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Abstract. The process personnel always seek the opportunity to improve
the processes. One of the essential steps for process improvement is to quickly
find the starting time or the change point of a process disturbance. To do this,
after a control chart triggers an out-of-control signal, an order of points in
time (known as a plan) should be identified such that if the process examined
sequentially at them, the true change point is detected as soon as possible.
A typical method is to start the examination of the process from the signal
time of the control chart and proceed to neighbouring points. In this paper,
we establish a Bayesian method to solve this problem, i.e. to find a plan
for examining the process sequentially such that it minimizes the Bayes risk
among all other possible plans. At last, our proposed Bayes method is applied
to a normal process, and compared to a typical method which is usually used
to find the true change point through a series of simulations.
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1 Introduction

Statistical process control (SPC) charts are commonly used for detecting the
presence of disturbances in a process. The primary function of SPC charts is
that an out-of-control signal will be triggered when the process disturbances
have occurred in the process.

When the control chart signals that the process is out-of-control, the
process personnel must initiate a search for the special cause of the process
disturbance. It is worthwhile to distinguish the difference between the change
point and the out-of-control signal time which is triggered by the SPC charts.
The change point is the time that the disturbances affect the process and the
SPC signal time is the time that the out-of-control state is detected by the
SPC charts. Actually, the change point time occurs first, and then the SPC
signal is subsequently triggered. If the change point time can be determined,
the special cause can be identified more quickly, and appropriate actions need
to improve quality can be implemented sooner.

To find the true change point we should identify a plan which is an order
of the points in time, according to which the examination of the process
is done sequentially. A typical plan is to search for the true change point
starting from an estimate of the change point and proceed to neighbouring
points in time until the true change point is found. Usually, the signal time
T is chosen as an estimate of the change point, and the search for finding
the change point starts from this point in time. If the root causes cannot
be identified at the initial signal time T ; the searching process may proceed
at time T − 1. This process should continue until the identification is made.
Throughout this paper this plan is referred to as the Typical Plan.

In their paper, Samuel et al. (1998) addressed the issue of estimating the
change point of a normal process. Pinatiello and Samuel (2001) used expo-
nentially weighted moving average (EWMA) and Cusum charts and MLE to
estimate the change point of a process. Shao and Hou (2004) provided some
statistical properties for the change point estimators. In addition, Shao and
Hou (2006) derived the change point estimators in the case of the S chart
and MLE are used in a gamma process. Later Shao et al. (2006), used an X̄
control chart and MLE to estimate the change point of a Gamma process.
Shao and Hou (2013a) applied an integrated approach of neural network and
analysis of variance to identify a change point in an industrial process. Shao
and Hou (2013b) used a two-stage hybrid scheme to estimate a change point
for a multivariate process. Hou et al. (2013) used a combined MLE and
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Generalized P chart approach to estimate the change point of a multinomial
process.

All the above studies discuss the problem of estimating the change point.
Different form these papers, in this study, we consider the problem of finding
the true change point, when a control chart is used, from Bayesian point of
view. It will be shown that, when a control chart makes a signal, how one
can find a plan for finding true change point which minimizes the Bayes risk
among all the possible plans. The structure of this paper is as follows. In
Section 2, the model is introduced. Bayesian inference is explained in Section
3, briefly. Section 4, our plan for finding true change point is introduced and
two plans is compared in Section 5. Finally, in Section 6, conclusions are
made.

2 The Model
This study assumes the process is initially in control, and the sample ob-
servations come from a known density function f(x|θ0) where θ0 is known.
However, after an unknown point in time τ , a disturbance is introduced into
the process and starting from the point in time τ + 1 (known as the process
change point) it changes the process parameter from θ0 to θ1. It is also as-
sumed that once the parameter θ0 changed, it remains at the new level of θ1
until the root causes of the disturbance have been identified and removed.
Let Xij denote the jth observation in subgroup i with distribution f(x|·).
That is

Xij

iid
∼ f(x|θ0), i = 1, 2, . . . , τ

j = 1, 2, . . . , n,

and

Xij

iid
∼ f(x|θ1), i = τ + 1, . . . , T

j = 1, 2, . . . , n,

where n is the subgroup sample size and T is the signal time which is triggered
by the control chart.

iid
∼ stands for independent and identically distributed,

also T is a random variable. It is assumed that T ∼ g(t|τ, θ1), where the dis-
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tribution g(·|τ, θ1) depends to the type of the control chart which is applied.

