Y in the dispersive
order, denoted by X<4spY , if F1(B) — F (o) <G 1(B) — G ()
whenever 0 < a < < 1.

J. Statist. Res. Iran 4 (2007): 191-202
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(e) The random variable X is said to be smaller than'Y in the star order,
denoted by X<.Y, if G™Y1(F(x))/x is increasing in x > 0.

(f)y The random wvariable X is said to be smaller than Y in the super-
additive order, denoted by X<s,Y, if G- L (F(z+y)) > G 1(F(x)) +
G~ Y (F(y)), for allx >0 and y > 0.

Note that in the cases (a), (c), (e), and (f) the random variables should be
non-negative. For applications of stochastic orders in reliability and life-testing
contexts, see Shaked and Shantikumar (1994, 2007).

Definition 2. Let X and Y be two random wvariables with entropy functions
H(X) and H(Y), respectively, such that H(X) < H(Y). Then X is said to be
smaller than Y in the entropy order, denoted by X<.,Y .

The following theorem is an extension of Theorem 2.4 of Ebrahimi et al.
(2004) for progressive type-II right censored order statistics.

Theorem 4. Let X and Y, be two random variables with p.d.f.’s f(-) and g(-),
and absolutely continuous c.d.f.’s F(-) and G(-), respectively. If X <qispY , then
for fited r and m (1 <r < m),

Xr:m:ngen}/;:m:na for all n =z m.

Proof. When X and Y have densities f and g, respectively, X <qis,Y if and
only if
9(G7 () < f(F7H(y)), forall 0<y<1. (17)

From (17) we immediately conclude that

E [IOgg(G_l(Ur:m:n))] < E [IOg f(F_l(Ur:m:n))] 5 forall n 2 m. (18)

Then by Lemma 1 and (18) we get

H(XT:m:n) < H(erm:n)7 forall n Zm.
Thus the result follows by Definition 2.
Theorem 5. Let X and Y be two non-negative random variables with p.d.f.’s

F0) and g(-), and absolutely continuous c.d.f.’s F(-) and G(-), respectively. If
X<4Y and, for fiztedr and m (1 <r <m), Yemn 1S DFR, then

X'r:m:ngeny'r:m:na fOT a'll n 2 m.

Proof. Noting that the stochastic order is preserved by progressive type-I1
right censored order statistics, hence X,. .0 <gt Yrim:n. LThus the result follows
by Theorem 2.2 of Ebrahimi et al. (2004).
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Corollary 5. Let X and Y be two non-negative random variables and suppose
one of the following conditions is satisfied:

(a) X<wY, and X orY is DFR;

(b) e¥<.e¥;

(C) ngty and nguy;

(d) llmwﬁO(G_lF(ﬂf)/fL’) Z 1 and XSSUY.
Then, for fized r and m, (1 < r < m), the following statement holds:
szm:ngen}/;:m:na for 0/” n 2 m.

Proof. By Theorems 3.B.20, 4.B.1, 4.B.2, and 4.B.3 of Shaked and Shantiku-
mar (2007), under the conditions (a), (b), (c), and (d), respectively, we get
X'<4ispY, thus the results follows by Theorem 4.

By (7) we conclude Xi.m.n<prX, so for a DFR distribution, for example
Weibull distribution with shape parameter less than one, Pareto distribution,
and the mixtures of exponential distributions, we have X7.,,., <cn X .

Theorem 6. Let X1,...,X,, be non-negative i.i.d. DFR random wvariables,
then for n > m,

Xl:m:ngean:m:na fO’l’ all 2 < T < m.

Proof. From equation (7) we have hx,,, .. (t) = v1hx(t), so by the assumption,
X1.m:n 1s DFR. Noting that X1.,m.n<peXrmen, (© = 2,3,...,m), the condition
(a) of Corollary 5 holds and the result immediately follows.
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