3 Bayesian Inference
In general, making inference about the parameters in a statistical problem
by the Bayesian approach, necessitates specificating a prior distribution for
the parameters which reflects our prior information about them. Assuming
xi = (xi1, . . . , xin), i = 1, · · · , T , the joint distribution of the observation,
i.e. xi s and T , is

f(x1, . . . ,xt, t|τ, θ0, θ1) =
τ∏

i=1

n∏
j=1

f(xij |θ0)
t∏

i=τ+1

n∏
j=1

f(xij |θ1)g(t|τ, θ1). (1)

Let π(τ, θ1) be the joint prior distribution for the parameters τ and θ1, then
the posterior probability distribution of τ is

π(τ |x1, . . . ,xt, t) =

∫ +∞
−∞ f(x1, . . . ,xt, t|τ, θ1)π(τ, θ1)dθ1∑

τ

∫ +∞

−∞
f(x1, · · · ,xt, t|τ, θ1)π(τ, θ1)dθ1

, τ = 0, 1, . . . , t−1.

(2)

4 Identifying a Plan for Finding True Change Point
When a control chart triggers a signal, one should find a plan according to
which the process is examined sequentially until the true change point is
found. Each plan is just an arrangement of the points in the set {1, 2, . . . , T}
which can be shown as a vector. For example the vector (i1, i2, . . . , iT ), which
is a permutation of the elements of the set {1, 2, . . . , T}, is a plan according
to which the examination of the process for finding the main reason of the
disturbances is done sequentially at times i1, i2, . . . until it is found at time
τ + 1.

4.1 Finding True Change Point Using Bayesian Method

Our inferential problem is to find a suitable plan for identifying the true
change point. That is, to find the vector (i1, i2, . . . , iT ), which is a permuta-
tion of the elements of the set {1, 2, . . . , T}, such that the true change point
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can be found efficiently by examining the process sequentially at the points
in time i1, i2, . . ..

The efficiency of any plan from Bayesian point of view is based on its
corresponding Bayes risk which is the expectation of the loss function. In
our problem a natural loss function is the number of the points in time at
which the process should be examined, until the main causes of disturbances
is found at τ + 1. That is

L(τ, (i1, i2, . . . , iT )) = j, if ij = τ + 1, j = 1, 2, . . . , T. (3)

4.2 Bayesian Plan for Finding the True Change Point

A Bayes action is a decision rule that minimize the Bayes risk or equivalently
posterior expected value of the loss function. Here, our action can be any
permutation of the elements of the set {1, 2, . . . , T} and the loss function is
as (3). Thus, to find the Bayesian plan for finding the true change point one
should find a permutation of the elements of the set {1, 2, . . . , T} such that
it minimizes the posterior expected value of the loss function. To do this, we
need the following theorem.

Theorem 1. Let a1, a2, . . . , am and b1, b2, . . . , bm be real numbers such that
a1 ⩽ a2 ⩽ · · · ⩽ am and b1 ⩽ b2 ⩽ · · · ⩽ bm then a1bm + a2bm−1 + · · · +
amb1 ⩽ a1bi1 +a2bi2 + · · ·+ambim for all (i1, i2, . . . , im) which is an arbitrary
permutation of {1, 2, . . . ,m} , ∀m ∈ N.

Proof. By induction
for m = 2 the inequality a1(b2 − b1) ⩽ a2(b2 − b1) is obtained easily. Thus,
a1b2 + a2b1 ⩽ a1b1 + a2b2. If the inequality holds for m = k we will prove
the inequality for m = k + 1. Assuming a1 ⩽ a2 ⩽ · · · ⩽ ak+1 and b1 ⩽
b2 ⩽ · · · ⩽ bk+1 one can write the inequality for a1 ⩽ a2 ⩽ · · · ⩽ ak and
b2 ⩽ b3 ⩽ · · · ⩽ bk+1. Thus the following inequality is obtained,

a1bk+1 + a2bk + · · ·+ akb2 ⩽ a1bik+1
+ a2bik + · · ·+ akbi2 , (4)

where (i2, i3, . . . , ik+1) is an arbitrary permutation of the elements of the set
{2, 3, . . . , k + 1}. Adding the term ak+1b1 to both side of the inequality (4)
gives

a1bk+1+a2bk+· · ·+akb2+ak+1b1 ⩽ a1bik+1
+a2bik+· · ·+akbi2+ak+1b1, (5)
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but the inequality holds for m = 2, ar ⩽ ak+1, b1 ⩽ bik+2−r
and gives the

inequality arbik+2−r
+ ak+1b1 ⩽ arb1 + ak+1bik+2−r

for r = 1, 2, . . . , k. Thus
in the right side of inequality (5) one can swap b1 and bik+2−r

or equiv-
alently the indices 1 and ik+2−r for r = 1, 2, . . . , k. In other words one
can swap the index of b1, i.e. 1, with each one of the indices in the set
{i2, i3, . . . , ik+1} = {2, 3, . . . , k + 1} and still the inequality holds. It means
that for all (i1, i2, . . . , ik+1) which is an arbitrary permutation of the elements
of the set {1, 2, . . . , k + 1} the inequality holds.

Theorem 2. Assume the control chart triggers a signal at time T . Let
p1, p2, . . . , pT be the posterior probability of the change point at points in
time 1, 2, . . . , T , i.e. pr = π(r − 1|x1, . . . ,xT , T ), and p(1), p(2), . . . , p(T ) be
increasingly ordered values of pr s. Let i[r] be the point in time whose posterior
probability is p(r). Then the plan (i[T ], i[T−1], . . . , i[1]) is the Bayes plan. That
is, it has the smallest Bayes risk.

Proof. Assume D = (x1, . . . ,xT , T ), the posterior risk is obtained,

E[L
(
τ, (i[T ], i[T−1], . . . , i[1])

)
|D]

= 1× P (τ = i[T ]|D) + 2× P (τ = i[T−1]|D) + · · ·+ T × P (τ = i[1]|D)

= 1× p(T ) + 2× p(T−1) + · · ·+ T × p(1),

by attention to the inequalities 1 ⩽ 2 ⩽ · · · ⩽ T , p(1) ⩽ p(2) ⩽ · · · ⩽ p(T )

and using Theorem 1, the following inequality is given,

1× p(T ) + 2× p(2) + · · ·+ T × p(1) ⩽ 1× pi1 + 2× pi2 + · · ·+ T × piT

= 1× P (τ = ri1 |D) + 2

× P (τ = ri2 |D) + · · ·+ T × P (τ = riT |D)

= E[L
(
τ, (ri1 , ri2 , . . . , riT )

)
|D],

where (ri1 , ri2 , . . . , riT ) is an arbitrary permutation of the elements of the set
{1, 2, . . . , T} with posterior probabilities (pi1 , . . . , piT ). Thus

E[L
(
τ, (i[T ], i[T−1], . . . , i[1])

)
|D] ⩽ E[L

(
τ, (ri1 , ri2 , . . . , riT )

)
|D]

and (i[T ], i[T−1], . . . , i[1]) is the Bayes plan.

Therefore, when the control chart signals that some disturbances intro-
duce into the process, the plan according to which the examination of the
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process is done sequentially at points of time in order of decreasing posterior
probability, is the Bayes plan for finding the true change point.

5 Comparing Two Plans

In this section, we consider a normal process which is monitored by an X̄
control chart, the most commonly used statistical process control chart in
industry. The control limits for a Shewhart X̄ control chart is as follows

UCL = µ0 + kσ0

LCL = µ0 − kσ0,

where µ0 and σ0 are the mean and standard deviation of the normal
process, when it is under control. It is usually assumed that k = 3, although
it can be identified in light of the specified type I error (i.e., α). To see a full
discussion of X̄ control chart see Montgomery (2009).
It is assumed after an unknown time τ , the mean of the process changes
from µ0 to µ1 = µ0 + δ σ0√

n
, and remains at the new level until time T at

which the control chart makes an out-of-control signal. when the control
chart signals that the process is out-of-control, the process personnel must
initiate a search for the special cause of the process disturbance.

For this type of control chart the distribution of the signal time T given
the parameter τ is follows. After change point time, the parameter µ0
changes to µ1. From this time, the probability of observing a subgroup
mean out of control for each subsample is

α(µ1) = P (X̄i < LCL) + P (X̄i > UCL), i = τ + 1, τ + 2, . . .

where LCL and UCL are lower and upper control limits, respectively. Then
given τ and µ1, the distribution of T is as follows

g(t|τ, µ1) = P (T = t|τ, µ1)
= α(µ1)(1− α(µ1))

t−τ−1, t = τ + 1, τ + 2, . . . , (6)

or equivalently T − τ is distributed as Geometric(α(µ1)). Although the con-
trol chart is able to trigger a signal when the assignable causes have occurred
in the process, it may still need some time to determine the root causes of
the problem. Using the Typical Plan, starting from the signal time T , the
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number of points in time at which the process should be examined to find the
change point τ + 1 is T − τ which is distributed as a Geometric distribution
with parameter α(µ1). Therefore, to find the change point, starting from the
signal time, in average the process should be examined at E(T − τ) = 1

α(µ1)

points in time, which is in fact the out-of-control average run length. In the
next subsection the Typical Plan is compared to the Bayes plan based on a
reasonable criteria.

5.1 Simulation Studies

In this section the Typical Plan for finding true change point is compared to
the Bayes plan. The one which helps us to find the true change point more
quickly is a better plan. Therefore, a suitable criteria for comparing the two
aforementioned plans is the average number of points in time at which the
process should be examined when a specific plan is used to find the true
change point. For simplicity this criteria is shown as ANPT. It is easy to see
that for the Typical Plan we have ANPT= E(T − τ) = 1

α(µ1)
. Note that in

this case ANPT does not depend on the value of τ . Now, we compute ANPT
for the Bayes plan through a series of simulations.

When the X̄ control chart signals that the mean of the process has
changed, from Bayesian point of view, we assume that µ1 and τ are in-
dependent, and have the probability density π(µ1) = 1, −∞ < µ1 < +∞
and π(τ) = 1

t , τ = 0, 1, . . . , t− 1 (t is the observed signal time) respectively.
A Monte Carlo simulation study was conducted to study the performance
of the Bayes plan for finding true change point. Suppose n = 4, sample ob-
servations are randomly generated from N(0, 1) distribution for subgroups
1, 2, . . . , τ . Then, starting with subgroup τ + 1, observations were randomly
generated from N(µ1, 1) where µ1 = δ 1√

n
until at time T the X̄ control chart

triggers a signal. In this case, the probability density function of the observa-
tions is as (1) where f(xij |θ0) and f(xij |θ1) are respectively the probability
density function of N(µ0, 1) and N(µ1, 1) with θ0 = µ0 = 0 and θ1 = µ1. By
putting this probability density function and g(t|τ, µ1) in relation (6) into
(2) the posterior mass function of τ can be computed easily.

For each of the values of τ = 25, 50, 100 and δ = 0.3, 0.4, · · · , 3, this pro-
cedure is repeated a total of 1000 times. For each simulation run, the Bayes
plan for finding true change point is applied and its ANPT is computed.
Figure 1 shows ANPT s of Bayes plans, for a range of values of τ and δ.
We consider that for τ = 25, 50, 100, the performance of the Bayes plan is not
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Figure 1. The ANPTs of Bayes plans for τ = 25 (dotted curve), τ = 50 (broken curve)
and τ = 100 (solid curve) (subgroup size n = 4).

much different. Although, it seems that the performance of the Bayes plan
slightly decreases for small changes in the process mean when τ increases.
In addition, based on ANPT (Figure 2) criteria, the Bayes plan for τ = 100
(consequently for τ = 25, 50) outperforms the Typical Plan for all values of
δ (note that the ANPT of the Typical Plan is constant for all values of τ).

6 Conclusion
Our study presented a Bayesian approach for finding the true change point
for an arbitrary process when implementing a control chart. After the control
chart triggers an out of control signal, we should initiate a search for finding
the true change point. To do this, a plan should be identified according to
which the process is examined at points in time 1, 2, . . . , T . It was shown
that if the process is examined sequentially at points in time in order of
decreasing posterior probability of them, the Bayes risk is minimized. That
is, this plan is the Bayes plan for finding the true change point. This result is
true for every control chart and it is true even if more than one parameter of
the process change after the change point. In addition, the proposed Bayes
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Figure 2. The ANPT of Bayes plan for τ = 100 (broken curve) and ANPT of the Typical
Plan (solid curve) ( subgroup size n = 4).

method was used for a normal process which is monitored by an X̄ control
chart. Then it is compared to the typical method for finding true change
point through a series of simulations. These simulations show that the Bayes
plan out performs the typical plan for a range of parameters’ values.
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